Merge pull request #1309 from DivyanshiSingh00/patch-1

Update naive-bayes.md
pull/1323/head^2
Ashita Prasad 2024-07-04 23:01:16 +05:30 zatwierdzone przez GitHub
commit 171af69295
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 21 dodań i 62 usunięć

Wyświetl plik

@ -93,13 +93,9 @@ $$
- Rain:
$$
P(Rain|Yes) = \frac{2}{6}
$$
$$P(Rain|Yes) = \frac{2}{6}$$
$$
P(Rain|No) = \frac{4}{4}
$$
$$P(Rain|No) = \frac{4}{4}$$
- Overcast:
@ -111,10 +107,7 @@ $$
$$
Here, we can see that
$$
P(Overcast|No) = 0
$$
Here, we can see that P(Overcast|No) = 0
This is a zero probability error!
Since probability is 0, naive bayes model fails to predict.
@ -124,13 +117,9 @@ Since probability is 0, naive bayes model fails to predict.
In Laplace's correction, we scale the values for 1000 instances.
- **Calculate prior probabilities**
$$
P(Yes) = \frac{600}{1002}
$$
$$P(Yes) = \frac{600}{1002}$$
$$
P(No) = \frac{402}{1002}
$$
$$P(No) = \frac{402}{1002}$$
- **Calculate likelihoods**
@ -151,21 +140,13 @@ Since probability is 0, naive bayes model fails to predict.
- **Rain:**
$$
P(Rain|Yes) = \frac{200}{600}
$$
$$
P(Rain|No) = \frac{401}{402}
$$
$$P(Rain|Yes) = \frac{200}{600}$$
$$P(Rain|No) = \frac{401}{402}$$
- **Overcast:**
$$
P(Overcast|Yes) = \frac{400}{600}
$$
$$
P(Overcast|No) = \frac{1}{402}
$$
$$P(Overcast|Yes) = \frac{400}{600}$$
$$P(Overcast|No) = \frac{1}{402}$$
2. **Wind (B):**
@ -181,49 +162,27 @@ Since probability is 0, naive bayes model fails to predict.
- **Weak:**
$$
P(Weak|Yes) = \frac{500}{600}
$$
$$
P(Weak|No) = \frac{200}{400}
$$
$$P(Weak|Yes) = \frac{500}{600}$$
$$P(Weak|No) = \frac{200}{400}$$
- **Strong:**
$$
P(Strong|Yes) = \frac{100}{600}
$$
$$
P(Strong|No) = \frac{200}{400}
$$
$$P(Strong|Yes) = \frac{100}{600}$$
$$P(Strong|No) = \frac{200}{400}$$
- **Calculting probabilities:**
$$
P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)
$$
$$
= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}
$$
$$
= 0.3326
$$
$$P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)$$
$$= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}$$
$$= 0.3326$$
$$
P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)
$$
$$
= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}
$$
$$
= 0.000499 = 0.0005
$$
$$P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)$$
$$= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}$$
$$= 0.000499 = 0.0005$$
Since ,
$$
P(PlayTennis|Yes) > P(PlayTennis|No)
$$
$$P(PlayTennis|Yes) > P(PlayTennis|No)$$
we can conclude that tennis can be played if outlook is overcast and wind is weak.