kierank-libmpegts/bitstream.h

178 wiersze
5.6 KiB
C

/*****************************************************************************
* bitstream.h: bitstream writing
*****************************************************************************
* Copyright (C) 2003-2010 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Jason Garrett-Glaser <darkshikari@gmail.com>
* Laurent Aimar <fenrir@via.ecp.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#ifndef LIBMPEGTS_BS_H
#define LIBMPEGTS_BS_H
#define WORD_SIZE sizeof(long)
/* Unions for type-punning.
* Mn: load or store n bits, aligned, native-endian
* CPn: copy n bits, aligned, native-endian
* we don't use memcpy for CPn because memcpy's args aren't assumed to be aligned */
typedef union { uint16_t i; uint8_t c[2]; } x264_union16_t;
typedef union { uint32_t i; uint16_t b[2]; uint8_t c[4]; } x264_union32_t;
typedef union { uint64_t i; uint32_t a[2]; uint16_t b[4]; uint8_t c[8]; } x264_union64_t;
typedef struct { uint64_t i[2]; } x264_uint128_t;
typedef union { x264_uint128_t i; uint64_t a[2]; uint32_t b[4]; uint16_t c[8]; uint8_t d[16]; } x264_union128_t;
#define M16(src) (((x264_union16_t*)(src))->i)
#define M32(src) (((x264_union32_t*)(src))->i)
#define M64(src) (((x264_union64_t*)(src))->i)
#define M128(src) (((x264_union128_t*)(src))->i)
#define M128_ZERO ((x264_uint128_t){{0,0}})
#define CP16(dst,src) M16(dst) = M16(src)
#define CP32(dst,src) M32(dst) = M32(src)
#define CP64(dst,src) M64(dst) = M64(src)
#define CP128(dst,src) M128(dst) = M128(src)
#if WORDS_BIGENDIAN
#define endian_fix(x) (x)
#define endian_fix64(x) (x)
#define endian_fix32(x) (x)
#define endian_fix16(x) (x)
#else
static inline uint32_t endian_fix32( uint32_t x )
{
return (x<<24) + ((x<<8)&0xff0000) + ((x>>8)&0xff00) + (x>>24);
}
static inline uint64_t endian_fix64( uint64_t x )
{
return endian_fix32(x>>32) + ((uint64_t)endian_fix32(x)<<32);
}
static inline intptr_t endian_fix( intptr_t x )
{
return WORD_SIZE == 8 ? endian_fix64(x) : endian_fix32(x);
}
static inline uint16_t endian_fix16( uint16_t x )
{
return (x<<8)|(x>>8);
}
#endif
typedef struct bs_s
{
uint8_t *p_start;
uint8_t *p;
uint8_t *p_end;
intptr_t cur_bits;
int i_left; /* i_count number of available bits */
} bs_t;
static inline void bs_init( bs_t *s, void *p_data, int i_data )
{
int offset = ((intptr_t)p_data & 3);
s->p = s->p_start = (uint8_t*)p_data - offset;
s->p_end = (uint8_t*)p_data + i_data;
s->i_left = (WORD_SIZE - offset)*8;
s->cur_bits = endian_fix32( M32(s->p) );
s->cur_bits >>= (4-offset)*8;
}
static inline int bs_pos( bs_t *s )
{
return( 8 * (s->p - s->p_start) + (WORD_SIZE*8) - s->i_left );
}
/* Write the rest of cur_bits to the bitstream; results in a bitstream no longer 32-bit aligned. */
static inline void bs_flush( bs_t *s )
{
M32( s->p ) = endian_fix32( s->cur_bits << (s->i_left&31) );
s->p += WORD_SIZE - (s->i_left >> 3);
s->i_left = WORD_SIZE*8;
}
/* The inverse of bs_flush: prepare the bitstream to be written to again. */
static inline void bs_realign( bs_t *s )
{
int offset = ((intptr_t)s->p & 3);
if( offset )
{
s->p = (uint8_t*)s->p - offset;
s->i_left = (WORD_SIZE - offset)*8;
s->cur_bits = endian_fix32( M32(s->p) );
s->cur_bits >>= (4-offset)*8;
}
}
static inline void bs_write( bs_t *s, int i_count, uint32_t i_bits )
{
if( WORD_SIZE == 8 )
{
s->cur_bits = (s->cur_bits << i_count) | i_bits;
s->i_left -= i_count;
if( s->i_left <= 32 )
{
#if WORDS_BIGENDIAN
M32( s->p ) = s->cur_bits >> (32 - s->i_left);
#else
M32( s->p ) = endian_fix( s->cur_bits << s->i_left );
#endif
s->i_left += 32;
s->p += 4;
}
}
else
{
if( i_count < s->i_left )
{
s->cur_bits = (s->cur_bits << i_count) | i_bits;
s->i_left -= i_count;
}
else
{
i_count -= s->i_left;
s->cur_bits = (s->cur_bits << s->i_left) | (i_bits >> i_count);
M32( s->p ) = endian_fix( s->cur_bits );
s->p += 4;
s->cur_bits = i_bits;
s->i_left = 32 - i_count;
}
}
}
/* Special case to eliminate branch in normal bs_write. */
/* Golomb never writes an even-size code, so this is only used in slice headers. */
static inline void bs_write32( bs_t *s, uint32_t i_bits )
{
bs_write( s, 16, i_bits >> 16 );
bs_write( s, 16, i_bits );
}
static inline void bs_write1( bs_t *s, uint32_t i_bit )
{
s->cur_bits <<= 1;
s->cur_bits |= i_bit;
s->i_left--;
if( s->i_left == WORD_SIZE*8-32 )
{
M32( s->p ) = endian_fix32( s->cur_bits );
s->p += 4;
s->i_left = WORD_SIZE*8;
}
}
#endif