diff --git a/contrib/machine-learning/reinforcement-learning.md b/contrib/machine-learning/reinforcement-learning.md
index 25dc442..e55881a 100644
--- a/contrib/machine-learning/reinforcement-learning.md
+++ b/contrib/machine-learning/reinforcement-learning.md
@@ -116,9 +116,7 @@ Q-Learning is a model-free algorithm used in reinforcement learning to learn the
- Choose an action using an exploration strategy (e.g., epsilon-greedy).
- Take the action, observe the reward and the next state.
- Update the Q-value of the current state-action pair using the Bellman equation:
- ```latex
- Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)
- ```
+
where:
- \( Q(s, a) \) is the Q-value of state \( s \) and action \( a \).
- \( r \) is the observed reward.
@@ -141,17 +139,12 @@ Deep Q-Networks (DQN) extend Q-learning to high-dimensional state spaces using d
- Store the transition \( (s, a, r, s') \) in the replay memory.
- Sample a minibatch of transitions from the replay memory.
- Compute the target Q-value for each transition:
- ```latex
- y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\
- r_j + \gamma \max_{a'} Q(s', a'; \theta^-) & \text{otherwise} \end{cases}
- ```
+
where:
- \( \theta^- \) represents the parameters of the target network.
- \( y_j \) is the target Q-value for the \( j \)th transition.
- Update the Q-network parameters by minimizing the temporal difference loss:
- ```latex
- \mathcal{L}(\theta) = \frac{1}{N} \sum_{j} (y_j - Q(s_j, a_j; \theta))^2
- ```
+
4. Until convergence or a maximum number of episodes.
### SARSA
@@ -166,9 +159,7 @@ SARSA (State-Action-Reward-State-Action) is an on-policy temporal difference alg
- Take action \( a \), observe the reward \( r \) and the next state \( s' \).
- Choose the next action \( a' \) using the current policy.
- Update the Q-value of the current state-action pair using the SARSA update rule:
- ```latex
- Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma Q(s', a') - Q(s, a) \right)
- ```
+
3. Until convergence or a maximum number of episodes.
### REINFORCE Algorithm: