Update Naive_Bayes_Classifiers.md

pull/1210/head
Divyanshi 2024-06-19 14:56:35 +05:30 zatwierdzone przez GitHub
rodzic bab7d667e6
commit 10c5fb5bc2
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: B5690EEEBB952194
1 zmienionych plików z 4 dodań i 3 usunięć

Wyświetl plik

@ -8,9 +8,6 @@ Bayes Theorem finds the probability of an event occurring given the probabili
$$ P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)} $$
![img.png](img.png)
where A and B are events and P(B) ≠ 0
* We are trying to find probability of event A, given the event B is true.
@ -78,6 +75,10 @@ In Gaussian Naive Bayes, continuous values associated with each feature are assu
* Assumption: Each feature follows a Gaussian distribution.
* Formula: The likelihood of the features given the class is computed using the Gaussian (normal) distribution formula:
$$
P(C_k | x) = \frac{P(C_k) \cdot \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{k,i}^2}} \exp \left( -\frac{(x_i - \mu_{k,i})^2}{2 \sigma_{k,i}^2} \right)}{P(x)}
$$
![img_3.png](img_3.png)
where 𝜇𝐶 and 𝜎𝐶 are the mean and standard deviation of the feature 𝑥𝑖 for class C.