kopia lustrzana https://github.com/animator/learn-python
Trial-2
rodzic
d1a2bd56a3
commit
5cf4b9b5cb
|
@ -300,11 +300,11 @@ Congratulations on completing your journey through this comprehensive guide to r
|
|||
|
||||
*Happy coding, and may your RL adventures be rewarding!*
|
||||
|
||||
\( Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right) \)
|
||||
$$ Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right) $$
|
||||
|
||||
where:
|
||||
- \( Q(s, a) \) is the Q-value of state \( s \) and action \( a \).
|
||||
- \( r \) is the observed reward.
|
||||
- \( s' \) is the next state.
|
||||
- \( \alpha \) is the learning rate.
|
||||
- \( \gamma \) is the discount factor.
|
||||
- $Q(s, a)$ is the Q-value of state $s$ and action $a$.
|
||||
- $r$ is the observed reward.
|
||||
- $s'$ is the next state.
|
||||
- $\alpha$ is the learning rate.
|
||||
- $\gamma$ is the discount factor.
|
||||
|
|
Ładowanie…
Reference in New Issue