kopia lustrzana https://github.com/animator/learn-python
commit
171af69295
|
@ -93,13 +93,9 @@ $$
|
||||||
|
|
||||||
- Rain:
|
- Rain:
|
||||||
|
|
||||||
$$
|
$$P(Rain|Yes) = \frac{2}{6}$$
|
||||||
P(Rain|Yes) = \frac{2}{6}
|
|
||||||
$$
|
|
||||||
|
|
||||||
$$
|
$$P(Rain|No) = \frac{4}{4}$$
|
||||||
P(Rain|No) = \frac{4}{4}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- Overcast:
|
- Overcast:
|
||||||
|
|
||||||
|
@ -111,10 +107,7 @@ $$
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
Here, we can see that
|
Here, we can see that P(Overcast|No) = 0
|
||||||
$$
|
|
||||||
P(Overcast|No) = 0
|
|
||||||
$$
|
|
||||||
This is a zero probability error!
|
This is a zero probability error!
|
||||||
|
|
||||||
Since probability is 0, naive bayes model fails to predict.
|
Since probability is 0, naive bayes model fails to predict.
|
||||||
|
@ -124,13 +117,9 @@ Since probability is 0, naive bayes model fails to predict.
|
||||||
In Laplace's correction, we scale the values for 1000 instances.
|
In Laplace's correction, we scale the values for 1000 instances.
|
||||||
- **Calculate prior probabilities**
|
- **Calculate prior probabilities**
|
||||||
|
|
||||||
$$
|
$$P(Yes) = \frac{600}{1002}$$
|
||||||
P(Yes) = \frac{600}{1002}
|
|
||||||
$$
|
|
||||||
|
|
||||||
$$
|
$$P(No) = \frac{402}{1002}$$
|
||||||
P(No) = \frac{402}{1002}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- **Calculate likelihoods**
|
- **Calculate likelihoods**
|
||||||
|
|
||||||
|
@ -151,21 +140,13 @@ Since probability is 0, naive bayes model fails to predict.
|
||||||
|
|
||||||
- **Rain:**
|
- **Rain:**
|
||||||
|
|
||||||
$$
|
$$P(Rain|Yes) = \frac{200}{600}$$
|
||||||
P(Rain|Yes) = \frac{200}{600}
|
$$P(Rain|No) = \frac{401}{402}$$
|
||||||
$$
|
|
||||||
$$
|
|
||||||
P(Rain|No) = \frac{401}{402}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- **Overcast:**
|
- **Overcast:**
|
||||||
|
|
||||||
$$
|
$$P(Overcast|Yes) = \frac{400}{600}$$
|
||||||
P(Overcast|Yes) = \frac{400}{600}
|
$$P(Overcast|No) = \frac{1}{402}$$
|
||||||
$$
|
|
||||||
$$
|
|
||||||
P(Overcast|No) = \frac{1}{402}
|
|
||||||
$$
|
|
||||||
|
|
||||||
|
|
||||||
2. **Wind (B):**
|
2. **Wind (B):**
|
||||||
|
@ -181,49 +162,27 @@ Since probability is 0, naive bayes model fails to predict.
|
||||||
|
|
||||||
- **Weak:**
|
- **Weak:**
|
||||||
|
|
||||||
$$
|
$$P(Weak|Yes) = \frac{500}{600}$$
|
||||||
P(Weak|Yes) = \frac{500}{600}
|
$$P(Weak|No) = \frac{200}{400}$$
|
||||||
$$
|
|
||||||
$$
|
|
||||||
P(Weak|No) = \frac{200}{400}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- **Strong:**
|
- **Strong:**
|
||||||
|
|
||||||
$$
|
$$P(Strong|Yes) = \frac{100}{600}$$
|
||||||
P(Strong|Yes) = \frac{100}{600}
|
$$P(Strong|No) = \frac{200}{400}$$
|
||||||
$$
|
|
||||||
$$
|
|
||||||
P(Strong|No) = \frac{200}{400}
|
|
||||||
$$
|
|
||||||
|
|
||||||
- **Calculting probabilities:**
|
- **Calculting probabilities:**
|
||||||
|
|
||||||
$$
|
$$P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)$$
|
||||||
P(PlayTennis|Yes) = P(Yes) * P(Overcast|Yes) * P(Weak|Yes)
|
$$= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}$$
|
||||||
$$
|
$$= 0.3326$$
|
||||||
$$
|
|
||||||
= \frac{600}{1002} * \frac{400}{600} * \frac{500}{600}
|
|
||||||
$$
|
|
||||||
$$
|
|
||||||
= 0.3326
|
|
||||||
$$
|
|
||||||
|
|
||||||
$$
|
$$P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)$$
|
||||||
P(PlayTennis|No) = P(No) * P(Overcast|No) * P(Weak|No)
|
$$= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}$$
|
||||||
$$
|
$$= 0.000499 = 0.0005$$
|
||||||
$$
|
|
||||||
= \frac{402}{1002} * \frac{1}{402} * \frac{200}{400}
|
|
||||||
$$
|
|
||||||
$$
|
|
||||||
= 0.000499 = 0.0005
|
|
||||||
$$
|
|
||||||
|
|
||||||
|
|
||||||
Since ,
|
Since ,
|
||||||
$$
|
$$P(PlayTennis|Yes) > P(PlayTennis|No)$$
|
||||||
P(PlayTennis|Yes) > P(PlayTennis|No)
|
|
||||||
$$
|
|
||||||
we can conclude that tennis can be played if outlook is overcast and wind is weak.
|
we can conclude that tennis can be played if outlook is overcast and wind is weak.
|
||||||
|
|
||||||
|
|
||||||
|
|
Ładowanie…
Reference in New Issue