kgoba-ft8_lib/ft8/encode_v2.cpp

173 wiersze
5.6 KiB
C++

#include "encode_v2.h"
#include "constants.h"
#include <stdio.h>
namespace ft8_v2 {
// Returns 1 if an odd number of bits are set in x, zero otherwise
uint8_t parity8(uint8_t x) {
x ^= x >> 4; // a b c d ae bf cg dh
x ^= x >> 2; // a b ac bd cae dbf aecg bfdh
x ^= x >> 1; // a ab bac acbd bdcae caedbf aecgbfdh
return (x) & 1;
}
// Encode a 91-bit message and return a 174-bit codeword.
// The generator matrix has dimensions (87,87).
// The code is a (174,91) regular ldpc code with column weight 3.
// The code was generated using the PEG algorithm.
// Arguments:
// [IN] message - array of 91 bits stored as 12 bytes (MSB first)
// [OUT] codeword - array of 174 bits stored as 22 bytes (MSB first)
void encode174(const uint8_t *message, uint8_t *codeword) {
// Here we don't generate the generator bit matrix as in WSJT-X implementation
// Instead we access the generator bits straight from the binary representation in kGenerator
// For reference:
// codeword(1:K)=message
// codeword(K+1:N)=pchecks
// printf("Encode ");
// for (int i = 0; i < FT8_K_BYTES; ++i) {
// printf("%02x ", message[i]);
// }
// printf("\n");
// Fill the codeword with message and zeros, as we will only update binary ones later
for (int j = 0; j < (7 + FT8_N) / 8; ++j) {
codeword[j] = (j < FT8_K_BYTES) ? message[j] : 0;
}
uint8_t col_mask = (0x80 >> (FT8_K % 8)); // bitmask of current byte
uint8_t col_idx = FT8_K_BYTES - 1; // index into byte array
// Compute the first part of itmp (1:FT8_M) and store the result in codeword
for (int i = 0; i < FT8_M; ++i) { // do i=1,FT8_M
// Fast implementation of bitwise multiplication and parity checking
// Normally nsum would contain the result of dot product between message and kGenerator[i],
// but we only compute the sum modulo 2.
uint8_t nsum = 0;
for (int j = 0; j < FT8_K_BYTES; ++j) {
uint8_t bits = message[j] & kGenerator[i][j]; // bitwise AND (bitwise multiplication)
nsum ^= parity8(bits); // bitwise XOR (addition modulo 2)
}
// Check if we need to set a bit in codeword
if (nsum % 2) { // pchecks(i)=mod(nsum,2)
codeword[col_idx] |= col_mask;
}
col_mask >>= 1;
if (col_mask == 0) {
col_mask = 0x80;
++col_idx;
}
}
// printf("Result ");
// for (int i = 0; i < (FT8_N + 7) / 8; ++i) {
// printf("%02x ", codeword[i]);
// }
// printf("\n");
}
// Compute 14-bit CRC for a sequence of given number of bits
// [IN] message - byte sequence (MSB first)
// [IN] num_bits - number of bits in the sequence
uint16_t ft8_crc(uint8_t *message, int num_bits) {
// Adapted from https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
constexpr uint16_t TOPBIT = (1 << (CRC_WIDTH - 1));
// printf("CRC, %d bits: ", num_bits);
// for (int i = 0; i < (num_bits + 7) / 8; ++i) {
// printf("%02x ", message[i]);
// }
// printf("\n");
uint16_t remainder = 0;
int idx_byte = 0;
// Perform modulo-2 division, a bit at a time.
for (int idx_bit = 0; idx_bit < num_bits; ++idx_bit) {
if (idx_bit % 8 == 0) {
// Bring the next byte into the remainder.
remainder ^= (message[idx_byte] << (CRC_WIDTH - 8));
++idx_byte;
}
// Try to divide the current data bit.
if (remainder & TOPBIT) {
remainder = (remainder << 1) ^ CRC_POLYNOMIAL;
}
else {
remainder = (remainder << 1);
}
}
// printf("CRC = %04xh\n", remainder & ((1 << CRC_WIDTH) - 1));
return remainder & ((1 << CRC_WIDTH) - 1);
}
// Generate FT8 tone sequence from payload data
// [IN] payload - 10 byte array consisting of 77 bit payload (MSB first)
// [OUT] itone - array of NN (79) bytes to store the generated tones (encoded as 0..7)
void genft8(const uint8_t *payload, uint8_t *itone) {
uint8_t a91[12]; // Store 77 bits of payload + 14 bits CRC
// Copy 77 bits of payload data
for (int i = 0; i < 10; i++)
a91[i] = payload[i];
// Clear 3 bits after the payload to make 80 bits
a91[9] &= 0xF8;
a91[10] = 0;
a91[11] = 0;
// Calculate CRC of 12 bytes = 96 bits, see WSJT-X code
uint16_t checksum = ft8_crc(a91, 96 - 14);
// Store the CRC at the end of 77 bit message
a91[9] |= (uint8_t)(checksum >> 11);
a91[10] = (uint8_t)(checksum >> 3);
a91[11] = (uint8_t)(checksum << 5);
// a87 contains 77 bits of payload + 14 bits of CRC
uint8_t codeword[22];
encode174(a91, codeword);
// Message structure: S7 D29 S7 D29 S7
for (int i = 0; i < 7; ++i) {
itone[i] = kCostas_map[i];
itone[36 + i] = kCostas_map[i];
itone[72 + i] = kCostas_map[i];
}
int k = 7; // Skip over the first set of Costas symbols
uint8_t mask = 0x80;
int i_byte = 0;
for (int j = 0; j < FT8_ND; ++j) { // do j=1,FT8_ND
if (j == 29) {
k += 7; // Skip over the second set of Costas symbols
}
// Extract 3 bits from codeword at i-th position
uint8_t bits3 = 0;
if (codeword[i_byte] & mask) bits3 |= 4;
if (0 == (mask >>= 1)) { mask = 0x80; i_byte++; }
if (codeword[i_byte] & mask) bits3 |= 2;
if (0 == (mask >>= 1)) { mask = 0x80; i_byte++; }
if (codeword[i_byte] & mask) bits3 |= 1;
if (0 == (mask >>= 1)) { mask = 0x80; i_byte++; }
itone[k] = kGray_map[bits3];
++k;
}
}
}; // ft8_v2