From 0f4cf64fb078a18df5a1871f41dbfb45d926c340 Mon Sep 17 00:00:00 2001 From: Rupa-Rd Date: Mon, 20 May 2024 22:17:35 +0530 Subject: [PATCH] Example for float type is added --- contrib/numpy/datatypes.md | 40 ++++++++++++++++++++++++++++++++++++-- 1 file changed, 38 insertions(+), 2 deletions(-) diff --git a/contrib/numpy/datatypes.md b/contrib/numpy/datatypes.md index c70e810..1a355d2 100644 --- a/contrib/numpy/datatypes.md +++ b/contrib/numpy/datatypes.md @@ -46,8 +46,10 @@ Way 1: Using function `int_()` import numpy as np arr = np.int_([2,4,6]) - + # Size: int8, int16, int32, int64 + print(arr.dtype()) + # Output: int64 ``` @@ -56,13 +58,47 @@ Way 2: Using `dtype()` import numpy as np arr = np.array([2,4,6], dtype='i4') + # Size: i1, i2, i4, i8 print(arr.dtype) - # Output: int8 + # Output: int32 ``` + ## Example for float type +Way 1: Using function `float_()` +``` python + import numpy as np + + arr = np.float_(1) + # Size: float8, float16, float32, float64 + + print(arr) + print(arr.dtype()) + + # Output: + # 1.0 + # float64 +``` + +Way 2: Using `dtype()` +``` python + import numpy as np + + arr = np.array([2,4,6], dtype='f4') + # Size: f1, f2, f4, f8 + + print(arr) + print(arr.dtype) + + # Output: + # [1. 2. 3. 4.] + # float32 +``` + +Note: `np.single()` has the same function as `float32()`. + ## Example for boolean type ## Example for unsigned integer type