Update viewing_data_in_pandas.md

pull/660/head
Kaza.Sunitha 2024-05-28 11:21:20 +05:30 zatwierdzone przez GitHub
rodzic 7cec11807f
commit 6f1cec8f6a
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 149 dodań i 6 usunięć

Wyświetl plik

@ -1,7 +1,150 @@
**View the top rows of the frame**
**Pandas Dataframe/Series.head() method**
The pandas library in Python provides a convenient method called head() that allows you to view the first few rows of a DataFrame. Let me explain how it works:
# View the top rows of the frame
*The head() function returns the first n rows of a DataFrame or Series.
*By default, it displays the first 5 rows, but you can specify a different number of rows using the n parameter.
** Example**
# Pandas Dataframe/Series.head() method:
The pandas library in Python provides a convenient method called head() that allows you to view the first few rows of a DataFrame. Let me explain how it works:
* The head() function returns the first n rows of a DataFrame or Series.
* By default, it displays the first 5 rows, but you can specify a different number of rows using the n parameter.
**Syntax**:
dataframe.head(n)
n is the Optional value. The number of rows to return. Default value is 5.
**Example** :
import pandas as pd
df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion','tiger','rabit','dog','fox','monkey','elephant']})
df.head(n=5)
**Output**:
'alligator',
'bee',
'falcon',
'lion',
'tiger'
# View the bottom rows of the frame
# Pandas Dataframe/Series.tail() method:
The tail function in Python displays the last five rows of the dataframe by default. It takes in a single parameter: the number of rows. We can use this parameter to display the number of rows of our choice.
* The tail() function returns the last n rows of a DataFrame or Series.
* By default, it displays the last 5 rows, but you can specify a different number of rows using the n parameter.
**Syntax**:
dataframe.tail(n)
n is the Optional value. The number of rows to return. Default value is 5.
**Example** :
import pandas as pd
df = pd.DataFrame({'fruits': ['mongo', 'orange', 'apple', 'lemon','banana','water melon','papaya','grapes','cherry','coconut']})
df.tail(n=5)
**Output**:
'water melon',
'papaya',
'grapes',
'cherry',
'coconut'
# View basic statistical details
# Pandas DataFrame describe() Method
Pandas describe() is used to view some basic statistical details like percentile, mean, std, etc. of a data frame or a series of numeric values.Descriptive statistics include those that summarize the central tendency, dispersion and shape of a datasets distribution, excluding NaN values.
Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types.The output will vary depending on what is provided.
**Syntax**:
DataFrame.describe(percentiles=None, include=None, exclude=None)
**percentiles** : list-like of numbers, optional
The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.
**include** :all, list-like of dtypes or None (default), optional
A list of data types to include in the result.
* all : All columns of the input will be included in the output.
* A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To select pandas categorical columns, use 'category'
* None (default) : The result will include all numeric columns.
**exclude** : list-like of dtypes or None (default), optional.
A black list of data types to omit from the result.
* A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit numpy.number. To exclude object columns submit the data type numpy.object.
* None (default) : The result will exclude nothing.
**Example** :
Describing a numeric Series.
import pandas as pd
s = pd.Series([1, 2, 3])
s.describe()
**Output** :
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64
**Example** :
Describing a categorical Series.
import pandas as pd
s = pd.Series(['a', 'a', 'b', 'c'])
s.describe()
**Output** :
count 4
unique 3
top a
freq 2
dtype: object