Merge pull request #1309 from DivyanshiSingh00/patch-1

Update naive-bayes.md
pull/1323/head^2
Ashita Prasad 2024-07-04 23:01:16 +05:30 zatwierdzone przez GitHub
commit 171af69295
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 21 dodań i 62 usunięć

Wyświetl plik

@ -93,13 +93,9 @@ $$
- Rain: - Rain:
$$ $$P(Rain|Yes) = \frac{2}{6}$$
P(Rain|Yes) = \frac{2}{6}
$$
$$ $$P(Rain|No) = \frac{4}{4}$$
P(Rain|No) = \frac{4}{4}
$$
- Overcast: - Overcast:
@ -111,10 +107,7 @@ $$
$$ $$
Here, we can see that Here, we can see that P(Overcast|No) = 0
$$
P(Overcast|No) = 0
$$
This is a zero probability error! This is a zero probability error!
Since probability is 0, naive bayes model fails to predict. Since probability is 0, naive bayes model fails to predict.
@ -124,13 +117,9 @@ Since probability is 0, naive bayes model fails to predict.
In Laplace's correction, we scale the values for 1000 instances. In Laplace's correction, we scale the values for 1000 instances.
- **Calculate prior probabilities** - **Calculate prior probabilities**
$$ $$P(Yes) = \frac{600}{1002}$$
P(Yes) = \frac{600}{1002}
$$
$$ $$P(No) = \frac{402}{1002}$$
P(No) = \frac{402}{1002}
$$
- **Calculate likelihoods** - **Calculate likelihoods**
@ -151,21 +140,13 @@ Since probability is 0, naive bayes model fails to predict.
- **Rain:** - **Rain:**
$$ $$P(Rain|Yes) = \frac{200}{600}$$
P(Rain|Yes) = \frac{200}{600} $$P(Rain|No) = \frac{401}{402}$$
$$
$$
P(Rain|No) = \frac{401}{402}
$$
- **Overcast:** - **Overcast:**
$$ $$P(Overcast|Yes) = \frac{400}{600}$$
P(Overcast|Yes) = \frac{400}{600} $$P(Overcast|No) = \frac{1}{402}$$
$$
$$
P(Overcast|No) = \frac{1}{402}
$$
2. **Wind (B):** 2. **Wind (B):**
@ -181,49 +162,27 @@ Since probability is 0, naive bayes model fails to predict.
- **Weak:** - **Weak:**
$$ $$P(Weak|Yes) = \frac{500}{600}$$
P(Weak|Yes) = \frac{500}{600} $$P(Weak|No) = \frac{200}{400}$$
$$
$$
P(Weak|No) = \frac{200}{400}
$$
- **Strong:** - **Strong:**
$$ $$P(Strong|Yes) = \frac{100}{600}$$
P(Strong|Yes) = \frac{100}{600} $$P(Strong|No) = \frac{200}{400}$$
$$
$$
P(Strong|No) = \frac{200}{400}
$$
- **Calculting probabilities:** - **Calculting probabilities:**
$$ $$P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)$$
P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes) $$= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}$$
$$ $$= 0.3326$$
$$
= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}
$$
$$
= 0.3326
$$
$$ $$P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)$$
P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No) $$= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}$$
$$ $$= 0.000499 = 0.0005$$
$$
= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}
$$
$$
= 0.000499 = 0.0005
$$
Since , Since ,
$$ $$P(PlayTennis|Yes) > P(PlayTennis|No)$$
P(PlayTennis|Yes) > P(PlayTennis|No)
$$
we can conclude that tennis can be played if outlook is overcast and wind is weak. we can conclude that tennis can be played if outlook is overcast and wind is weak.