kopia lustrzana https://github.com/animator/learn-python
Merge branch 'main' into OOPs
commit
139f84b7d8
|
@ -0,0 +1,117 @@
|
|||
## Working with Dates and Times in Python
|
||||
Handling dates and times is an essential aspect of many programming tasks.
|
||||
Python provides robust modules to work with dates and times, making it easier to perform operations like formatting, parsing, and arithmetic.
|
||||
This guide provides an overview of these modules and their key functionalities.
|
||||
|
||||
## 1. 'datetime' Module
|
||||
The datetime module supplies classes for manipulating dates and times. The main classes in the datetime module are:
|
||||
|
||||
* date: Represents a date (year, month, day).
|
||||
* time: Represents a time (hour, minute, second, microsecond).
|
||||
* datetime: Combines date and time information.
|
||||
* timedelta: Represents the difference between two dates or times.
|
||||
* tzinfo: Provides time zone information objects.
|
||||
|
||||
**Key Concepts:**
|
||||
|
||||
* Naive vs. Aware: Naive datetime objects do not contain time zone information, while aware datetime objects do.
|
||||
* Immutability: date and time objects are immutable; once created, they cannot be changed.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import datetime
|
||||
# Get the current date and time
|
||||
now = datetime.datetime.now()
|
||||
print("Current date and time:", now)
|
||||
```
|
||||
|
||||
## 2. Formatting Dates and Times
|
||||
Formatting involves converting datetime objects into human-readable strings. This is achieved using the strftime method, which stands for "string format time."
|
||||
You can specify various format codes to dictate how the output string should be structured.
|
||||
|
||||
**Common Format Codes:**
|
||||
|
||||
* %Y: Year with century (e.g., 2024)
|
||||
* %m: Month as a zero-padded decimal number (e.g., 01)
|
||||
* %d: Day of the month as a zero-padded decimal number (e.g., 15)
|
||||
* %H: Hour (24-hour clock) as a zero-padded decimal number (e.g., 13)
|
||||
* %M: Minute as a zero-padded decimal number (e.g., 45)
|
||||
* %S: Second as a zero-padded decimal number (e.g., 30)
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import datetime
|
||||
|
||||
now = datetime.datetime.now()
|
||||
formatted_now = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
print("Formatted current date and time:", formatted_now)
|
||||
```
|
||||
|
||||
## 3. Parsing Dates and Times
|
||||
Parsing is the process of converting strings representing dates and times into datetime objects. The strptime method, which stands for "string parse time,"
|
||||
allows you to specify the format of the input string.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import datetime
|
||||
|
||||
date_string = "2024-05-15 13:45:30"
|
||||
date_object = datetime.datetime.strptime(date_string, "%Y-%m-%d %H:%M:%S")
|
||||
print("Parsed date and time:", date_object)
|
||||
```
|
||||
|
||||
## 4. Working with Time Differences
|
||||
The timedelta class is used to represent the difference between two datetime objects. This is useful for calculations involving durations, such as finding the
|
||||
number of days between two dates or adding a certain period to a date.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import datetime
|
||||
|
||||
date1 = datetime.datetime(2024, 5, 15, 12, 0, 0)
|
||||
date2 = datetime.datetime(2024, 5, 20, 14, 30, 0)
|
||||
|
||||
difference = date2 - date1
|
||||
print("Difference:", difference)
|
||||
print("Days:", difference.days)
|
||||
print("Total seconds:", difference.total_seconds())
|
||||
```
|
||||
|
||||
## 5. Time Zones
|
||||
Time zone handling in Python is facilitated by the pytz library. It allows you to convert naive datetime objects into timezone-aware objects and perform
|
||||
operations across different time zones.
|
||||
|
||||
**Key Concepts:**
|
||||
|
||||
* Timezone-aware: A datetime object that includes timezone information.
|
||||
* Localization: The process of associating a naive datetime with a time zone.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import datetime
|
||||
import pytz
|
||||
|
||||
# Define a timezone
|
||||
tz = pytz.timezone('Asia/Kolkata')
|
||||
|
||||
# Get the current time in a specific timezone
|
||||
now = datetime.datetime.now(tz)
|
||||
print("Current time in Asia/Kolkata:", now)
|
||||
```
|
||||
|
||||
## 6. Date Arithmetic
|
||||
Date arithmetic involves performing operations like addition or subtraction on date or datetime objects using timedelta. This is useful for calculating future
|
||||
or past dates based on a given date.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import datetime
|
||||
|
||||
today = datetime.date.today()
|
||||
future_date = today + datetime.timedelta(days=10)
|
||||
print("Date after 10 days:", future_date)
|
||||
```
|
||||
|
||||
## Summary
|
||||
Python’s datetime module and the pytz library provide comprehensive tools for working with dates, times, and time zones. They enable you to perform a wide range
|
||||
of operations, from basic date manipulations to complex time zone conversions.
|
|
@ -1,4 +1,7 @@
|
|||
# List of sections
|
||||
|
||||
- [Decorators/\*args/**kwargs](decorator-kwargs-args.md)
|
||||
- [Working with Dates & Times in Python](dates_and_times.md)
|
||||
- [Regular Expressions in Python](regular_expressions.md)
|
||||
- [JSON module](json-module.md)
|
||||
- [OOPs](OOPs.md)
|
||||
|
|
|
@ -0,0 +1,289 @@
|
|||
# JSON Module
|
||||
|
||||
## What is JSON?
|
||||
|
||||
- [JSON]("https://www.json.org/json-en.html") (JavaScript Object Notation) is a format for structuring data.
|
||||
- JSON is a lightweight, text-based data interchange format that is completely language-independent.
|
||||
- Similar to XML, JSON is a format for structuring data commonly used by web applications to communicate with each other.
|
||||
|
||||
## Why JSON?
|
||||
|
||||
- Whenever we declare a variable and assign a value to it, the variable itself doesn't hold the value. Instead, the variable holds an address in memory where the value is stored. For example:
|
||||
|
||||
```python
|
||||
age = 21
|
||||
```
|
||||
|
||||
- When we use `age`, it gets replaced with `21`. However, *age doesn't contain 21, it contains the address of the memory location where 21 is stored*.
|
||||
|
||||
- While this works locally, transferring this data, such as through an API, poses a challenge. Sending your computer’s entire memory with the addresses is impractical and insecure. This is where JSON comes to the rescue.
|
||||
|
||||
### Example JSON
|
||||
|
||||
- JSON supports most widely used data types including String
|
||||
, Number, Boolean, Null, Array and Object.
|
||||
- Here is an example of JSON file
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "John Doe",
|
||||
"age": 21,
|
||||
"isStudent": true,
|
||||
"address": null,
|
||||
"courses": ["Math", "Science", "History"],
|
||||
"grades": {
|
||||
"Math": 95,
|
||||
"Science": 89,
|
||||
"History": 76
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
# Python JSON
|
||||
|
||||
Python too supports JSON with a built-in package called `json`. This package provides all the necessary tools for working with JSON Objects including `parsing, serializing, deserializing, and many more`.
|
||||
|
||||
## 1. Python parse JSON string.
|
||||
|
||||
- To parse JSON string Python firstly we import the JSON module.
|
||||
- JSON string is converted to a Python object using `json.loads()` method of JSON module in Python.
|
||||
- Example Code:
|
||||
|
||||
```python
|
||||
# Python program to convert JSON to Python
|
||||
import json
|
||||
|
||||
# JSON string
|
||||
students ='{"id":"01", "name": "Yatharth", "department":"Computer Science Engineering"}'
|
||||
|
||||
# Convert string to Python dict
|
||||
students_dict = json.loads(students)
|
||||
print(students_dict)
|
||||
|
||||
print(students_dict['name'])
|
||||
|
||||
```
|
||||
|
||||
- Ouput:
|
||||
|
||||
```json
|
||||
{"id": "01", "name": "Yatharth", "department": "Computer Science Engineering"}
|
||||
```
|
||||
|
||||
## 2. Python load JSON file.
|
||||
|
||||
- JSON data can also be directly fetch from a json file
|
||||
- Example:
|
||||
|
||||
```python
|
||||
import json
|
||||
# Opening JSON file
|
||||
f = open('input.json',)
|
||||
|
||||
# Returns JSON object as a dictionary
|
||||
data = json.load(f)
|
||||
|
||||
# Iterating through the json file
|
||||
for i in data['students']:
|
||||
print(i)
|
||||
|
||||
# Closing file
|
||||
f.close()
|
||||
```
|
||||
|
||||
- JSON file
|
||||
|
||||
```json
|
||||
{
|
||||
"students":{
|
||||
{
|
||||
"id": "01",
|
||||
"name": "Yatharth",
|
||||
"department": "Computer Science Engineering"
|
||||
},
|
||||
{
|
||||
"id": "02",
|
||||
"name": "Raj",
|
||||
"department": "Mechanical Engineering"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
- Ouput
|
||||
|
||||
```json
|
||||
{"id": "01", "name": "Yatharth", "department": "Computer Science Engineering"}
|
||||
{"id": "02", "name": "Raj", "department": "Mechanical Engineering"}
|
||||
```
|
||||
- `json.load()`: Reads JSON data from a file object and deserializes it into a Python object.
|
||||
- `json.loads()`: Deserializes JSON data from a string into a Python object.
|
||||
|
||||
|
||||
## Addtiotnal Context
|
||||
Relation between python data types and json data types is given in table below.
|
||||
|
||||
| Python Object | JSON Object |
|
||||
|-----------------|-------------|
|
||||
| Dict | object |
|
||||
| list, tuple | array |
|
||||
| str | string |
|
||||
| int, long, float | numbers |
|
||||
| True | true |
|
||||
| False | false |
|
||||
| None | null |
|
||||
|
||||
|
||||
|
||||
## 3. Python Dictionary to JSON String
|
||||
- Parsing python dictionary to json string using `json.dumps()`.
|
||||
- Example Code:
|
||||
```python
|
||||
import json
|
||||
|
||||
# Data to be written
|
||||
dictionary ={
|
||||
"id": "03",
|
||||
"name": "Suraj",
|
||||
"department": "Civil Engineering"
|
||||
}
|
||||
|
||||
# Serializing json
|
||||
json_object = json.dumps(dictionary, indent = 4)
|
||||
print(json_object)
|
||||
```
|
||||
- Output:
|
||||
``` json
|
||||
{
|
||||
"department": "Civil Engineering",
|
||||
"id": "02",
|
||||
"name": "Suraj"
|
||||
}
|
||||
```
|
||||
## 4. Python Dictionary to JSON file.
|
||||
- - Parsing python dictionary to json string using `json.dump()`.
|
||||
- Example Code:
|
||||
``` python
|
||||
import json
|
||||
|
||||
# Data to be written
|
||||
dictionary ={
|
||||
"name" : "Satyendra",
|
||||
"rollno" : 51,
|
||||
"cgpa" : 8.8,
|
||||
"phonenumber" : "123456789"
|
||||
}
|
||||
|
||||
with open("sample.json", "w") as outfile:
|
||||
json.dump(dictionary, outfile)
|
||||
|
||||
```
|
||||
- Ouput: `sample.json`
|
||||
``` json
|
||||
{
|
||||
"name" : "Satyendra",
|
||||
"rollno" : 51,
|
||||
"cgpa" : 8.8,
|
||||
"phonenumber" : "123456789"
|
||||
}
|
||||
|
||||
```
|
||||
## 5. Append Python Dictionary to JSON String.
|
||||
- Append to an already existing string using `json.update()`.
|
||||
- Example :
|
||||
```python
|
||||
import json
|
||||
# JSON data:
|
||||
x = {
|
||||
"id": "03",
|
||||
"name": "Suraj"
|
||||
}
|
||||
|
||||
# python object to be appended
|
||||
y = { "department": "Civil Engineering"}
|
||||
|
||||
# parsing JSON string:
|
||||
z = json.loads(x)
|
||||
|
||||
# appending the data
|
||||
z.update(y)
|
||||
|
||||
# the result is a JSON string:
|
||||
print(json.dumps(z))
|
||||
|
||||
```
|
||||
- Ouput:
|
||||
```json
|
||||
{"id": "03", "name": "Suraj", "department": "Civil Engineering"}
|
||||
```
|
||||
|
||||
|
||||
## 6. Append Python Dictionary to JSON File.
|
||||
- There is no direct function to append in file. So, we will load file in a dictionary, update dictionary then update content and convert back to json file format.
|
||||
- `data.json`
|
||||
``` json
|
||||
{
|
||||
"students":{
|
||||
{
|
||||
"id": "01",
|
||||
"name": "Yatharth",
|
||||
"department": "Computer Science Engineering"
|
||||
},
|
||||
{
|
||||
"id": "02",
|
||||
"name": "Raj",
|
||||
"department": "Mechanical Engineering"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
- Example Code:
|
||||
``` python
|
||||
import json
|
||||
|
||||
# function to add to JSON
|
||||
def write_json(new_data, filename='data.json'):
|
||||
with open(filename,'r+') as file:
|
||||
# First we load existing data into a dict.
|
||||
file_data = json.load(file)
|
||||
# Join new_data with file_data inside students
|
||||
file_data["students"].append(new_data)
|
||||
# Sets file's current position at offset.
|
||||
file.seek(0)
|
||||
# convert back to json.
|
||||
json.dump(file_data, file, indent = 4)
|
||||
|
||||
# python object to be appended
|
||||
y = {
|
||||
"id": "03",
|
||||
"name": "Suraj",
|
||||
"department": "Civil Engineering"
|
||||
}
|
||||
|
||||
write_json(y)
|
||||
|
||||
```
|
||||
- Output:
|
||||
```json
|
||||
{
|
||||
"students":{
|
||||
{
|
||||
"id": "01",
|
||||
"name": "Yatharth",
|
||||
"department": "Computer Science Engineering"
|
||||
},
|
||||
{
|
||||
"id": "02",
|
||||
"name": "Raj",
|
||||
"department": "Mechanical Engineering"
|
||||
},
|
||||
{
|
||||
"id": "03",
|
||||
"name": "Suraj",
|
||||
"department": "Civil Engineering"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The Python json module simplifies the handling of JSON data, offering a bridge between Python data structures and JSON representations, vital for data exchange and storage in modern applications.
|
|
@ -0,0 +1,96 @@
|
|||
## Regular Expressions in Python
|
||||
Regular expressions (regex) are a powerful tool for pattern matching and text manipulation.
|
||||
Python's re module provides comprehensive support for regular expressions, enabling efficient text processing and validation.
|
||||
|
||||
## 1. Introduction to Regular Expressions
|
||||
A regular expression is a sequence of characters defining a search pattern. Common use cases include validating input, searching within text, and extracting
|
||||
specific patterns.
|
||||
|
||||
## 2. Basic Syntax
|
||||
Literal Characters: Match exact characters (e.g., abc matches "abc").
|
||||
Metacharacters: Special characters like ., *, ?, +, ^, $, [ ], and | used to build patterns.
|
||||
|
||||
**Common Metacharacters:**
|
||||
|
||||
* .: Any character except newline.
|
||||
* ^: Start of the string.
|
||||
* $: End of the string.
|
||||
* *: 0 or more repetitions.
|
||||
* +: 1 or more repetitions.
|
||||
* ?: 0 or 1 repetition.
|
||||
* []: Any one character inside brackets (e.g., [a-z]).
|
||||
* |: Either the pattern before or after.
|
||||
|
||||
## 3. Using the re Module
|
||||
|
||||
**Key functions in the re module:**
|
||||
|
||||
* re.match(): Checks for a match at the beginning of the string.
|
||||
* re.search(): Searches for a match anywhere in the string.
|
||||
* re.findall(): Returns a list of all matches.
|
||||
* re.sub(): Replaces matches with a specified string.
|
||||
|
||||
Examples:
|
||||
```bash
|
||||
import re
|
||||
|
||||
# Match at the beginning
|
||||
print(re.match(r'\d+', '123abc').group()) # Output: 123
|
||||
|
||||
# Search anywhere
|
||||
print(re.search(r'\d+', 'abc123').group()) # Output: 123
|
||||
|
||||
# Find all matches
|
||||
print(re.findall(r'\d+', 'abc123def456')) # Output: ['123', '456']
|
||||
|
||||
# Substitute matches
|
||||
print(re.sub(r'\d+', '#', 'abc123def456')) # Output: abc#def#
|
||||
```
|
||||
|
||||
## 4. Compiling Regular Expressions
|
||||
Compiling regular expressions improves performance for repeated use.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import re
|
||||
|
||||
pattern = re.compile(r'\d+')
|
||||
print(pattern.match('123abc').group()) # Output: 123
|
||||
print(pattern.search('abc123').group()) # Output: 123
|
||||
print(pattern.findall('abc123def456')) # Output: ['123', '456']
|
||||
```
|
||||
|
||||
## 5. Groups and Capturing
|
||||
Parentheses () group and capture parts of the match.
|
||||
|
||||
Example:
|
||||
```bash
|
||||
import re
|
||||
|
||||
match = re.match(r'(\d{3})-(\d{2})-(\d{4})', '123-45-6789')
|
||||
if match:
|
||||
print(match.group()) # Output: 123-45-6789
|
||||
print(match.group(1)) # Output: 123
|
||||
print(match.group(2)) # Output: 45
|
||||
print(match.group(3)) # Output: 6789
|
||||
```
|
||||
|
||||
## 6. Special Sequences
|
||||
Special sequences are shortcuts for common patterns:
|
||||
|
||||
* \d: Any digit.
|
||||
* \D: Any non-digit.
|
||||
* \w: Any alphanumeric character.
|
||||
* \W: Any non-alphanumeric character.
|
||||
* \s: Any whitespace character.
|
||||
* \S: Any non-whitespace character.
|
||||
Example:
|
||||
```bash
|
||||
import re
|
||||
|
||||
print(re.search(r'\w+@\w+\.\w+', 'Contact: support@example.com').group()) # Output: support@example.com
|
||||
```
|
||||
|
||||
## Summary
|
||||
Regular expressions are a versatile tool for text processing in Python. The re module offers powerful functions and metacharacters for pattern matching,
|
||||
searching, and manipulation, making it an essential skill for handling complex text processing tasks.
|
|
@ -0,0 +1,153 @@
|
|||
# Understanding the Neural Network
|
||||
|
||||
## Table of Contents
|
||||
<details>
|
||||
<summary>Click to expand</summary>
|
||||
|
||||
- [Introduciton](#introduction)
|
||||
- [Neuron to Perceptron](#neuron-to-perceptron)
|
||||
- [Key concepts](#key-concepts)
|
||||
- [Layers](#layers)
|
||||
- [Weights and Biases](#weights-and-biases)
|
||||
- [Activation Function](#activation-functions)
|
||||
- [Forward and Backward Pass](#forward-and-backward-propagation)
|
||||
- [Implementation](#building-from-scratch)
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
## Introduction
|
||||
|
||||
This guide will walk you through a fundamental neural network implementation in Python. We'll build a `Neural Network` from scratch, allowing you to grasp the core concepts of how neural networks learn and make predictions.
|
||||
|
||||
### Let's start by Understanding the Basic Architecture of Neural Nets
|
||||
|
||||
## Neuron to Perceptron
|
||||
|
||||
| `Neuron` cells forming the humand nervous system | `Perceptron` inspired from human brain |
|
||||
| :----------------------------------------------- | -------------------------------------: |
|
||||
| Neurons are nerve cells that send messages all over your body to allow you to do everything from breathing to talking, eating, walking, and thinking. | The perceptron is a mathematical model of a biological neuron. Performing heavy computations to think like humans. |
|
||||
| Neuron collects signals from dendrites. | The first layer is knownn as Input Layer, acting like dendritres to receive the input signal. |
|
||||
| Synapses are the connections between neurons where signals are transmitted. | Weights represent synapses. |
|
||||
The axon terminal releases neurotransmitters to transmit the signal to other neurons. | The output is the final result – between 1 & 0, representing classification or prediction. |
|
||||
---
|
||||
> Human brain has a Network of Neurons, about 86 billion neurons and more than a 100 trillion synapses connections!
|
||||
|
||||
|
||||
## **Key Concepts**
|
||||
|
||||
Artificial neurons are the fundamental processing units in an ANN. They receive inputs, multiply them by weights (representing the strength of connections), sum those weighted inputs, and then apply an activation function to produce an output.
|
||||
|
||||
### Layers
|
||||
Neurons in ANNs are organized into layers:
|
||||
* **Input Layer:** Receives the raw data.
|
||||
* **(n) Hidden Layers:** (Optional) Intermediate layers where complex transformations occur. They learn to detect patterns and features in the data.
|
||||
* **Output Layer:** Produces the final result (prediction or classification).
|
||||
|
||||
### Weights and Biases
|
||||
- For each input $(x_i)$, a weight $(w_i)$ is associated with it. Weights, multiplied with input units $(w_i \cdot x_i)$, determine the influence of one neuron's output on another.
|
||||
- A bias $(b_i)$ is added to help influence the end product, giving the equation as $(w_i \cdot x_i + b_i)$.
|
||||
- During training, the network adjusts these weights and biases to minimize errors and improve its predictions.
|
||||
|
||||
### Activation Functions
|
||||
- An activation function is applied to the result to introduce non-linearity in the model, allowing ANNs to learn more complex relationships from the data.
|
||||
- The resulting equation: $y = f(g(x))$, determines whether the neuron will "fire" or not, i.e., if its output will be used as input for the next neuron.
|
||||
- Common activation functions include the sigmoid function, tanh (hyperbolic tangent), and ReLU (Rectified Linear Unit).
|
||||
|
||||
### Forward and Backward Propagation
|
||||
- **Flow of Information:** All the above steps are part of Forward Propagation. It gives the output equation as $y = f\left(\sum_{i=1}^n w_i x_i + b_i\right)$
|
||||
- **Error Correction:** Backpropagation is the algorithm used to train ANNs by calculating the gradient of error at the output layer and then propagating this error backward through the network. This allows the network to adjust its weights and biases in the direction that reduces the error.
|
||||
- The chain rule of calculus is the foundational concept to compute the gradient of the error:
|
||||
$
|
||||
\delta_{ij}(E) = \frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial \hat{y}_j} \cdot \frac{\partial \hat{y}_j}{\partial \theta_j} \cdot \frac{\partial \theta_j}{\partial w_{ij}}
|
||||
$
|
||||
where $E$ is the error, $\hat{y}_j$ is the predicted output, $\theta_j$ is the input to the activation function of the $j^{th}$ neuron, and $w_{ij}$ is the weight from neuron $i$ to neuron $j$.
|
||||
|
||||
|
||||
## Building From Scratch
|
||||
|
||||
```python
|
||||
# Import required libraries
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class SimpleNeuralNetwork:
|
||||
def __init__(self, input_size, hidden_size, output_size):
|
||||
self.input_size = input_size
|
||||
self.hidden_size = hidden_size
|
||||
self.output_size = output_size
|
||||
|
||||
# Initialize weights and biases
|
||||
self.weights_input_hidden = np.random.randn(input_size, hidden_size)
|
||||
self.bias_hidden = np.random.randn(hidden_size)
|
||||
self.weights_hidden_output = np.random.randn(hidden_size, output_size)
|
||||
self.bias_output = np.random.randn(output_size)
|
||||
|
||||
def sigmoid(self, x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
def sigmoid_derivative(self, x):
|
||||
return x * (1 - x)
|
||||
|
||||
def forward(self, X):
|
||||
self.hidden_layer_input = np.dot(X, self.weights_input_hidden) + self.bias_hidden
|
||||
self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)
|
||||
|
||||
self.output_layer_input = np.dot(self.hidden_layer_output, self.weights_hidden_output) + self.bias_output
|
||||
self.output = self.sigmoid(self.output_layer_input)
|
||||
|
||||
return self.output
|
||||
|
||||
def backward(self, X, y, learning_rate):
|
||||
output_error = y - self.output
|
||||
output_delta = output_error * self.sigmoid_derivative(self.output)
|
||||
|
||||
hidden_error = output_delta.dot(self.weights_hidden_output.T)
|
||||
hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_layer_output)
|
||||
|
||||
self.weights_hidden_output += self.hidden_layer_output.T.dot(output_delta) * learning_rate
|
||||
self.bias_output += np.sum(output_delta, axis=0) * learning_rate
|
||||
self.weights_input_hidden += X.T.dot(hidden_delta) * learning_rate
|
||||
self.bias_hidden += np.sum(hidden_delta, axis=0) * learning_rate
|
||||
|
||||
def train(self, X, y, epochs, learning_rate):
|
||||
self.losses = []
|
||||
for epoch in range(epochs):
|
||||
self.forward(X)
|
||||
self.backward(X, y, learning_rate)
|
||||
loss = np.mean(np.square(y - self.output))
|
||||
self.losses.append(loss)
|
||||
if epoch % 1000 == 0:
|
||||
print(f"Epoch {epoch}, Loss: {loss}")
|
||||
|
||||
def plot_loss(self):
|
||||
plt.plot(self.losses)
|
||||
plt.xlabel('Epochs')
|
||||
plt.ylabel('Loss')
|
||||
plt.title('Training Loss Over Epochs')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
### Creating the Input & Output Array
|
||||
Let's create a dummy input and outpu dataset. Here, the first two columns will be useful, while the rest might be noise.
|
||||
```python
|
||||
X = np.array([[0,0], [0,1], [1,0], [1,1]])
|
||||
y = np.array([[0], [1], [1], [1]])
|
||||
```
|
||||
|
||||
### Defining the Neural Network
|
||||
With our input and output data ready, we'll define a simple neural network with one hidden layer containing three neurons.
|
||||
```python
|
||||
# neural network architecture
|
||||
input_size = 2
|
||||
hidden_layers = 1
|
||||
hidden_neurons = [2]
|
||||
output_size = 1
|
||||
```
|
||||
|
||||
### Visualizing the Training Loss
|
||||
To understand how well our model is learning, let's visualize the training loss over epochs.
|
||||
```python
|
||||
model = NeuralNetwork(input_size, hidden_layers, hidden_neurons, output_size)
|
||||
model.train(X, y, 100)
|
||||
```
|
|
@ -0,0 +1,171 @@
|
|||
# Regression
|
||||
|
||||
|
||||
* Regression is a supervised machine learning technique which is used to predict continuous values.
|
||||
|
||||
|
||||
> Now, Supervised learning is a category of machine learning that uses labeled datasets to train algorithms to predict outcomes and recognize patterns.
|
||||
|
||||
* Regression is a statistical method used to model the relationship between a dependent variable (often denoted as 'y') and one or more independent variables (often denoted as 'x'). The goal of regression analysis is to understand how the dependent variable changes as the independent variables change.
|
||||
# Types Of Regression
|
||||
|
||||
1. Linear Regression
|
||||
2. Polynomial Regression
|
||||
3. Stepwise Regression
|
||||
4. Decision Tree Regression
|
||||
5. Random Forest Regression
|
||||
6. Ridge Regression
|
||||
7. Lasso Regression
|
||||
8. ElasticNet Regression
|
||||
9. Bayesian Linear Regression
|
||||
10. Support Vector Regression
|
||||
|
||||
But, we'll first start with Linear Regression
|
||||
# Linear Regression
|
||||
|
||||
* Linear regression is a fundamental statistical method used to model the relationship between a dependent variable (often denoted as
|
||||
𝑌) and one or more independent variables (often denoted as
|
||||
𝑋). The relationship is assumed to be linear, meaning that changes in the independent variables are associated with changes in the dependent variable in a straight-line fashion.
|
||||
|
||||
The basic form of linear regression for a single independent variable is:
|
||||
|
||||
**𝑌=𝛽0+𝛽1𝑋+𝜖**
|
||||
|
||||
Where:
|
||||
|
||||
* Y is the dependent variable.
|
||||
* X is the independent variable.
|
||||
* 𝛽0 is the intercept, representing the value of Y when X is zero
|
||||
* 𝛽1 is the slope coefficient, representing the change in Y for a one-unit change in X
|
||||
* ϵ is the error term, representing the variability in Y that is not explained by the linear relationship with X.
|
||||
|
||||
# Basic Code of Linear Regression
|
||||
|
||||
* This line imports the numpy library, which is widely used for numerical operations in Python. We use np as an alias for numpy, making it easier to reference functions and objects from the library.
|
||||
```
|
||||
import numpy as np
|
||||
```
|
||||
|
||||
* This line imports the LinearRegression class from the linear_model module of the scikit-learn library.scikit-learn is a powerful library for machine learning tasks in Python, and LinearRegression is a class provided by it for linear regression.
|
||||
```
|
||||
from sklearn.linear_model import LinearRegression
|
||||
```
|
||||
* This line creates a NumPy array X containing the independent variable values. In this example, we have a simple one-dimensional array representing the independent variable. The reshape(-1, 1) method reshapes the array into a column vector, necessary for use with scikit-learn
|
||||
|
||||
```
|
||||
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
|
||||
```
|
||||
* This line creates a NumPy array Y containing the corresponding dependent variable values. These are the observed values of the dependent variable corresponding to the independent variable values in X.
|
||||
```
|
||||
Y = np.array([2, 4, 5, 8, 5])
|
||||
```
|
||||
|
||||
* This line creates an instance of the LinearRegression class, which represents the linear regression model. We'll use this object to train the model and make predictions.
|
||||
```
|
||||
model = LinearRegression()
|
||||
```
|
||||
|
||||
* This line fits the linear regression model to the data. The fit() method takes two arguments: the independent variable (X) and the dependent variable (Y). This method estimates the coefficients of the linear regression equation that best fit the given data.
|
||||
```
|
||||
model.fit(X, Y)
|
||||
```
|
||||
* These lines print out the intercept (beta_0) and coefficient (beta_1) of the linear regression model. model.intercept_ gives the intercept value, and model.coef_ gives an array of coefficients, where model.coef_[0] corresponds to the coefficient of the first independent variable (in this case, there's only one).
|
||||
```
|
||||
print("Intercept:", model.intercept_)
|
||||
print("Coefficient:", model.coef_[0])
|
||||
```
|
||||
|
||||
* These lines demonstrate how to use the trained model to make predictions for new data.
|
||||
* We create a new NumPy array new_data containing the values of the independent variable for which we want to predict the dependent variable values.
|
||||
* We then use the predict() method of the model to obtain the predictions for these new data points. Finally, we print out the predicted values.
|
||||
```
|
||||
new_data = np.array([[6], [7]])
|
||||
predictions = model.predict(new_data)
|
||||
print("Predictions:", predictions)
|
||||
```
|
||||
# Assumptions of Linear Regression
|
||||
|
||||
# Linearity:
|
||||
|
||||
* To assess the linearity assumption, we can visually inspect a scatter plot of the observed values versus the predicted values.
|
||||
* If the relationship between them appears linear, it suggests that the linearity assumption is reasonable.
|
||||
```
|
||||
import matplotlib.pyplot as plt
|
||||
predictions = model.predict(X)
|
||||
plt.scatter(predictions,Y)
|
||||
plt.xlabel("Predicted Values")
|
||||
plt.ylabel("Observed Values")
|
||||
plt.title("Linearity Check: Observed vs Predicted")
|
||||
plt.show()
|
||||
```
|
||||
# Homoscedasticity:
|
||||
* Homoscedasticity refers to the constant variance of the residuals across all levels of the independent variable(s). We can visually inspect a plot of residuals versus predicted values to check for homoscedasticity.
|
||||
```
|
||||
residuals = Y - predictions
|
||||
plt.scatter(predictions, residuals)
|
||||
plt.xlabel("Predicted Values")
|
||||
plt.ylabel("Residuals")
|
||||
plt.title("Homoscedasticity Check: Residuals vs Predicted Values")
|
||||
plt.axhline(y=0, color='red', linestyle='--') # Add horizontal line at y=0
|
||||
plt.show()
|
||||
|
||||
```
|
||||
# Normality of Residuals:
|
||||
* To assess the normality of residuals, we can visually inspect a histogram or a Q-Q plot of the residuals.
|
||||
```
|
||||
import seaborn as sns
|
||||
|
||||
sns.histplot(residuals, kde=True)
|
||||
plt.xlabel("Residuals")
|
||||
plt.ylabel("Frequency")
|
||||
plt.title("Normality of Residuals: Histogram")
|
||||
plt.show()
|
||||
|
||||
import scipy.stats as stats
|
||||
|
||||
stats.probplot(residuals, dist="norm", plot=plt)
|
||||
plt.title("Normal Q-Q Plot")
|
||||
plt.show()
|
||||
|
||||
```
|
||||
# Metrics for Regression
|
||||
|
||||
|
||||
# Mean Absolute Error (MAE)
|
||||
|
||||
* MAE measures the average magnitude of the errors in a set of predictions, without considering their direction. It is the average of the absolute differences between predicted and actual values.
|
||||
```
|
||||
from sklearn.metrics import mean_absolute_error
|
||||
|
||||
mae = mean_absolute_error(Y, predictions)
|
||||
print(f"Mean Absolute Error (MAE): {mae}")
|
||||
|
||||
```
|
||||
# Mean Squared Error (MSE)
|
||||
|
||||
* MSE measures the average of the squares of the errors. It gives more weight to larger errors, making it sensitive to outliers.
|
||||
```
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
mse = mean_squared_error(Y, predictions)
|
||||
print(f"Mean Squared Error (MSE): {mse}")
|
||||
```
|
||||
# Root Mean Squared Error (RMSE)
|
||||
* RMSE is the square root of the MSE. It provides an error metric that is in the same units as the dependent variable, making it more interpretable.
|
||||
```
|
||||
rmse = np.sqrt(mse)
|
||||
print(f"Root Mean Squared Error (RMSE): {rmse}")
|
||||
|
||||
```
|
||||
# R-squared (Coefficient of Determination)
|
||||
* R-squared measures the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1, where 1 indicates a perfect fit.
|
||||
```
|
||||
from sklearn.metrics import r2_score
|
||||
|
||||
r2 = r2_score(Y, predictions)
|
||||
print(f"R-squared (R^2): {r2}")
|
||||
```
|
||||
|
||||
> In this tutorial, The sample dataset is there for learning purpose only
|
||||
|
||||
|
|
@ -0,0 +1,70 @@
|
|||
## Confusion Matrix
|
||||
|
||||
A confusion matrix is a fundamental performance evaluation tool used in machine learning to assess the accuracy of a classification model. It is an N x N matrix, where N represents the number of target classes.
|
||||
|
||||
For binary classification, it results in a 2 x 2 matrix that outlines four key parameters:
|
||||
1. True Positive (TP) - The predicted value matches the actual value, or the predicted class matches the actual class.
|
||||
For example - the actual value was positive, and the model predicted a positive value.
|
||||
2. True Negative (TN) - The predicted value matches the actual value, or the predicted class matches the actual class.
|
||||
For example - the actual value was negative, and the model predicted a negative value.
|
||||
3. False Positive (FP)/Type I Error - The predicted value was falsely predicted.
|
||||
For example - the actual value was negative, but the model predicted a positive value.
|
||||
4. False Negative (FN)/Type II Error - The predicted value was falsely predicted.
|
||||
For example - the actual value was positive, but the model predicted a negative value.
|
||||
|
||||
The confusion matrix enables the calculation of various metrics like accuracy, precision, recall, F1-Score and specificity.
|
||||
1. Accuracy - It represents the proportion of correctly classified instances out of the total number of instances in the dataset.
|
||||
2. Precision - It quantifies the accuracy of positive predictions made by the model.
|
||||
3. Recall - It quantifies the ability of a model to correctly identify all positive instances in the dataset and is also known as sensitivity or true positive rate.
|
||||
4. F1-Score - It is a single measure that combines precision and recall, offering a balanced evaluation of a classification model's effectiveness.
|
||||
|
||||
To implement the confusion matrix in Python, we can use the confusion_matrix() function from the sklearn.metrics module of the scikit-learn library.
|
||||
The function returns a 2D array that represents the confusion matrix.
|
||||
We can also visualize the confusion matrix using a heatmap.
|
||||
|
||||
```python
|
||||
# Import necessary libraries
|
||||
import numpy as np
|
||||
from sklearn.metrics import confusion_matrix, classification_report
|
||||
import seaborn as sns
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Create the NumPy array for actual and predicted labels
|
||||
actual = np.array(['Apple', 'Apple', 'Apple', 'Not Apple', 'Apple',
|
||||
'Not Apple', 'Apple', 'Apple', 'Not Apple', 'Not Apple'])
|
||||
predicted = np.array(['Apple', 'Not Apple', 'Apple', 'Not Apple', 'Apple',
|
||||
'Apple', 'Apple', 'Apple', 'Not Apple', 'Not Apple'])
|
||||
|
||||
# Compute the confusion matrix
|
||||
cm = confusion_matrix(actual,predicted)
|
||||
|
||||
# Plot the confusion matrix with the help of the seaborn heatmap
|
||||
sns.heatmap(cm,
|
||||
annot=True,
|
||||
fmt='g',
|
||||
xticklabels=['Apple', 'Not Apple'],
|
||||
yticklabels=['Apple', 'Not Apple'])
|
||||
plt.xlabel('Prediction', fontsize=13)
|
||||
plt.ylabel('Actual', fontsize=13)
|
||||
plt.title('Confusion Matrix', fontsize=17)
|
||||
plt.show()
|
||||
|
||||
# Classifications Report based on Confusion Metrics
|
||||
print(classification_report(actual, predicted))
|
||||
```
|
||||
|
||||
### Results
|
||||
|
||||
```
|
||||
1. Confusion Matrix:
|
||||
[[5 1]
|
||||
[1 3]]
|
||||
2. Classification Report:
|
||||
precision recall f1-score support
|
||||
Apple 0.83 0.83 0.83 6
|
||||
Not Apple 0.75 0.75 0.75 4
|
||||
|
||||
accuracy 0.80 10
|
||||
macro avg 0.79 0.79 0.79 10
|
||||
weighted avg 0.80 0.80 0.80 10
|
||||
```
|
|
@ -1,3 +1,7 @@
|
|||
# List of sections
|
||||
|
||||
- [Section title](filename.md)
|
||||
- [Regression in Machine Learning](Regression.md)
|
||||
- [Confusion Matrix](confusion-matrix.md)
|
||||
- [Support Vector Machine Algorithm](support-vector-machine.md)
|
||||
- [Artificial Neural Network from the Ground Up](ArtificialNeuralNetwork.md)
|
||||
|
||||
|
|
|
@ -0,0 +1,62 @@
|
|||
## Support Vector Machine
|
||||
|
||||
Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, which is used for Classification as well as Regression problems. However, primarily, it is used for Classification problems in Machine Learning.
|
||||
|
||||
SVM can be of two types -
|
||||
1. Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset can be classified into two classes by using a single straight line, then such data is termed as linearly separable data, and classifier is used called as Linear SVM classifier.
|
||||
2. Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a dataset cannot be classified by using a straight line, then such data is termed as non-linear data and classifier used is called as Non-linear SVM classifier.
|
||||
|
||||
Working of SVM - The goal of SVM is to find a hyperplane that separates the data points into different classes. A hyperplane is a line in 2D space, a plane in 3D space, or a higher-dimensional surface in n-dimensional space. The hyperplane is chosen in such a way that it maximizes the margin, which is the distance between the hyperplane and the closest data points of each class. The closest data points are called the support vectors.
|
||||
|
||||
The distance between the hyperplane and a data point "x" can be calculated using the formula −
|
||||
```
|
||||
distance = (w . x + b) / ||w||
|
||||
```
|
||||
where "w" is the weight vector, "b" is the bias term, and "||w||" is the Euclidean norm of the weight vector. The weight vector "w" is perpendicular to the hyperplane and determines its orientation, while the bias term "b" determines its position.
|
||||
|
||||
The optimal hyperplane is found by solving an optimization problem, which is to maximize the margin subject to the constraint that all data points are correctly classified. In other words, we want to find the hyperplane that maximizes the margin between the two classes while ensuring that no data point is misclassified. This is a convex optimization problem that can be solved using quadratic programming. If the data points are not linearly separable, we can use a technique called kernel trick to map the data points into a higher-dimensional space where they become separable. The kernel function computes the inner product between the mapped data points without computing the mapping itself. This allows us to work with the data points in the higherdimensional space without incurring the computational cost of mapping them.
|
||||
|
||||
1. Hyperplane:
|
||||
There can be multiple lines/decision boundaries to segregate the classes in n-dimensional space, but we need to find out the best decision boundary that helps to classify the data points. This best boundary is known as the hyperplane of SVM.
|
||||
The dimensions of the hyperplane depend on the features present in the dataset, which means if there are 2 features, then hyperplane will be a straight line. And if there are 3 features, then hyperplane will be a 2-dimension plane. We always create a hyperplane that has a maximum margin, which means the maximum distance between the data points.
|
||||
2. Support Vectors:
|
||||
The data points or vectors that are the closest to the hyperplane and which affect the position of the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence called a Support vector.
|
||||
3. Margin:
|
||||
It may be defined as the gap between two lines on the closet data points of different classes. It can be calculated as the perpendicular distance from the line to the support vectors. Large margin is considered as a good margin and small margin is considered as a bad margin.
|
||||
|
||||
We will use the famous Iris dataset, which contains the sepal length, sepal width, petal length, and petal width of three species of iris flowers: Iris setosa, Iris versicolor, and Iris virginica. The goal is to classify the flowers into their respective species based on these four features. We load the iris dataset using load_iris and split the data into training and testing sets using train_test_split. We use a test size of 0.2, which means that 20% of the data will be used for testing and 80% for training. We set the random state to 42 to ensure reproducibility of the results.
|
||||
|
||||
### Implemetation of SVM in Python
|
||||
|
||||
```python
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
# load the iris dataset
|
||||
iris = load_iris()
|
||||
|
||||
# split the data into training and testing sets
|
||||
X_train, X_test, y_train, y_test = train_test_split(iris.data,
|
||||
iris.target, test_size=0.2, random_state=42)
|
||||
|
||||
# create an SVM classifier with a linear kernel
|
||||
svm = SVC(kernel='linear')
|
||||
|
||||
# train the SVM classifier on the training set
|
||||
svm.fit(X_train, y_train)
|
||||
|
||||
# make predictions on the testing set
|
||||
y_pred = svm.predict(X_test)
|
||||
|
||||
# calculate the accuracy of the classifier
|
||||
accuracy = accuracy_score(y_test, y_pred)
|
||||
print("Accuracy:", accuracy)
|
||||
```
|
||||
|
||||
#### Output
|
||||
```
|
||||
Accuracy: 1
|
||||
```
|
||||
|
|
@ -0,0 +1,84 @@
|
|||
# Rock Paper Scissors Game
|
||||
|
||||
This is a simple implementation of the classic rock-paper-scissors game in Python.
|
||||
|
||||
## Code Explanation:
|
||||
|
||||
In this section, we import the required libraries (`tkinter` for GUI and `random` for generating computer choices) and define two functions:
|
||||
|
||||
- `determine_winner(user_choice, computer_choice)`:
|
||||
- This function determines the winner of the game based on the choices made by the user and the computer.
|
||||
- It returns a tuple containing the result of the game and the computer's choice.
|
||||
|
||||
- `play_game()`:
|
||||
- This function handles the gameplay logic.
|
||||
- It gets the user's choice from the radio buttons, generates a random choice for the computer, determines the winner using the `determine_winner()` function, and updates the result and computer pick labels accordingly.
|
||||
|
||||
### Imports and Function Definitions:
|
||||
```python
|
||||
import tkinter as tk
|
||||
import random
|
||||
|
||||
def determine_winner(user_choice, computer_choice):
|
||||
"""Determine the winner of the game."""
|
||||
if user_choice == computer_choice:
|
||||
return "It's a tie!", computer_choice
|
||||
elif (user_choice == "rock" and computer_choice == "scissors") or \
|
||||
(user_choice == "paper" and computer_choice == "rock") or \
|
||||
(user_choice == "scissors" and computer_choice == "paper"):
|
||||
return "You win!", computer_choice
|
||||
else:
|
||||
return "Computer wins!", computer_choice
|
||||
|
||||
def play_game():
|
||||
"""Play the game and display the result."""
|
||||
user_choice = user_var.get()
|
||||
computer_choice = random.choice(["rock", "paper", "scissors"])
|
||||
result, computer_pick = determine_winner(user_choice, computer_choice)
|
||||
result_label.config(text=result)
|
||||
computer_label.config(text=f"Computer picked: {computer_pick}")
|
||||
```
|
||||
### GUI Setup:
|
||||
```python
|
||||
# Create main window
|
||||
root = tk.Tk()
|
||||
root.title("Rock Paper Scissors")
|
||||
|
||||
# User choice options
|
||||
user_var = tk.StringVar()
|
||||
user_var.set("rock") # Default choice
|
||||
choices = ["rock", "paper", "scissors"]
|
||||
for choice in choices:
|
||||
rb = tk.Radiobutton(root, text=choice, variable=user_var, value=choice)
|
||||
rb.pack()
|
||||
```
|
||||
- Here, we create the main window for the game using `tkinter.Tk()`. We set the title to "Rock Paper Scissors".
|
||||
- We define a `StringVar` to store the user's choice and set the default choice to "rock".
|
||||
- We create radio buttons for the user to choose from ("rock", "paper", "scissors") and pack them into the main window.
|
||||
```
|
||||
```
|
||||
### Play Button and Result Labels:
|
||||
```python
|
||||
# Play button
|
||||
play_button = tk.Button(root, text="Play", command=play_game)
|
||||
play_button.pack()
|
||||
|
||||
# Result label
|
||||
result_label = tk.Label(root, text="", font=("Helvetica", 16))
|
||||
result_label.pack()
|
||||
|
||||
# Computer pick label
|
||||
computer_label = tk.Label(root, text="", font=("Helvetica", 12))
|
||||
computer_label.pack()
|
||||
```
|
||||
- We create a "Play" button that triggers the `play_game()` function when clicked, using `tkinter.Button`.
|
||||
- We create two labels to display the result of the game (`result_label`) and the computer's choice (`computer_label`). Both labels initially display no text and are packed into the main window.
|
||||
```
|
||||
```
|
||||
|
||||
### Mainloop:
|
||||
```python
|
||||
root.mainloop()
|
||||
```
|
||||
- Finally, we start the Tkinter event loop using `root.mainloop()`, which keeps the GUI window open and responsive until the user closes it.
|
||||
-
|
|
@ -0,0 +1,36 @@
|
|||
## Dice Roller
|
||||
|
||||
The aim of this project is to replicate a dice and generate a random number from the numbers 1 to 6.
|
||||
|
||||
For this first we will import the random library which will help make random choices.
|
||||
|
||||
```
|
||||
import random
|
||||
def dice():
|
||||
dice_no = random.choice([1,2,3,4,5,6])
|
||||
return "You got " + str(dice_no)
|
||||
```
|
||||
|
||||
The above snippet of code defines a function called `dice()` which makes the random choice and returns the number that is generated.
|
||||
|
||||
```
|
||||
def roll_dice():
|
||||
print("Hey Guys, you will now roll a single dice using Python!")
|
||||
while True:
|
||||
start=input("Type \'k\' to roll the dice: ").lower()
|
||||
if start != 'k':
|
||||
print("Invalid input. Please try again.")
|
||||
continue
|
||||
print(dice())
|
||||
roll_again = input("Do you want to reroll? (Yes/No): ").lower()
|
||||
if roll_again != 'yes':
|
||||
break
|
||||
print("Thanks for rolling the dice.")
|
||||
roll_dice()
|
||||
```
|
||||
|
||||
The above code defines a function called `roll_dice()` which interacts with the user.
|
||||
|
||||
It prompts the user to give an input and if the input is `k`,the code proceeds further to generate a random number or gives the message of invalid input and asks the user to try again.
|
||||
|
||||
After the dice has been rolled once, the function asks the user whether they want a reroll in the form of a `yes` or `no` question. The dice is rolled again if the user gives `yes` as an answer and exits the code if the user replies with anything other than yes.
|
|
@ -1,3 +1,5 @@
|
|||
# List of sections
|
||||
|
||||
- [Section title](filename.md)
|
||||
- [Dice Roller](dice_roller.md)
|
||||
- [Rock Paper Scissors Game](Rock_Paper_Scissors_Game.md)
|
||||
- [Path Finder](path-finder.md)
|
||||
|
|
|
@ -0,0 +1,120 @@
|
|||
# Path Finder
|
||||
This Python script uses the curses library to visualize the process of finding a path through a maze in real-time within a terminal window. The program represents the maze as a list of lists, where each list represents a row in the maze, and each string element in the lists represents a cell in the maze. The maze includes walls (#), a start point (O), and an end point (X), with empty spaces ( ) that can be traversed.
|
||||
## The script includes the following main components:
|
||||
- Visualization Functions: <br>
|
||||
print_maze(maze, stdscr, path=[]): This function is used to display the maze in the terminal. It utilizes color pairs to distinguish between the maze walls, the path, and unexplored spaces. The current path being explored is displayed with a different color to make it stand out.
|
||||
|
||||
- Utility Functions: <br>
|
||||
find_start(maze, start): This function searches the maze for the starting point (marked as O) and returns its position as a tuple (row, col). <br>
|
||||
find_neighbors(maze, row, col): This function identifies the valid adjacent cells (up, down, left, right) that can be moved to from the current position,
|
||||
ignoring any walls or out-of-bound positions.
|
||||
|
||||
- Pathfinding Logic: <br>
|
||||
find_path(maze, stdscr): This function implements a Breadth-First Search (BFS) algorithm to find a path from the start point to the end point (X). It uses a
|
||||
queue to explore each possible path sequentially. As it explores the maze, it updates the display in real-time, allowing the viewer to follow the progress
|
||||
visually. Each visited position is marked and not revisited, ensuring the algorithm efficiently covers all possible paths without repetition.
|
||||
|
||||
Overall, the script demonstrates an effective use of the curses library to create a dynamic visual representation of the BFS algorithm solving a maze, providing both an educational tool for understanding pathfinding and an example of real-time data visualization in a terminal.
|
||||
|
||||
#### Below is the code of the path finder
|
||||
|
||||
|
||||
```python
|
||||
import curses
|
||||
from curses import wrapper
|
||||
import queue
|
||||
import time
|
||||
|
||||
# Define the structure of the maze as a list of lists where each inner list represents a row.
|
||||
maze = [
|
||||
["#", "O", "#", "#", "#", "#", "#", "#", "#"],
|
||||
["#", " ", " ", " ", " ", " ", " ", " ", "#"],
|
||||
["#", " ", "#", "#", " ", "#", "#", " ", "#"],
|
||||
["#", " ", "#", " ", " ", " ", "#", " ", "#"],
|
||||
["#", " ", "#", " ", "#", " ", "#", " ", "#"],
|
||||
["#", " ", "#", " ", "#", " ", "#", " ", "#"],
|
||||
["#", " ", "#", " ", "#", " ", "#", "#", "#"],
|
||||
["#", " ", " ", " ", " ", " ", " ", " ", "#"],
|
||||
["#", "#", "#", "#", "#", "#", "#", "X", "#"]
|
||||
]
|
||||
|
||||
# Function to print the current state of the maze in the terminal.
|
||||
def print_maze(maze, stdscr, path=[]):
|
||||
BLUE = curses.color_pair(1) # Color pair for walls and free paths
|
||||
RED = curses.color_pair(2) # Color pair for the current path
|
||||
|
||||
for i, row in enumerate(maze):
|
||||
for j, value in enumerate(row):
|
||||
if (i, j) in path:
|
||||
stdscr.addstr(i, j*2, "X", RED) # Print path character with red color
|
||||
else:
|
||||
stdscr.addstr(i, j*2, value, BLUE) # Print walls and free paths with blue color
|
||||
|
||||
# Function to locate the starting point (marked 'O') in the maze.
|
||||
def find_start(maze, start):
|
||||
for i, row in enumerate(maze):
|
||||
for j, value in enumerate(row):
|
||||
if value == start:
|
||||
return i, j
|
||||
return None
|
||||
|
||||
# Function to find a path from start ('O') to end ('X') using BFS.
|
||||
def find_path(maze, stdscr):
|
||||
start = "O"
|
||||
end = "X"
|
||||
start_pos = find_start(maze, start) # Get the start position
|
||||
|
||||
q = queue.Queue()
|
||||
q.put((start_pos, [start_pos])) # Initialize the queue with the start position
|
||||
|
||||
visited = set() # Set to keep track of visited positions
|
||||
|
||||
while not q.empty():
|
||||
current_pos, path = q.get() # Get the current position and path
|
||||
row, col = current_pos
|
||||
|
||||
stdscr.clear() # Clear the screen
|
||||
print_maze(maze, stdscr, path) # Print the current state of the maze
|
||||
time.sleep(0.2) # Delay for visibility
|
||||
stdscr.refresh() # Refresh the screen
|
||||
|
||||
if maze[row][col] == end: # Check if the current position is the end
|
||||
return path # Return the path if end is reached
|
||||
|
||||
# Get neighbors (up, down, left, right) that are not walls
|
||||
neighbors = find_neighbors(maze, row, col)
|
||||
for neighbor in neighbors:
|
||||
if neighbor not in visited:
|
||||
r, c = neighbor
|
||||
if maze[r][c] != "#":
|
||||
new_path = path + [neighbor]
|
||||
q.put((neighbor, new_path))
|
||||
visited.add(neighbor)
|
||||
|
||||
# Function to find the valid neighboring cells (not walls or out of bounds).
|
||||
def find_neighbors(maze, row, col):
|
||||
neighbors = []
|
||||
if row > 0: # UP
|
||||
neighbors.append((row - 1, col))
|
||||
if row + 1 < len(maze): # DOWN
|
||||
neighbors.append((row + 1, col))
|
||||
if col > 0: # LEFT
|
||||
neighbors.append((row, col - 1))
|
||||
if col + 1 < len(maze[0]): # RIGHT
|
||||
neighbors.append((row, col + 1))
|
||||
return neighbors
|
||||
|
||||
# Main function to setup curses and run the pathfinding algorithm.
|
||||
def main(stdscr):
|
||||
curses.init_pair(1, curses.COLOR_BLUE, curses.COLOR_BLACK) # Initialize color pair for blue
|
||||
curses.init_pair(2, curses.COLOR_RED, curses.COLOR_BLACK) # Initialize color pair for red
|
||||
|
||||
find_path(maze, stdscr) # Find the path using BFS
|
||||
stdscr.getch() # Wait for a key press before exiting
|
||||
|
||||
wrapper(main) # Use the wrapper to initialize and finalize curses automatically.
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
|
@ -1,3 +1,3 @@
|
|||
# List of sections
|
||||
|
||||
- [Section title](filename.md)
|
||||
- [Introduction](introduction.md)
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
# Introduction
|
||||
|
||||
## What is NumPy?
|
||||
|
||||
NumPy is a powerful array-processing library in Python, essential for scientific computing. It provides efficient data structures and tools for working with multidimensional arrays.
|
||||
|
||||
## Key Features
|
||||
|
||||
1. **Efficient Arrays:** NumPy offers high-performance N-dimensional array objects for swift data manipulation.
|
||||
2. **Broadcasting:** Advanced broadcasting enables seamless element-wise operations on arrays of varying shapes.
|
||||
3. **Interoperability:** NumPy seamlessly integrates with C, C++, and Fortran, enhancing performance and versatility.
|
||||
4. **Mathematical Tools:** Comprehensive support for linear algebra, Fourier transforms, and random number generation.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure Python is installed in your system. If not you can install it from here([official Python website](https://www.python.org/)),then install NumPy via:
|
||||
|
||||
```bash
|
||||
pip install numpy
|
||||
```
|
||||
|
||||
## Importing NumPy
|
||||
|
||||
To access NumPy functions, import it with the alias `np`.
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
```
|
||||
|
||||
Using `np` as an alias enhances code readability and is a widely adopted convention.
|
|
@ -0,0 +1,573 @@
|
|||
## Descriptive Statistics
|
||||
|
||||
In the realm of data science, understanding the characteristics of data is fundamental. Descriptive statistics provide the tools and techniques to succinctly summarize and present the key features of a dataset. It serves as the cornerstone for exploring, visualizing, and ultimately gaining insights from data.
|
||||
|
||||
Descriptive statistics encompasses a range of methods designed to describe the central tendency, dispersion, and shape of a dataset. Through measures such as mean, median, mode, standard deviation, and variance, descriptive statistics offer a comprehensive snapshot of the data's distribution and variability.
|
||||
|
||||
Data scientists utilize descriptive statistics to uncover patterns, identify outliers, and assess the overall structure of data before delving into more advanced analyses. By summarizing large and complex datasets into manageable and interpretable summaries, descriptive statistics facilitate informed decision-making and actionable insights.
|
||||
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
df = pd.read_csv("Age-Income-Dataset.csv")
|
||||
df
|
||||
```
|
||||
|
||||
| | Age | Income |
|
||||
| --- | ----------- | ------ |
|
||||
| 0 | Young | 25000 |
|
||||
| 1 | Middle Age | 54000 |
|
||||
| 2 | Old | 60000 |
|
||||
| 3 | Young | 15000 |
|
||||
| 4 | Young | 45000 |
|
||||
| 5 | Young | 65000 |
|
||||
| 6 | Young | 70000 |
|
||||
| 7 | Young | 30000 |
|
||||
| 8 | Middle Age | 27000 |
|
||||
| 9 | Young | 23000 |
|
||||
| 10 | Young | 48000 |
|
||||
| 11 | Old | 52000 |
|
||||
| 12 | Young | 33000 |
|
||||
| 13 | Old | 80000 |
|
||||
| 14 | Old | 75000 |
|
||||
| 15 | Old | 35000 |
|
||||
| 16 | Middle Age | 29000 |
|
||||
| 17 | Middle Age | 57000 |
|
||||
| 18 | Old | 43000 |
|
||||
| 19 | Middle Age | 56000 |
|
||||
| 20 | Old | 63000 |
|
||||
| 21 | Old | 32000 |
|
||||
| 22 | Old | 45000 |
|
||||
| 23 | Old | 89000 |
|
||||
| 24 | Middle Age | 90000 |
|
||||
| 25 | Middle Age | 93000 |
|
||||
| 26 | Young | 80000 |
|
||||
| 27 | Young | 87000 |
|
||||
| 28 | Young | 38000 |
|
||||
| 29 | Young | 23000 |
|
||||
| 30 | Middle Age | 38900 |
|
||||
| 31 | Middle Age | 53200 |
|
||||
| 32 | Old | 43800 |
|
||||
| 33 | Middle Age | 25600 |
|
||||
| 34 | Middle Age | 65400 |
|
||||
| 35 | Old | 76800 |
|
||||
| 36 | Old | 89700 |
|
||||
| 37 | Old | 41800 |
|
||||
| 38 | Young | 31900 |
|
||||
| 39 | Old | 25600 |
|
||||
| 40 | Middle Age | 45700 |
|
||||
| 41 | Old | 35600 |
|
||||
| 42 | Young | 54300 |
|
||||
| 43 | Middle Age | 65400 |
|
||||
| 44 | Old | 67800 |
|
||||
| 45 | Old | 24500 |
|
||||
| 46 | Middle Age | 34900 |
|
||||
| 47 | Old | 45300 |
|
||||
| 48 | Young | 68400 |
|
||||
| 49 | Middle Age | 51700 |
|
||||
|
||||
```python
|
||||
df.describe()
|
||||
```
|
||||
|
||||
| | Income |
|
||||
|-------|-------------|
|
||||
| count | 50.000000 |
|
||||
| mean | 50966.000000 |
|
||||
| std | 21096.683268 |
|
||||
| min | 15000.000000 |
|
||||
| 25% | 33475.000000 |
|
||||
| 50% | 46850.000000 |
|
||||
| 75% | 65400.000000 |
|
||||
| max | 93000.000000 |
|
||||
|
||||
|
||||
### Mean
|
||||
|
||||
The mean, also known as the average, is a measure of central tendency in a dataset. It represents the typical value of a set of numbers. The formula to calculate the mean of a dataset is:
|
||||
|
||||
$$ \overline{x} = \frac{\sum\limits_{i=1}^{n} x_i}{n} $$
|
||||
|
||||
* $\overline{x}$ (pronounced "x bar") represents the mean value.
|
||||
* $x_i$ represents the individual value in the dataset (where i goes from 1 to n).
|
||||
* $\sum$ (sigma) represents the summation symbol, indicating we add up all the values from i=1 to n.
|
||||
* $n$ represents the total number of values in the dataset.
|
||||
|
||||
```python
|
||||
df['Income'].mean()
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
50966.0
|
||||
```
|
||||
|
||||
#### Without pandas
|
||||
|
||||
|
||||
```python
|
||||
def mean_f(df):
|
||||
for col in df.columns:
|
||||
if df[col].dtype != 'O':
|
||||
temp = 0
|
||||
for i in df[col]:
|
||||
temp = temp +i
|
||||
print("Without pandas Library -> ")
|
||||
print("Average of {} is {}".format(col,(temp/len(df[col]))))
|
||||
print()
|
||||
print("With pandas Library -> ")
|
||||
print(df[col].mean())
|
||||
|
||||
mean_f(df)
|
||||
```
|
||||
|
||||
Average of Income:
|
||||
|
||||
- Without pandas Library -> 50966.0
|
||||
- With pandas Library -> 50966.0
|
||||
|
||||
### Median
|
||||
|
||||
|
||||
The median is another measure of central tendency in a dataset. Unlike the mean, which is the average value of all data points, the median represents the middle value when the dataset is ordered from smallest to largest. If the dataset has an odd number of observations, the median is the middle value. If the dataset has an even number of observations, the median is the average of the two middle values.
|
||||
|
||||
The median represents the "middle" value in a dataset. There are two cases to consider depending on whether the number of observations (n) is odd or even:
|
||||
|
||||
**Odd number of observations (n):**
|
||||
|
||||
In this case, the median (M) is the value located at the middle position when the data is ordered from least to greatest. We can calculate the position using the following formula:
|
||||
|
||||
$$ M = x_{n+1/2} $$
|
||||
|
||||
**Even number of observations (n):**
|
||||
|
||||
When we have an even number of observations, there isn't a single "middle" value. Instead, the median is the average of the two middle values after ordering the data. Here's the formula to find the median:
|
||||
|
||||
$$ M = \frac{x_{n/2} + x_{(n/2)+1}}{2} $$
|
||||
|
||||
**Explanation:**
|
||||
|
||||
* M represents the median value.
|
||||
* n represents the total number of observations in the dataset.
|
||||
* $x$ represents the individual value.
|
||||
|
||||
```python
|
||||
df['Income'].median()
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
46850.0
|
||||
```
|
||||
|
||||
#### Without pandas
|
||||
|
||||
```python
|
||||
def median_f(df):
|
||||
for col in df.columns:
|
||||
if df[col].dtype != 'O':
|
||||
sorted_data = sorted(df[col])
|
||||
n = len(df[col])
|
||||
if n%2 == 0:
|
||||
x1 =sorted_data[int((n/2))]
|
||||
x2 =sorted_data[int((n/2))+1]
|
||||
median=(x1+x2)/2
|
||||
else:
|
||||
median = sorted_data[(n+1)/2]
|
||||
print("Median without library ->")
|
||||
print("Median of {} is {} ".format(col,median))
|
||||
print("Median with library ->")
|
||||
print(df[col].median())
|
||||
median_f(df)
|
||||
```
|
||||
|
||||
Median of Income:
|
||||
|
||||
- Median without library -> 49850.0
|
||||
- Median with library -> 46850.0
|
||||
|
||||
### Mode
|
||||
|
||||
The mode is a measure of central tendency that represents the value or values that occur most frequently in a dataset. Unlike the mean and median, which focus on the average or middle value, the mode identifies the most common value(s) in the dataset.
|
||||
|
||||
```python
|
||||
def mode_f(df):
|
||||
for col in df.columns:
|
||||
if df[col].dtype == 'O':
|
||||
print("Column:", col)
|
||||
arr = df[col].sort_values()
|
||||
|
||||
prevcnt = 0
|
||||
cnt = 0
|
||||
ans = arr[0]
|
||||
temp = arr[0]
|
||||
|
||||
for i in arr:
|
||||
if(temp == i) :
|
||||
cnt += 1
|
||||
else:
|
||||
prevcnt = cnt
|
||||
cnt = 1
|
||||
temp = i
|
||||
if(cnt > prevcnt):
|
||||
ans = i
|
||||
|
||||
print("Without pandas Library -> ")
|
||||
print("Mode of {} is {}".format(col,ans))
|
||||
print()
|
||||
print("With pandas Library -> ")
|
||||
print(df[col].mode())
|
||||
mode_f(df)
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
Column: Age
|
||||
Without pandas Library ->
|
||||
Mode of Age is Old
|
||||
|
||||
With pandas Library ->
|
||||
0 Old
|
||||
Name: Age, dtype: object
|
||||
```
|
||||
|
||||
### Standard Deviation
|
||||
|
||||
Standard deviation is a measure of the dispersion or spread of a dataset. It quantifies the amount of variation or dispersion of a set of values from the mean. In other words, it indicates how much individual values in a dataset deviate from the mean.
|
||||
|
||||
$$s = \sqrt{\frac{\sum(x_i-\overline{x})^{2}}{n-1}}$$
|
||||
|
||||
* $s$ represents the standard deviation.
|
||||
* $\sum$ (sigma) represents the summation symbol, indicating we add up the values for all data points.
|
||||
* $x_i$ represents the individual value in the dataset.
|
||||
* $\overline{x}$ (x bar) represents the mean value of the dataset.
|
||||
* $n$ represents the total number of values in the dataset.
|
||||
|
||||
```python
|
||||
df['Income'].std()
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
21096.683267707253
|
||||
```
|
||||
|
||||
#### Without pandas
|
||||
|
||||
```python
|
||||
import math
|
||||
def std_f(df):
|
||||
for col in df.columns:
|
||||
if len(df[col]) == 0:
|
||||
print("Column is empty")
|
||||
if df[col].dtype != 'O':
|
||||
sum = 0
|
||||
mean = df[col].mean()
|
||||
for i in df[col]:
|
||||
sum = sum + (i - mean)**2
|
||||
|
||||
std = math.sqrt(sum/len(df[col]))
|
||||
print("Without pandas library ->")
|
||||
print("Std : " , std)
|
||||
print("With pandas library: ->")
|
||||
print("Std : {}".format(np.std(df[col]))) ##ddof = 1
|
||||
|
||||
std_f(df)
|
||||
```
|
||||
|
||||
Without pandas library ->
|
||||
Std : 20884.6509187968 \
|
||||
With pandas library: ->
|
||||
Std : 20884.6509187968
|
||||
|
||||
|
||||
### Count
|
||||
|
||||
```python
|
||||
df['Income'].count()
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
50
|
||||
```
|
||||
|
||||
### Minimum
|
||||
|
||||
|
||||
```python
|
||||
df['Income'].min()
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
15000
|
||||
```
|
||||
|
||||
#### Without pandas
|
||||
|
||||
```python
|
||||
def min_f(df):
|
||||
for col in df.columns:
|
||||
if df[col].dtype != "O":
|
||||
sorted_data = sorted(df[col])
|
||||
min = sorted_data[0]
|
||||
print("Without pandas Library->",min)
|
||||
print("With pandas Library->",df[col].min())
|
||||
|
||||
min_f(df)
|
||||
```
|
||||
|
||||
Without pandas Library-> 15000 \
|
||||
With pandas Library-> 15000
|
||||
|
||||
|
||||
### Maximum
|
||||
|
||||
|
||||
```python
|
||||
df['Income'].max()
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
93000
|
||||
```
|
||||
|
||||
#### Without pandas
|
||||
|
||||
```python
|
||||
def max_f(df):
|
||||
for col in df.columns:
|
||||
if df[col].dtype != "O":
|
||||
sorted_data = sorted(df[col])
|
||||
max = sorted_data[len(df[col])-1]
|
||||
print("Without pandas Library->",max)
|
||||
print("With pandas Library->",df[col].max())
|
||||
|
||||
max_f(df)
|
||||
```
|
||||
|
||||
Without pandas Library-> 93000
|
||||
With pandas Library-> 93000
|
||||
|
||||
|
||||
### Percentile
|
||||
|
||||
|
||||
```python
|
||||
df['Income'].quantile(0.25)
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
33475.0
|
||||
```
|
||||
|
||||
```python
|
||||
df['Income'].quantile(0.75)
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
65400.0
|
||||
```
|
||||
|
||||
#### Without pandas
|
||||
|
||||
```python
|
||||
def percentile_f(df,percentile):
|
||||
for col in df.columns:
|
||||
if df[col].dtype != 'O':
|
||||
sorted_data = sorted(df[col])
|
||||
index = int(percentile*len(df[col]))
|
||||
percentile_result = sorted_data[index]
|
||||
print(f"{percentile} Percentile is : ",percentile_result)
|
||||
|
||||
percentile_f(df,0.25)
|
||||
```
|
||||
|
||||
0.25 Percentile is : 33000
|
||||
|
||||
|
||||
We have used the method of nearest rank to calculate percentile manually.
|
||||
|
||||
Pandas uses linear interpolation of data to calculate percentiles.
|
||||
|
||||
## Correlation and Covariance
|
||||
|
||||
|
||||
```python
|
||||
df = pd.read_csv('Iris.csv')
|
||||
df.head(5)
|
||||
```
|
||||
|
||||
| | Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species |
|
||||
|---|----|---------------|--------------|---------------|--------------|-------------|
|
||||
| 0 | 1 | 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
|
||||
| 1 | 2 | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa |
|
||||
| 2 | 3 | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
|
||||
| 3 | 4 | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
|
||||
| 4 | 5 | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa |
|
||||
|
||||
```python
|
||||
df.drop(['Id','Species'],axis=1,inplace= True)
|
||||
```
|
||||
|
||||
### Covarience
|
||||
|
||||
Covariance measures the degree to which two variables change together. If the covariance between two variables is positive, it means that they tend to increase or decrease together. If the covariance is negative, it means that as one variable increases, the other tends to decrease. However, covariance does not provide a standardized measure, making it difficult to interpret the strength of the relationship between variables, especially if the variables are measured in different units.
|
||||
|
||||
$$ COV(X,Y) = \frac{\sum\limits_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})}{n - 1}$$
|
||||
|
||||
**Explanation:**
|
||||
|
||||
* $COV(X, Y)$ represents the covariance between variables X and Y.
|
||||
* $X_i$ and $Y_i$ represent the individual values for variables X and Y in the i-th observation.
|
||||
* $\overline{X}$ and $\overline{Y}$ represent the mean values for variables X and Y, respectively.
|
||||
* $n$ represents the total number of observations in the dataset.
|
||||
|
||||
```python
|
||||
df.cov()
|
||||
```
|
||||
|
||||
| | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|
||||
|-------------------|-------------- |---------------|-----------------|--------------|
|
||||
| **SepalLengthCm** | 0.685694 | -0.039268 | 1.273682 | 0.516904 |
|
||||
| **SepalWidthCm** | -0.039268 | 0.188004 | -0.321713 | -0.117981 |
|
||||
| **PetalLengthCm** | 1.273682 | -0.321713 | 3.113179 | 1.296387 |
|
||||
| **PetalWidthCm** | 0.516904 | -0.117981 | 1.296387 | 0.582414 |
|
||||
|
||||
#### Without pandas
|
||||
|
||||
```python
|
||||
def cov_f(df):
|
||||
for x in df.columns:
|
||||
for y in df.columns:
|
||||
mean_x = df[x].mean()
|
||||
mean_y = df[y].mean()
|
||||
|
||||
sum = 0
|
||||
n = len(df[x])
|
||||
|
||||
for val in range(n):
|
||||
sum += (df[x].iloc[val] - mean_x)*(df[y].iloc[val] - mean_y)
|
||||
print("Covariance of {} and {} is : {}".format(x,y, sum/(n-1)))
|
||||
print()
|
||||
cov_f(df)
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
Covariance of SepalLengthCm and SepalLengthCm is : 0.6856935123042504
|
||||
Covariance of SepalLengthCm and SepalWidthCm is : -0.03926845637583892
|
||||
Covariance of SepalLengthCm and PetalLengthCm is : 1.2736823266219246
|
||||
Covariance of SepalLengthCm and PetalWidthCm is : 0.5169038031319911
|
||||
|
||||
Covariance of SepalWidthCm and SepalLengthCm is : -0.03926845637583892
|
||||
Covariance of SepalWidthCm and SepalWidthCm is : 0.1880040268456377
|
||||
Covariance of SepalWidthCm and PetalLengthCm is : -0.32171275167785235
|
||||
Covariance of SepalWidthCm and PetalWidthCm is : -0.11798120805369115
|
||||
|
||||
Covariance of PetalLengthCm and SepalLengthCm is : 1.2736823266219246
|
||||
Covariance of PetalLengthCm and SepalWidthCm is : -0.32171275167785235
|
||||
Covariance of PetalLengthCm and PetalLengthCm is : 3.113179418344519
|
||||
Covariance of PetalLengthCm and PetalWidthCm is : 1.2963874720357946
|
||||
|
||||
Covariance of PetalWidthCm and SepalLengthCm is : 0.5169038031319911
|
||||
Covariance of PetalWidthCm and SepalWidthCm is : -0.11798120805369115
|
||||
Covariance of PetalWidthCm and PetalLengthCm is : 1.2963874720357946
|
||||
Covariance of PetalWidthCm and PetalWidthCm is : 0.5824143176733781
|
||||
````
|
||||
|
||||
### Correlation
|
||||
|
||||
Correlation, on the other hand, standardizes the measure of relationship between two variables, making it easier to interpret. It measures both the strength and direction of the linear relationship between two variables. Correlation values range between -1 and 1, where:
|
||||
|
||||
$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \cdot \sqrt{n(\sum y^2) - (\sum y)^2}}$$
|
||||
|
||||
* r represents the correlation coefficient.
|
||||
* n is the number of data points.
|
||||
|
||||
```python
|
||||
df.corr()
|
||||
```
|
||||
|
||||
| | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm |
|
||||
|-------------------|---------------|--------------|---------------|--------------|
|
||||
| **SepalLengthCm** | 1.000000 | -0.109369 | 0.871754 | 0.817954 |
|
||||
| **SepalWidthCm** | -0.109369 | 1.000000 | -0.420516 | -0.356544 |
|
||||
| **PetalLengthCm** | 0.871754 | -0.420516 | 1.000000 | 0.962757 |
|
||||
| **PetalWidthCm** | 0.817954 | -0.356544 | 0.962757 | 1.000000 |
|
||||
|
||||
#### Without using pandas
|
||||
|
||||
```python
|
||||
import math
|
||||
def corr_f(df):
|
||||
for i in df.columns:
|
||||
for j in df.columns:
|
||||
n = len(df[i])
|
||||
|
||||
sumX = 0
|
||||
for x in df[i]:
|
||||
sumX += x
|
||||
sumY = 0
|
||||
for y in df[j]:
|
||||
sumY += y
|
||||
|
||||
sumXY = 0
|
||||
for xy in range(n):
|
||||
sumXY += (df[i].iloc[xy] * df[j].iloc[xy])
|
||||
|
||||
sumX2 = 0
|
||||
for x in df[i]:
|
||||
sumX2 += (x**2)
|
||||
sumY2 = 0
|
||||
for y in df[j]:
|
||||
sumY2 += (y**2)
|
||||
|
||||
NR = (n * sumXY) - (sumX*sumY)
|
||||
DR = math.sqrt( ( (n * sumX2) - (sumX**2))*( (n * sumY2) - (sumY ** 2) ) )
|
||||
|
||||
print("Correlation of {} and {} :{}".format(i,j,NR/DR))
|
||||
print()
|
||||
|
||||
corr_f(df)
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
||||
```
|
||||
Correlation of SepalLengthCm and SepalLengthCm :1.0
|
||||
Correlation of SepalLengthCm and SepalWidthCm :-0.10936924995067286
|
||||
Correlation of SepalLengthCm and PetalLengthCm :0.8717541573048861
|
||||
Correlation of SepalLengthCm and PetalWidthCm :0.8179536333691775
|
||||
|
||||
Correlation of SepalWidthCm and SepalLengthCm :-0.10936924995067286
|
||||
Correlation of SepalWidthCm and SepalWidthCm :1.0
|
||||
Correlation of SepalWidthCm and PetalLengthCm :-0.42051609640118826
|
||||
Correlation of SepalWidthCm and PetalWidthCm :-0.3565440896138223
|
||||
|
||||
Correlation of PetalLengthCm and SepalLengthCm :0.8717541573048861
|
||||
Correlation of PetalLengthCm and SepalWidthCm :-0.42051609640118826
|
||||
Correlation of PetalLengthCm and PetalLengthCm :1.0
|
||||
Correlation of PetalLengthCm and PetalWidthCm :0.9627570970509656
|
||||
|
||||
Correlation of PetalWidthCm and SepalLengthCm :0.8179536333691775
|
||||
Correlation of PetalWidthCm and SepalWidthCm :-0.3565440896138223
|
||||
Correlation of PetalWidthCm and PetalLengthCm :0.9627570970509656
|
||||
Correlation of PetalWidthCm and PetalWidthCm :1.0
|
||||
```
|
|
@ -0,0 +1,63 @@
|
|||
# Pandas DataFrame
|
||||
|
||||
The Pandas DataFrame is a two-dimensional, size-mutable, and possibly heterogeneous tabular data format with labelled axes. A data frame is a two-dimensional data structure in which the data can be organised in rows and columns. Pandas DataFrames are comprised of three main components: data, rows, and columns.
|
||||
|
||||
In the real world, Pandas DataFrames are formed by importing datasets from existing storage, which can be a Excel file, a SQL database or CSV file. Pandas DataFrames may be constructed from lists, dictionaries, or lists of dictionaries, etc.
|
||||
|
||||
|
||||
Features of Pandas `DataFrame`:
|
||||
|
||||
- **Size mutable**: DataFrames are mutable in size, meaning that new rows and columns can be added or removed as needed.
|
||||
- **Labeled axes**: DataFrames have labeled axes, which makes it easy to keep track of the data.
|
||||
- **Arithmetic operations**: DataFrames support arithmetic operations on rows and columns.
|
||||
- **High performance**: DataFrames are highly performant, making them ideal for working with large datasets.
|
||||
|
||||
|
||||
### Installation of libraries
|
||||
|
||||
`pip install pandas` <br/>
|
||||
`pip install xlrd`
|
||||
|
||||
- **Note**: The `xlrd` library is used for Excel operations.
|
||||
|
||||
Example for reading data from an Excel File:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
l = pd.read_excel('example.xlsx')
|
||||
d = pd.DataFrame(l)
|
||||
print(d)
|
||||
```
|
||||
Output:
|
||||
```python
|
||||
Name Age
|
||||
0 John 12
|
||||
```
|
||||
|
||||
|
||||
Example for Inserting Data into Excel File:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
l = pd.read_excel('file_name.xlsx')
|
||||
d = {'Name': ['Bob', 'John'], 'Age': [12, 28]}
|
||||
d = pd.DataFrame(d)
|
||||
L = pd.concat([l, d], ignore_index = True)
|
||||
L.to_excel('file_name.xlsx', index = False)
|
||||
print(L)
|
||||
```
|
||||
|
||||
Output:
|
||||
```python
|
||||
Name Age
|
||||
0 Bob 12
|
||||
1 John 28
|
||||
```
|
||||
|
||||
### Usage of Pandas DataFrame:
|
||||
|
||||
- Can be used to store and analyze financial data, such as stock prices, trading data, and economic data.
|
||||
- Can be used to store and analyze sensor data, such as data from temperature sensors, motion sensors, and GPS sensors.
|
||||
- Can be used to store and analyze log data, such as web server logs, application logs, and system logs
|
|
@ -1,3 +1,5 @@
|
|||
# List of sections
|
||||
|
||||
- [Pandas Series Vs NumPy ndarray](pandas_series_vs_numpy_ndarray.md)
|
||||
- [Pandas Descriptive Statistics](Descriptive_Statistics.md)
|
||||
- [Excel using Pandas DataFrame](excel_with_pandas.md)
|
||||
|
|
Ładowanie…
Reference in New Issue