kopia lustrzana https://github.com/animator/learn-python
Update Naive_Bayes_Classifiers.md
rodzic
39883b08c5
commit
1637c65fe1
|
@ -76,13 +76,9 @@ In Gaussian Naive Bayes, continuous values associated with each feature are assu
|
||||||
* Formula: The likelihood of the features given the class is computed using the Gaussian (normal) distribution formula:
|
* Formula: The likelihood of the features given the class is computed using the Gaussian (normal) distribution formula:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
P(x_k | C) = \frac{1}{\sqrt{2\pi\sigma_C^2}} \exp\left(-\frac{(x - \mu_C)^2}{2\sigma_C^2}\right)
|
P(x_k | C) = \frac{1}{\sqrt{2\pi\sigma_C^2}} \exp\left(-\frac{(x_k - \mu_C)^2}{2\sigma_C^2}\right)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
where 𝜇𝐶 and 𝜎𝐶 are the mean and standard deviation of the feature 𝑥𝑖 for class C.
|
where 𝜇𝐶 and 𝜎𝐶 are the mean and standard deviation of the feature 𝑥𝑖 for class C.
|
||||||
|
|
||||||
|
|
||||||
|
|
Ładowanie…
Reference in New Issue