#include #include #include #include #include #include "ft8/unpack.h" #include "ft8/ldpc.h" #include "ft8/decode.h" #include "ft8/constants.h" #include "ft8/encode.h" #include "ft8/crc.h" #include "common/wave.h" #include "common/debug.h" #include "fft/kiss_fftr.h" #define LOG_LEVEL LOG_INFO const int kMin_score = 20; // Minimum sync score threshold for candidates const int kMax_candidates = 160; const int kLDPC_iterations = 25; const int kMax_decoded_messages = 50; const int kFreq_osr = 2; const int kTime_osr = 2; const float kFSK_dev = 6.25f; // tone deviation in Hz and symbol rate void usage() { fprintf(stderr, "Decode a 15-second WAV file.\n"); } float hann_i(int i, int N) { float x = sinf((float)M_PI * i / (N - 1)); return x * x; } float hamming_i(int i, int N) { const float a0 = (float)25 / 46; const float a1 = 1 - a0; float x1 = cosf(2 * (float)M_PI * i / (N - 1)); return a0 - a1 * x1; } float blackman_i(int i, int N) { const float alpha = 0.16f; // or 2860/18608 const float a0 = (1 - alpha) / 2; const float a1 = 1.0f / 2; const float a2 = alpha / 2; float x1 = cosf(2 * (float)M_PI * i / (N - 1)); //float x2 = cosf(4 * (float)M_PI * i / (N - 1)); float x2 = 2 * x1 * x1 - 1; // Use double angle formula return a0 - a1 * x1 + a2 * x2; } static float max2(float a, float b) { return (a >= b) ? a : b; } // Compute FFT magnitudes (log power) for each timeslot in the signal void extract_power(const float signal[], waterfall_t *power) { const int block_size = 2 * power->num_bins; // Average over 2 bins per FSK tone const int subblock_size = block_size / power->time_osr; const int nfft = block_size * power->freq_osr; // We take FFT of two blocks, advancing by one const float fft_norm = 2.0f / nfft; float window[nfft]; for (int i = 0; i < nfft; ++i) { window[i] = hann_i(i, nfft); // window[i] = (i < block_size) ? hamming_i(i, block_size) : 0; // window[i] = blackman_i(i, nfft); // window[i] = hamming_i(i, nfft); } size_t fft_work_size; kiss_fftr_alloc(nfft, 0, 0, &fft_work_size); LOG(LOG_INFO, "Block size = %d\n", block_size); LOG(LOG_INFO, "Subblock size = %d\n", subblock_size); LOG(LOG_INFO, "N_FFT = %d\n", nfft); LOG(LOG_INFO, "FFT work area = %lu\n", fft_work_size); void *fft_work = malloc(fft_work_size); kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size); int offset = 0; float max_mag = -100.0f; for (int idx_block = 0; idx_block < power->num_blocks; ++idx_block) { // Loop over two possible time offsets (0 and block_size/2) for (int time_sub = 0; time_sub < power->time_osr; ++time_sub) { kiss_fft_scalar timedata[nfft]; kiss_fft_cpx freqdata[nfft / 2 + 1]; float mag_db[nfft / 2 + 1]; // Extract windowed signal block for (int pos = 0; pos < nfft; ++pos) { timedata[pos] = window[pos] * signal[(idx_block * block_size) + (time_sub * subblock_size) + pos]; } kiss_fftr(fft_cfg, timedata, freqdata); // Compute log magnitude in decibels for (int idx_bin = 0; idx_bin < nfft / 2 + 1; ++idx_bin) { float mag2 = (freqdata[idx_bin].i * freqdata[idx_bin].i) + (freqdata[idx_bin].r * freqdata[idx_bin].r); mag_db[idx_bin] = 10.0f * log10f(1E-10f + mag2 * fft_norm * fft_norm); } // Loop over two possible frequency bin offsets (for averaging) for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub) { for (int pos = 0; pos < power->num_bins; ++pos) { float db = mag_db[pos * power->freq_osr + freq_sub]; // Scale decibels to unsigned 8-bit range and clamp the value int scaled = (int)(2 * (db + 120)); power->mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled); ++offset; if (db > max_mag) max_mag = db; } } } } LOG(LOG_INFO, "Max magnitude: %.1f dB\n", max_mag); free(fft_work); } void normalize_signal(float *signal, int num_samples) { float max_amp = 1E-5f; for (int i = 0; i < num_samples; ++i) { float amp = fabsf(signal[i]); if (amp > max_amp) { max_amp = amp; } } for (int i = 0; i < num_samples; ++i) { signal[i] /= max_amp; } } void print_tones(const uint8_t *code_map, const float *log174) { for (int k = 0; k < FT8_N; k += 3) { uint8_t max = 0; if (log174[k + 0] > 0) max |= 4; if (log174[k + 1] > 0) max |= 2; if (log174[k + 2] > 0) max |= 1; LOG(LOG_DEBUG, "%d", code_map[max]); } LOG(LOG_DEBUG, "\n"); } int main(int argc, char **argv) { // Expect one command-line argument if (argc < 2) { usage(); return -1; } const char *wav_path = argv[1]; int sample_rate = 12000; int num_samples = 15 * sample_rate; float signal[num_samples]; int rc = load_wav(signal, &num_samples, &sample_rate, wav_path); if (rc < 0) { return -1; } normalize_signal(signal, num_samples); // Compute DSP parameters that depend on the sample rate const int num_bins = (int)(sample_rate / (2 * kFSK_dev)); const int block_size = 2 * num_bins; const int subblock_size = block_size / kTime_osr; const int nfft = block_size * kFreq_osr; const int num_blocks = (num_samples - nfft + subblock_size) / block_size; LOG(LOG_INFO, "Sample rate %d Hz, %d blocks, %d bins\n", sample_rate, num_blocks, num_bins); // Compute FFT over the whole signal and store it uint8_t mag_power[num_blocks * kFreq_osr * kTime_osr * num_bins]; waterfall_t power = { .num_blocks = num_blocks, .num_bins = num_bins, .time_osr = kTime_osr, .freq_osr = kFreq_osr, .mag = mag_power}; extract_power(signal, &power); // Find top candidates by Costas sync score and localize them in time and frequency candidate_t candidate_list[kMax_candidates]; int num_candidates = find_sync(&power, kMax_candidates, candidate_list, kMin_score); // TODO: sort the candidates by strongest sync first? // Hash table for decoded messages (to check for duplicates) int num_decoded = 0; message_t decoded[kMax_decoded_messages]; message_t *decoded_hashtable[kMax_decoded_messages]; // Initialize hash table pointers for (int i = 0; i < kMax_decoded_messages; ++i) { decoded_hashtable[i] = NULL; } // Go over candidates and attempt to decode messages for (int idx = 0; idx < num_candidates; ++idx) { const candidate_t *cand = &candidate_list[idx]; if (cand->score < kMin_score) continue; float freq_hz = (cand->freq_offset + (float)cand->freq_sub / kFreq_osr) * kFSK_dev; float time_sec = (cand->time_offset + (float)cand->time_sub / kTime_osr) / kFSK_dev; message_t message; decode_status_t status; if (!decode(&power, cand, &message, kLDPC_iterations, &status)) { if (status.ldpc_errors > 0) { LOG(LOG_DEBUG, "LDPC decode: %d errors\n", status.ldpc_errors); } else if (status.crc_calculated != status.crc_extracted) { LOG(LOG_DEBUG, "CRC mismatch!\n"); } else if (status.unpack_status != 0) { LOG(LOG_DEBUG, "Error while unpacking!\n"); } continue; } LOG(LOG_DEBUG, "Checking hash table for %4.1fs / %4.1fHz [%d]...\n", time_sec, freq_hz, cand->score); int hash_idx = message.hash % kMax_decoded_messages; bool found_empty_slot = false; bool found_duplicate = false; do { if (decoded_hashtable[hash_idx] == NULL) { LOG(LOG_DEBUG, "Found an empty slot\n"); found_empty_slot = true; } else if ((decoded_hashtable[hash_idx]->hash == message.hash) && (0 == strcmp(decoded_hashtable[hash_idx]->text, message.text))) { LOG(LOG_DEBUG, "Found a duplicate [%s]\n", message.text); found_duplicate = true; } else { LOG(LOG_DEBUG, "Hash table clash!\n"); // Move on to check the next entry in hash table hash_idx = (hash_idx + 1) % kMax_decoded_messages; } } while (!found_empty_slot && !found_duplicate); if (found_empty_slot) { // Fill the empty hashtable slot memcpy(&decoded[hash_idx], &message, sizeof(message)); decoded_hashtable[hash_idx] = &decoded[hash_idx]; ++num_decoded; // Fake WSJT-X-like output for now int snr = 0; // TODO: compute SNR printf("000000 %3d %4.1f %4d ~ %s\n", cand->score, time_sec, (int)(freq_hz + 0.5f), message.text); } } LOG(LOG_INFO, "Decoded %d messages\n", num_decoded); return 0; }