kgoba-ft8_lib/gen_ft8.c

205 wiersze
6.7 KiB
C
Czysty Wina Historia

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdbool.h>
#include "common/common.h"
#include "common/wave.h"
#include "common/debug.h"
#include "ft8/pack.h"
#include "ft8/encode.h"
#include "ft8/constants.h"
#define LOG_LEVEL LOG_INFO
#define FT8_SLOT_TIME 15.0f // total length of output waveform in seconds
#define FT8_SYMBOL_RATE 6.25f // tone deviation (and symbol rate) in Hz
#define FT8_SYMBOL_BT 2.0f // symbol smoothing filter bandwidth factor (BT)
#define FT4_SLOT_TIME 7.5f // total length of output waveform in seconds
#define FT4_SYMBOL_RATE 20.833333f // tone deviation (and symbol rate) in Hz
#define FT4_SYMBOL_BT 1.0f // symbol smoothing filter bandwidth factor (BT)
#define GFSK_CONST_K 5.336446f // pi * sqrt(2 / log(2))
/// Computes a GFSK smoothing pulse.
/// The pulse is theoretically infinitely long, however, here it's truncated at 3 times the symbol length.
/// This means the pulse array has to have space for 3*n_spsym elements.
/// @param[in] n_spsym Number of samples per symbol
/// @param[in] b Shape parameter (values defined for FT8/FT4)
/// @param[out] pulse Output array of pulse samples
///
void gfsk_pulse(int n_spsym, float symbol_bt, float *pulse)
{
for (int i = 0; i < 3 * n_spsym; ++i)
{
float t = i / (float)n_spsym - 1.5f;
float arg1 = GFSK_CONST_K * symbol_bt * (t + 0.5f);
float arg2 = GFSK_CONST_K * symbol_bt * (t - 0.5f);
pulse[i] = (erff(arg1) - erff(arg2)) / 2;
}
}
/// Synthesize waveform data using GFSK phase shaping.
/// The output waveform will contain n_sym symbols.
/// @param[in] symbols Array of symbols (tones) (0-7 for FT8)
/// @param[in] n_sym Number of symbols in the symbol array
/// @param[in] f0 Audio frequency in Hertz for the symbol 0 (base frequency)
/// @param[in] symbol_bt Symbol smoothing filter bandwidth (2 for FT8, 1 for FT4)
/// @param[in] symbol_rate Rate of symbols per second, Hertz
/// @param[in] signal_rate Sample rate of synthesized signal, Hertz
/// @param[out] signal Output array of signal waveform samples (should have space for n_sym*n_spsym samples)
///
void synth_gfsk(const uint8_t *symbols, int n_sym, float f0, float symbol_bt, float symbol_rate, int signal_rate, float *signal)
{
int n_spsym = (int)(0.5f + signal_rate / symbol_rate); // Samples per symbol
int n_wave = n_sym * n_spsym; // Number of output samples
float hmod = 1.0f;
LOG(LOG_DEBUG, "n_spsym = %d\n", n_spsym);
// Compute the smoothed frequency waveform.
// Length = (nsym+2)*n_spsym samples, first and last symbols extended
float dphi_peak = 2 * M_PI * hmod / n_spsym;
float dphi[n_wave + 2 * n_spsym];
// Shift frequency up by f0
for (int i = 0; i < n_wave + 2 * n_spsym; ++i)
{
dphi[i] = 2 * M_PI * f0 / signal_rate;
}
float pulse[3 * n_spsym];
gfsk_pulse(n_spsym, symbol_bt, pulse);
for (int i = 0; i < n_sym; ++i)
{
int ib = i * n_spsym;
for (int j = 0; j < 3 * n_spsym; ++j)
{
dphi[j + ib] += dphi_peak * symbols[i] * pulse[j];
}
}
// Add dummy symbols at beginning and end with tone values equal to 1st and last symbol, respectively
for (int j = 0; j < 2 * n_spsym; ++j)
{
dphi[j] += dphi_peak * pulse[j + n_spsym] * symbols[0];
dphi[j + n_sym * n_spsym] += dphi_peak * pulse[j] * symbols[n_sym - 1];
}
// Calculate and insert the audio waveform
float phi = 0;
for (int k = 0; k < n_wave; ++k)
{ // Don't include dummy symbols
signal[k] = sinf(phi);
phi = fmodf(phi + dphi[k + n_spsym], 2 * M_PI);
}
// Apply envelope shaping to the first and last symbols
int n_ramp = n_spsym / 8;
for (int i = 0; i < n_ramp; ++i)
{
float env = (1 - cosf(2 * M_PI * i / (2 * n_ramp))) / 2;
signal[i] *= env;
signal[n_wave - 1 - i] *= env;
}
}
void usage()
{
printf("Generate a 15-second WAV file encoding a given message.\n");
printf("Usage:\n");
printf("\n");
printf("gen_ft8 MESSAGE WAV_FILE [FREQUENCY]\n");
printf("\n");
printf("(Note that you might have to enclose your message in quote marks if it contains spaces)\n");
}
int main(int argc, char **argv)
{
// Expect two command-line arguments
if (argc < 3)
{
usage();
return -1;
}
const char *message = argv[1];
const char *wav_path = argv[2];
float frequency = 1000.0;
if (argc > 3)
{
frequency = atof(argv[3]);
}
bool is_ft4 = (argc > 4) && (0 == strcmp(argv[4], "-ft4"));
// First, pack the text data into binary message
uint8_t packed[FT8_LDPC_K_BYTES];
int rc = pack77(message, packed);
if (rc < 0)
{
printf("Cannot parse message!\n");
printf("RC = %d\n", rc);
return -2;
}
printf("Packed data: ");
for (int j = 0; j < 10; ++j)
{
printf("%02x ", packed[j]);
}
printf("\n");
if (is_ft4)
{
// '[..] for FT4 only, in order to avoid transmitting a long string of zeros when sending CQ messages,
// the assembled 77-bit message is bitwise exclusive-ORed with [a] pseudorandom sequence before computing the CRC and FEC parity bits'
for (int i = 0; i < 10; ++i)
{
packed[i] ^= kFT4_XOR_sequence[i];
}
}
int num_tones = (is_ft4) ? FT4_NN : FT8_NN;
float symbol_rate = (is_ft4) ? FT4_SYMBOL_RATE : FT8_SYMBOL_RATE;
float symbol_bt = (is_ft4) ? FT4_SYMBOL_BT : FT8_SYMBOL_BT;
float slot_time = (is_ft4) ? FT4_SLOT_TIME : FT8_SLOT_TIME;
// Second, encode the binary message as a sequence of FSK tones
uint8_t tones[num_tones]; // Array of 79 tones (symbols)
if (is_ft4)
{
genft4(packed, tones);
}
else
{
genft8(packed, tones);
}
printf("FSK tones: ");
for (int j = 0; j < num_tones; ++j)
{
printf("%d", tones[j]);
}
printf("\n");
// Third, convert the FSK tones into an audio signal
int sample_rate = 12000;
int num_samples = (int)(0.5f + num_tones / symbol_rate * sample_rate); // Number of samples in the data signal
int num_silence = (slot_time * sample_rate - num_samples) / 2; // Silence padding at both ends to make 15 seconds
int num_total_samples = num_silence + num_samples + num_silence; // Number of samples in the padded signal
float signal[num_total_samples];
for (int i = 0; i < num_silence; i++)
{
signal[i] = 0;
signal[i + num_samples + num_silence] = 0;
}
// Synthesize waveform data (signal) and save it as WAV file
synth_gfsk(tones, num_tones, frequency, symbol_bt, symbol_rate, sample_rate, signal + num_silence);
save_wav(signal, num_total_samples, sample_rate, wav_path);
return 0;
}