kopia lustrzana https://github.com/animator/learn-python
Create loading_arrays_from_files.md
Added Introduction Added numpy.loadtxt method Added numpy.genfromtxt method Added numpy.fromfile method Added numpy.load methodpull/449/head
rodzic
406004d9c9
commit
0b9c7823fa
|
@ -0,0 +1,67 @@
|
|||
# Loading Arrays From Files
|
||||
The ability to load data from various file formats is a critical feature for scientific computing and data analysis.
|
||||
NumPy provides several functions to read data from different file types and convert them into ndarrays.
|
||||
This section will cover how to load ndarrays from common file formats, including CSV, TSV, and binary files.
|
||||
|
||||
### Here are the methods available:
|
||||
|
||||
`numpy.loadtxt`: The loadtxt function allows you to load data from a text file.You can specify various parameters such as the file name, data type, delimiter,
|
||||
and more. It reads the file line by line, splits it at the specified delimiter, and converts the values into an array.
|
||||
|
||||
- **Syntax:**
|
||||
```python
|
||||
numpy.loadtxt(fname, dtype = float, delimiter=None, converters=None, skiprows=0, usecols=None)
|
||||
```
|
||||
|
||||
`fname` : Name of the file <br>
|
||||
`dtype` : Data type of the resulting array. (By default is float) <br>
|
||||
`delimiter`: String or character separating columns; default is any whitespace. <br>
|
||||
`converters`: Dictionary mapping column number to a function to convert that column's string to a float. <br>
|
||||
`skiprows`: Number of lines to skip at the beginning of the file. <br>
|
||||
`usecols`: Which columns to read starting from 0.
|
||||
|
||||
- **Example for `loadtxt`:**
|
||||
|
||||
**example.txt** <br>
|
||||
|
||||

|
||||
|
||||
**Code** <br>
|
||||
```python
|
||||
import numpy as np
|
||||
arr = np.loadtxt("loadtxt.txt", dtype=int)
|
||||
print(arr)
|
||||
```
|
||||
|
||||
**Output**<br>
|
||||
```python
|
||||
[1 2 3 4 5]
|
||||
```
|
||||
|
||||
|
||||
`numpy.genfromtxt`: The genfromtxt function is similar to loadtxt but provides more flexibility. It handles missing values (such as NaNs), allows custom converters
|
||||
for data parsing, and can handle different data types within the same file. It’s particularly useful for handling complex data formats.
|
||||
|
||||
- **Syntax:**
|
||||
```python
|
||||
numpy.genfromtxt(fname, dtype=float, delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None)
|
||||
```
|
||||
|
||||
`fname` : Name of the file <br>
|
||||
`dtype` : Data type of the resulting array. (By default is float) <br>
|
||||
`delimiter`: String or character separating columns; default is any whitespace. <br>
|
||||
`skip_header`: Number of lines to skip at the beginning of the file.<br>
|
||||
`skip_footer`: Number of lines to skip at the end of the file.<br>
|
||||
`converters`: Dictionary mapping column number to a function to convert that column's string to a float. <br>
|
||||
`missing_values`: Set of strings corresponding to missing data.<br>
|
||||
`filling_values`: Value used to fill in missing data. Default is NaN.<br>
|
||||
`usecols`: Which columns to read starting from 0.
|
||||
|
||||
- **Examples for `genfromtxt`:**
|
||||
|
||||
|
||||
`numpy.fromfile`: The fromfile function reads binary data directly from a file into a NumPy array. It doesn’t assume any specific format or delimiter;
|
||||
instead, it interprets the raw binary data according to the specified data type.
|
||||
|
||||
`numpy.load`: Load arrays saved in NumPy’s native binary format (.npy or .npz). These files preserve the array structure, data types, and metadata.
|
||||
It’s an efficient way to store and load large arrays.
|
Ładowanie…
Reference in New Issue