From 02c7f2c3a202fc7234c5000dd010b1f3df6b9910 Mon Sep 17 00:00:00 2001 From: Ankit Mahato Date: Fri, 31 May 2024 07:19:32 +0530 Subject: [PATCH] Update reshape-array.md --- contrib/numpy/reshape-array.md | 53 ++++++++++++++++++---------------- 1 file changed, 28 insertions(+), 25 deletions(-) diff --git a/contrib/numpy/reshape-array.md b/contrib/numpy/reshape-array.md index d3d7f59..91da366 100644 --- a/contrib/numpy/reshape-array.md +++ b/contrib/numpy/reshape-array.md @@ -1,54 +1,57 @@ # Numpy Array Shape and Reshape + In NumPy, the primary data structure is the ndarray (N-dimensional array). An array can have one or more dimensions, and it organizes your data efficiently. -Code to create a 2D array +Let us create a 2D array + ``` python import numpy as np numbers = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) print(numbers) - -# Output: -# array([[1, 2, 3, 4],[5, 6, 7, 8]]) ``` -## Changing Array Shape using Reshape() +#### Output: + +``` python +array([[1, 2, 3, 4],[5, 6, 7, 8]]) +``` + +## Changing Array Shape using `reshape()` + The `reshape()` function allows you to rearrange the data within a NumPy array. -It take 2 arguements, row and columns. The `reshape()` can add or remove the dimensions. For instance, array can convert a 1D array into a 2D array or vice versa. + +It take 2 arguments, row and columns. The `reshape()` can add or remove the dimensions. For instance, array can convert a 1D array into a 2D array or vice versa. ``` python arr_1d = np.array([1, 2, 3, 4, 5, 6]) # 1D array -arr_2d = arr_1d.reshape(2, 3) # Reshaping with 2rows and 3cols +arr_2d = arr_1d.reshape(2, 3) # Reshaping with 2 rows and 3 cols print(arr_2d) - -# Output: -# array([[1, 2, 3],[4, 5, 6]]) - ``` -## Changing Array Shape using Resize() +#### Output: + +``` python +array([[1, 2, 3],[4, 5, 6]]) +``` + +## Changing Array Shape using `resize()` + The `resize()` function allows you to modify the shape of a NumPy array directly. + It take 2 arguements, row and columns. ``` python import numpy as np arr_1d = np.array([1, 2, 3, 4, 5, 6]) -arr_1d.resize((2, 3)) # 2rows and 3cols +arr_1d.resize((2, 3)) # 2 rows and 3 cols print(arr_1d) - -# Output: -# array([[1, 2, 3],[4, 5, 6]]) - ``` -## Reshape() VS Resize() +#### Output: -| Reshape | Resize | -| ----------- | ----------- | -| Does not modify the original array | Modifies the original array in-place | -| Creates a new array | Changes the shape of the array | -| Returns a reshaped array | Doesn't return anything | -| Compatibility between dimensions | Does not compatibility between dimensions | -| Syntax: reshape(row,col) | Syntax: resize((row,col)) | +``` python +array([[1, 2, 3],[4, 5, 6]]) +```