kopia lustrzana https://github.com/animator/learn-python
commit
171af69295
|
@ -93,13 +93,9 @@ $$
|
|||
|
||||
- Rain:
|
||||
|
||||
$$
|
||||
P(Rain|Yes) = \frac{2}{6}
|
||||
$$
|
||||
$$P(Rain|Yes) = \frac{2}{6}$$
|
||||
|
||||
$$
|
||||
P(Rain|No) = \frac{4}{4}
|
||||
$$
|
||||
$$P(Rain|No) = \frac{4}{4}$$
|
||||
|
||||
- Overcast:
|
||||
|
||||
|
@ -111,10 +107,7 @@ $$
|
|||
$$
|
||||
|
||||
|
||||
Here, we can see that
|
||||
$$
|
||||
P(Overcast|No) = 0
|
||||
$$
|
||||
Here, we can see that P(Overcast|No) = 0
|
||||
This is a zero probability error!
|
||||
|
||||
Since probability is 0, naive bayes model fails to predict.
|
||||
|
@ -124,13 +117,9 @@ Since probability is 0, naive bayes model fails to predict.
|
|||
In Laplace's correction, we scale the values for 1000 instances.
|
||||
- **Calculate prior probabilities**
|
||||
|
||||
$$
|
||||
P(Yes) = \frac{600}{1002}
|
||||
$$
|
||||
$$P(Yes) = \frac{600}{1002}$$
|
||||
|
||||
$$
|
||||
P(No) = \frac{402}{1002}
|
||||
$$
|
||||
$$P(No) = \frac{402}{1002}$$
|
||||
|
||||
- **Calculate likelihoods**
|
||||
|
||||
|
@ -151,21 +140,13 @@ Since probability is 0, naive bayes model fails to predict.
|
|||
|
||||
- **Rain:**
|
||||
|
||||
$$
|
||||
P(Rain|Yes) = \frac{200}{600}
|
||||
$$
|
||||
$$
|
||||
P(Rain|No) = \frac{401}{402}
|
||||
$$
|
||||
$$P(Rain|Yes) = \frac{200}{600}$$
|
||||
$$P(Rain|No) = \frac{401}{402}$$
|
||||
|
||||
- **Overcast:**
|
||||
|
||||
$$
|
||||
P(Overcast|Yes) = \frac{400}{600}
|
||||
$$
|
||||
$$
|
||||
P(Overcast|No) = \frac{1}{402}
|
||||
$$
|
||||
$$P(Overcast|Yes) = \frac{400}{600}$$
|
||||
$$P(Overcast|No) = \frac{1}{402}$$
|
||||
|
||||
|
||||
2. **Wind (B):**
|
||||
|
@ -181,49 +162,27 @@ Since probability is 0, naive bayes model fails to predict.
|
|||
|
||||
- **Weak:**
|
||||
|
||||
$$
|
||||
P(Weak|Yes) = \frac{500}{600}
|
||||
$$
|
||||
$$
|
||||
P(Weak|No) = \frac{200}{400}
|
||||
$$
|
||||
$$P(Weak|Yes) = \frac{500}{600}$$
|
||||
$$P(Weak|No) = \frac{200}{400}$$
|
||||
|
||||
- **Strong:**
|
||||
|
||||
$$
|
||||
P(Strong|Yes) = \frac{100}{600}
|
||||
$$
|
||||
$$
|
||||
P(Strong|No) = \frac{200}{400}
|
||||
$$
|
||||
$$P(Strong|Yes) = \frac{100}{600}$$
|
||||
$$P(Strong|No) = \frac{200}{400}$$
|
||||
|
||||
- **Calculting probabilities:**
|
||||
|
||||
$$
|
||||
P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)
|
||||
$$
|
||||
$$
|
||||
= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}
|
||||
$$
|
||||
$$
|
||||
= 0.3326
|
||||
$$
|
||||
$$P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)$$
|
||||
$$= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}$$
|
||||
$$= 0.3326$$
|
||||
|
||||
$$
|
||||
P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)
|
||||
$$
|
||||
$$
|
||||
= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}
|
||||
$$
|
||||
$$
|
||||
= 0.000499 = 0.0005
|
||||
$$
|
||||
$$P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)$$
|
||||
$$= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}$$
|
||||
$$= 0.000499 = 0.0005$$
|
||||
|
||||
|
||||
Since ,
|
||||
$$
|
||||
P(PlayTennis|Yes) > P(PlayTennis|No)
|
||||
$$
|
||||
$$P(PlayTennis|Yes) > P(PlayTennis|No)$$
|
||||
we can conclude that tennis can be played if outlook is overcast and wind is weak.
|
||||
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue