kopia lustrzana https://github.com/kgoba/ft8_lib
chore(lib): using external repo for kissfft
rodzic
27328fd0fa
commit
be3682c14f
|
@ -0,0 +1,3 @@
|
|||
[submodule "kissfft"]
|
||||
path = kissfft
|
||||
url = git://github.com/mborgerding/kissfft
|
6
Makefile
6
Makefile
|
@ -14,14 +14,14 @@ run_tests: test
|
|||
gen_ft8: gen_ft8.o ft8/constants.o ft8/text.o ft8/pack.o ft8/encode.o ft8/crc.o common/wave.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
||||
|
||||
test: test.o ft8/pack.o ft8/encode.o ft8/crc.o ft8/text.o ft8/constants.o fft/kiss_fftr.o fft/kiss_fft.o
|
||||
test: test.o ft8/pack.o ft8/encode.o ft8/crc.o ft8/text.o ft8/constants.o kissfft/kiss_fftr.o kissfft/kiss_fft.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
||||
|
||||
decode_ft8: decode_ft8.o fft/kiss_fftr.o fft/kiss_fft.o ft8/decode.o ft8/encode.o ft8/crc.o ft8/ldpc.o ft8/unpack.o ft8/text.o ft8/constants.o common/wave.o
|
||||
decode_ft8: decode_ft8.o kissfft/kiss_fftr.o kissfft/kiss_fft.o ft8/decode.o ft8/encode.o ft8/crc.o ft8/ldpc.o ft8/unpack.o ft8/text.o ft8/constants.o common/wave.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
||||
|
||||
clean:
|
||||
rm -f *.o ft8/*.o common/*.o fft/*.o $(TARGETS)
|
||||
rm -f *.o ft8/*.o common/*.o kissfft/*.o $(TARGETS)
|
||||
install:
|
||||
$(AR) rc libft8.a ft8/constants.o ft8/encode.o ft8/pack.o ft8/text.o common/wave.o
|
||||
install libft8.a /usr/lib/libft8.a
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#include "common/common.h"
|
||||
#include "common/wave.h"
|
||||
#include "common/debug.h"
|
||||
#include "fft/kiss_fftr.h"
|
||||
#include "kissfft/kiss_fftr.h"
|
||||
|
||||
#define LOG_LEVEL LOG_INFO
|
||||
|
||||
|
|
|
@ -1,158 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
/* kiss_fft.h
|
||||
defines kiss_fft_scalar as either short or a float type
|
||||
and defines
|
||||
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
|
||||
#include "kiss_fft.h"
|
||||
#include <limits.h>
|
||||
|
||||
#define MAXFACTORS 32
|
||||
/* e.g. an fft of length 128 has 4 factors
|
||||
as far as kissfft is concerned
|
||||
4*4*4*2
|
||||
*/
|
||||
|
||||
struct kiss_fft_state{
|
||||
int nfft;
|
||||
int inverse;
|
||||
int factors[2*MAXFACTORS];
|
||||
kiss_fft_cpx twiddles[1];
|
||||
};
|
||||
|
||||
/*
|
||||
Explanation of macros dealing with complex math:
|
||||
|
||||
C_MUL(m,a,b) : m = a*b
|
||||
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
|
||||
C_SUB( res, a,b) : res = a - b
|
||||
C_SUBFROM( res , a) : res -= a
|
||||
C_ADDTO( res , a) : res += a
|
||||
* */
|
||||
#ifdef FIXED_POINT
|
||||
#if (FIXED_POINT==32)
|
||||
# define FRACBITS 31
|
||||
# define SAMPPROD int64_t
|
||||
#define SAMP_MAX 2147483647
|
||||
#else
|
||||
# define FRACBITS 15
|
||||
# define SAMPPROD int32_t
|
||||
#define SAMP_MAX 32767
|
||||
#endif
|
||||
|
||||
#define SAMP_MIN -SAMP_MAX
|
||||
|
||||
#if defined(CHECK_OVERFLOW)
|
||||
# define CHECK_OVERFLOW_OP(a,op,b) \
|
||||
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
|
||||
fprintf(stderr,"WARNING:overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld\n",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); }
|
||||
#endif
|
||||
|
||||
|
||||
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
|
||||
# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
|
||||
|
||||
# define S_MUL(a,b) sround( smul(a,b) )
|
||||
|
||||
# define C_MUL(m,a,b) \
|
||||
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
|
||||
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
|
||||
|
||||
# define DIVSCALAR(x,k) \
|
||||
(x) = sround( smul( x, SAMP_MAX/k ) )
|
||||
|
||||
# define C_FIXDIV(c,div) \
|
||||
do { DIVSCALAR( (c).r , div); \
|
||||
DIVSCALAR( (c).i , div); }while (0)
|
||||
|
||||
# define C_MULBYSCALAR( c, s ) \
|
||||
do{ (c).r = sround( smul( (c).r , s ) ) ;\
|
||||
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
|
||||
|
||||
#else /* not FIXED_POINT*/
|
||||
|
||||
# define S_MUL(a,b) ( (a)*(b) )
|
||||
#define C_MUL(m,a,b) \
|
||||
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
|
||||
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
|
||||
# define C_FIXDIV(c,div) /* NOOP */
|
||||
# define C_MULBYSCALAR( c, s ) \
|
||||
do{ (c).r *= (s);\
|
||||
(c).i *= (s); }while(0)
|
||||
#endif
|
||||
|
||||
#ifndef CHECK_OVERFLOW_OP
|
||||
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
|
||||
#endif
|
||||
|
||||
#define C_ADD( res, a,b)\
|
||||
do { \
|
||||
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
|
||||
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
|
||||
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
|
||||
}while(0)
|
||||
#define C_SUB( res, a,b)\
|
||||
do { \
|
||||
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
|
||||
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
|
||||
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
|
||||
}while(0)
|
||||
#define C_ADDTO( res , a)\
|
||||
do { \
|
||||
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
|
||||
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
|
||||
(res).r += (a).r; (res).i += (a).i;\
|
||||
}while(0)
|
||||
|
||||
#define C_SUBFROM( res , a)\
|
||||
do {\
|
||||
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
|
||||
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
|
||||
(res).r -= (a).r; (res).i -= (a).i; \
|
||||
}while(0)
|
||||
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
# define KISS_FFT_COS(phase) floor(.5+SAMP_MAX * cos (phase))
|
||||
# define KISS_FFT_SIN(phase) floor(.5+SAMP_MAX * sin (phase))
|
||||
# define HALF_OF(x) ((x)>>1)
|
||||
#elif defined(USE_SIMD)
|
||||
# define KISS_FFT_COS(phase) _mm_set1_ps( cos(phase) )
|
||||
# define KISS_FFT_SIN(phase) _mm_set1_ps( sin(phase) )
|
||||
# define HALF_OF(x) ((x)*_mm_set1_ps(.5))
|
||||
#else
|
||||
# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
|
||||
# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
|
||||
# define HALF_OF(x) ((x)*.5)
|
||||
#endif
|
||||
|
||||
#define kf_cexp(x,phase) \
|
||||
do{ \
|
||||
(x)->r = KISS_FFT_COS(phase);\
|
||||
(x)->i = KISS_FFT_SIN(phase);\
|
||||
}while(0)
|
||||
|
||||
|
||||
/* a debugging function */
|
||||
#define pcpx(c)\
|
||||
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )
|
||||
|
||||
|
||||
#ifdef KISS_FFT_USE_ALLOCA
|
||||
// define this to allow use of alloca instead of malloc for temporary buffers
|
||||
// Temporary buffers are used in two case:
|
||||
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
|
||||
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
|
||||
#include <alloca.h>
|
||||
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
|
||||
#define KISS_FFT_TMP_FREE(ptr)
|
||||
#else
|
||||
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
|
||||
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
|
||||
#endif
|
402
fft/kiss_fft.c
402
fft/kiss_fft.c
|
@ -1,402 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
|
||||
#include "_kiss_fft_guts.h"
|
||||
/* The guts header contains all the multiplication and addition macros that are defined for
|
||||
fixed or floating point complex numbers. It also delares the kf_ internal functions.
|
||||
*/
|
||||
|
||||
static void kf_bfly2(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
int m
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx * Fout2;
|
||||
kiss_fft_cpx * tw1 = st->twiddles;
|
||||
kiss_fft_cpx t;
|
||||
Fout2 = Fout + m;
|
||||
do{
|
||||
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
|
||||
|
||||
C_MUL (t, *Fout2 , *tw1);
|
||||
tw1 += fstride;
|
||||
C_SUB( *Fout2 , *Fout , t );
|
||||
C_ADDTO( *Fout , t );
|
||||
++Fout2;
|
||||
++Fout;
|
||||
}while (--m);
|
||||
}
|
||||
|
||||
static void kf_bfly4(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
const size_t m
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx *tw1,*tw2,*tw3;
|
||||
kiss_fft_cpx scratch[6];
|
||||
size_t k=m;
|
||||
const size_t m2=2*m;
|
||||
const size_t m3=3*m;
|
||||
|
||||
|
||||
tw3 = tw2 = tw1 = st->twiddles;
|
||||
|
||||
do {
|
||||
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
|
||||
|
||||
C_MUL(scratch[0],Fout[m] , *tw1 );
|
||||
C_MUL(scratch[1],Fout[m2] , *tw2 );
|
||||
C_MUL(scratch[2],Fout[m3] , *tw3 );
|
||||
|
||||
C_SUB( scratch[5] , *Fout, scratch[1] );
|
||||
C_ADDTO(*Fout, scratch[1]);
|
||||
C_ADD( scratch[3] , scratch[0] , scratch[2] );
|
||||
C_SUB( scratch[4] , scratch[0] , scratch[2] );
|
||||
C_SUB( Fout[m2], *Fout, scratch[3] );
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
tw3 += fstride*3;
|
||||
C_ADDTO( *Fout , scratch[3] );
|
||||
|
||||
if(st->inverse) {
|
||||
Fout[m].r = scratch[5].r - scratch[4].i;
|
||||
Fout[m].i = scratch[5].i + scratch[4].r;
|
||||
Fout[m3].r = scratch[5].r + scratch[4].i;
|
||||
Fout[m3].i = scratch[5].i - scratch[4].r;
|
||||
}else{
|
||||
Fout[m].r = scratch[5].r + scratch[4].i;
|
||||
Fout[m].i = scratch[5].i - scratch[4].r;
|
||||
Fout[m3].r = scratch[5].r - scratch[4].i;
|
||||
Fout[m3].i = scratch[5].i + scratch[4].r;
|
||||
}
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
static void kf_bfly3(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
size_t m
|
||||
)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
kiss_fft_cpx *tw1,*tw2;
|
||||
kiss_fft_cpx scratch[5];
|
||||
kiss_fft_cpx epi3;
|
||||
epi3 = st->twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=st->twiddles;
|
||||
|
||||
do{
|
||||
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
|
||||
|
||||
C_MUL(scratch[1],Fout[m] , *tw1);
|
||||
C_MUL(scratch[2],Fout[m2] , *tw2);
|
||||
|
||||
C_ADD(scratch[3],scratch[1],scratch[2]);
|
||||
C_SUB(scratch[0],scratch[1],scratch[2]);
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
|
||||
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
|
||||
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
|
||||
|
||||
C_MULBYSCALAR( scratch[0] , epi3.i );
|
||||
|
||||
C_ADDTO(*Fout,scratch[3]);
|
||||
|
||||
Fout[m2].r = Fout[m].r + scratch[0].i;
|
||||
Fout[m2].i = Fout[m].i - scratch[0].r;
|
||||
|
||||
Fout[m].r -= scratch[0].i;
|
||||
Fout[m].i += scratch[0].r;
|
||||
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
static void kf_bfly5(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
int m
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
int u;
|
||||
kiss_fft_cpx scratch[13];
|
||||
kiss_fft_cpx * twiddles = st->twiddles;
|
||||
kiss_fft_cpx *tw;
|
||||
kiss_fft_cpx ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=st->twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
|
||||
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
|
||||
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
|
||||
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
|
||||
|
||||
C_ADD( scratch[7],scratch[1],scratch[4]);
|
||||
C_SUB( scratch[10],scratch[1],scratch[4]);
|
||||
C_ADD( scratch[8],scratch[2],scratch[3]);
|
||||
C_SUB( scratch[9],scratch[2],scratch[3]);
|
||||
|
||||
Fout0->r += scratch[7].r + scratch[8].r;
|
||||
Fout0->i += scratch[7].i + scratch[8].i;
|
||||
|
||||
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
|
||||
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
|
||||
|
||||
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
|
||||
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
|
||||
|
||||
C_SUB(*Fout1,scratch[5],scratch[6]);
|
||||
C_ADD(*Fout4,scratch[5],scratch[6]);
|
||||
|
||||
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
|
||||
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
|
||||
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
|
||||
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
|
||||
|
||||
C_ADD(*Fout2,scratch[11],scratch[12]);
|
||||
C_SUB(*Fout3,scratch[11],scratch[12]);
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
static void kf_bfly_generic(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
kiss_fft_cpx * twiddles = st->twiddles;
|
||||
kiss_fft_cpx t;
|
||||
int Norig = st->nfft;
|
||||
|
||||
kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratch[q1] = Fout[ k ];
|
||||
C_FIXDIV(scratch[q1],p);
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratch[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
C_MUL(t,scratch[q] , twiddles[twidx] );
|
||||
C_ADDTO( Fout[ k ] ,t);
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
KISS_FFT_TMP_FREE(scratch);
|
||||
}
|
||||
|
||||
static
|
||||
void kf_work(
|
||||
kiss_fft_cpx * Fout,
|
||||
const kiss_fft_cpx * f,
|
||||
const size_t fstride,
|
||||
int in_stride,
|
||||
int * factors,
|
||||
const kiss_fft_cfg st
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx * Fout_beg=Fout;
|
||||
const int p=*factors++; /* the radix */
|
||||
const int m=*factors++; /* stage's fft length/p */
|
||||
const kiss_fft_cpx * Fout_end = Fout + p*m;
|
||||
|
||||
#ifdef _OPENMP
|
||||
// use openmp extensions at the
|
||||
// top-level (not recursive)
|
||||
if (fstride==1 && p<=5)
|
||||
{
|
||||
int k;
|
||||
|
||||
// execute the p different work units in different threads
|
||||
# pragma omp parallel for
|
||||
for (k=0;k<p;++k)
|
||||
kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
|
||||
// all threads have joined by this point
|
||||
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(Fout,fstride,st,m); break;
|
||||
case 3: kf_bfly3(Fout,fstride,st,m); break;
|
||||
case 4: kf_bfly4(Fout,fstride,st,m); break;
|
||||
case 5: kf_bfly5(Fout,fstride,st,m); break;
|
||||
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (m==1) {
|
||||
do{
|
||||
*Fout = *f;
|
||||
f += fstride*in_stride;
|
||||
}while(++Fout != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
kf_work( Fout , f, fstride*p, in_stride, factors,st);
|
||||
f += fstride*in_stride;
|
||||
}while( (Fout += m) != Fout_end );
|
||||
}
|
||||
|
||||
Fout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(Fout,fstride,st,m); break;
|
||||
case 3: kf_bfly3(Fout,fstride,st,m); break;
|
||||
case 4: kf_bfly4(Fout,fstride,st,m); break;
|
||||
case 5: kf_bfly5(Fout,fstride,st,m); break;
|
||||
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
/* facbuf is populated by p1,m1,p2,m2, ...
|
||||
where
|
||||
p[i] * m[i] = m[i-1]
|
||||
m0 = n */
|
||||
static
|
||||
void kf_factor(int n,int * facbuf)
|
||||
{
|
||||
int p=4;
|
||||
double floor_sqrt;
|
||||
floor_sqrt = floor( sqrt((double)n) );
|
||||
|
||||
/*factor out powers of 4, powers of 2, then any remaining primes */
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p > floor_sqrt)
|
||||
p = n; /* no more factors, skip to end */
|
||||
}
|
||||
n /= p;
|
||||
*facbuf++ = p;
|
||||
*facbuf++ = n;
|
||||
} while (n > 1);
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* User-callable function to allocate all necessary storage space for the fft.
|
||||
*
|
||||
* The return value is a contiguous block of memory, allocated with malloc. As such,
|
||||
* It can be freed with free(), rather than a kiss_fft-specific function.
|
||||
* */
|
||||
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
|
||||
{
|
||||
kiss_fft_cfg st=NULL;
|
||||
size_t memneeded = sizeof(struct kiss_fft_state)
|
||||
+ sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/
|
||||
|
||||
if ( lenmem==NULL ) {
|
||||
st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
|
||||
}else{
|
||||
if (mem != NULL && *lenmem >= memneeded)
|
||||
st = (kiss_fft_cfg)mem;
|
||||
*lenmem = memneeded;
|
||||
}
|
||||
if (st) {
|
||||
int i;
|
||||
st->nfft=nfft;
|
||||
st->inverse = inverse_fft;
|
||||
|
||||
for (i=0;i<nfft;++i) {
|
||||
const double pi=3.141592653589793238462643383279502884197169399375105820974944;
|
||||
double phase = -2*pi*i / nfft;
|
||||
if (st->inverse)
|
||||
phase *= -1;
|
||||
kf_cexp(st->twiddles+i, phase );
|
||||
}
|
||||
|
||||
kf_factor(nfft,st->factors);
|
||||
}
|
||||
return st;
|
||||
}
|
||||
|
||||
|
||||
void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
|
||||
{
|
||||
if (fin == fout) {
|
||||
//NOTE: this is not really an in-place FFT algorithm.
|
||||
//It just performs an out-of-place FFT into a temp buffer
|
||||
kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
|
||||
kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
|
||||
memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
|
||||
KISS_FFT_TMP_FREE(tmpbuf);
|
||||
}else{
|
||||
kf_work( fout, fin, 1,in_stride, st->factors,st );
|
||||
}
|
||||
}
|
||||
|
||||
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
|
||||
{
|
||||
kiss_fft_stride(cfg,fin,fout,1);
|
||||
}
|
||||
|
||||
|
||||
void kiss_fft_cleanup(void)
|
||||
{
|
||||
// nothing needed any more
|
||||
}
|
||||
|
||||
int kiss_fft_next_fast_size(int n)
|
||||
{
|
||||
while(1) {
|
||||
int m=n;
|
||||
while ( (m%2) == 0 ) m/=2;
|
||||
while ( (m%3) == 0 ) m/=3;
|
||||
while ( (m%5) == 0 ) m/=5;
|
||||
if (m<=1)
|
||||
break; /* n is completely factorable by twos, threes, and fives */
|
||||
n++;
|
||||
}
|
||||
return n;
|
||||
}
|
132
fft/kiss_fft.h
132
fft/kiss_fft.h
|
@ -1,132 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
#ifndef KISS_FFT_H
|
||||
#define KISS_FFT_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
ATTENTION!
|
||||
If you would like a :
|
||||
-- a utility that will handle the caching of fft objects
|
||||
-- real-only (no imaginary time component ) FFT
|
||||
-- a multi-dimensional FFT
|
||||
-- a command-line utility to perform ffts
|
||||
-- a command-line utility to perform fast-convolution filtering
|
||||
|
||||
Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c
|
||||
in the tools/ directory.
|
||||
*/
|
||||
|
||||
#ifdef USE_SIMD
|
||||
# include <xmmintrin.h>
|
||||
# define kiss_fft_scalar __m128
|
||||
#define KISS_FFT_MALLOC(nbytes) _mm_malloc(nbytes,16)
|
||||
#define KISS_FFT_FREE _mm_free
|
||||
#else
|
||||
#define KISS_FFT_MALLOC malloc
|
||||
#define KISS_FFT_FREE free
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
#include <sys/types.h>
|
||||
# if (FIXED_POINT == 32)
|
||||
# define kiss_fft_scalar int32_t
|
||||
# else
|
||||
# define kiss_fft_scalar int16_t
|
||||
# endif
|
||||
#else
|
||||
# ifndef kiss_fft_scalar
|
||||
/* default is float */
|
||||
# define kiss_fft_scalar float
|
||||
# endif
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
kiss_fft_scalar r;
|
||||
kiss_fft_scalar i;
|
||||
}kiss_fft_cpx;
|
||||
|
||||
typedef struct kiss_fft_state* kiss_fft_cfg;
|
||||
|
||||
/*
|
||||
* kiss_fft_alloc
|
||||
*
|
||||
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
|
||||
*
|
||||
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL);
|
||||
*
|
||||
* The return value from fft_alloc is a cfg buffer used internally
|
||||
* by the fft routine or NULL.
|
||||
*
|
||||
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc.
|
||||
* The returned value should be free()d when done to avoid memory leaks.
|
||||
*
|
||||
* The state can be placed in a user supplied buffer 'mem':
|
||||
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
|
||||
* then the function places the cfg in mem and the size used in *lenmem
|
||||
* and returns mem.
|
||||
*
|
||||
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
|
||||
* then the function returns NULL and places the minimum cfg
|
||||
* buffer size in *lenmem.
|
||||
* */
|
||||
|
||||
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem);
|
||||
|
||||
/*
|
||||
* kiss_fft(cfg,in_out_buf)
|
||||
*
|
||||
* Perform an FFT on a complex input buffer.
|
||||
* for a forward FFT,
|
||||
* fin should be f[0] , f[1] , ... ,f[nfft-1]
|
||||
* fout will be F[0] , F[1] , ... ,F[nfft-1]
|
||||
* Note that each element is complex and can be accessed like
|
||||
f[k].r and f[k].i
|
||||
* */
|
||||
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout);
|
||||
|
||||
/*
|
||||
A more generic version of the above function. It reads its input from every Nth sample.
|
||||
* */
|
||||
void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride);
|
||||
|
||||
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
|
||||
buffer and can be simply free()d when no longer needed*/
|
||||
#define kiss_fft_free KISS_FFT_FREE
|
||||
|
||||
/*
|
||||
Cleans up some memory that gets managed internally. Not necessary to call, but it might clean up
|
||||
your compiler output to call this before you exit.
|
||||
*/
|
||||
void kiss_fft_cleanup(void);
|
||||
|
||||
|
||||
/*
|
||||
* Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5)
|
||||
*/
|
||||
int kiss_fft_next_fast_size(int n);
|
||||
|
||||
/* for real ffts, we need an even size */
|
||||
#define kiss_fftr_next_fast_size_real(n) \
|
||||
(kiss_fft_next_fast_size( ((n)+1)>>1)<<1)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
153
fft/kiss_fftr.c
153
fft/kiss_fftr.c
|
@ -1,153 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
#include "kiss_fftr.h"
|
||||
#include "_kiss_fft_guts.h"
|
||||
|
||||
struct kiss_fftr_state{
|
||||
kiss_fft_cfg substate;
|
||||
kiss_fft_cpx * tmpbuf;
|
||||
kiss_fft_cpx * super_twiddles;
|
||||
#ifdef USE_SIMD
|
||||
void * pad;
|
||||
#endif
|
||||
};
|
||||
|
||||
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
|
||||
{
|
||||
int i;
|
||||
kiss_fftr_cfg st = NULL;
|
||||
size_t subsize = 0, memneeded;
|
||||
|
||||
if (nfft & 1) {
|
||||
fprintf(stderr,"Real FFT optimization must be even.\n");
|
||||
return NULL;
|
||||
}
|
||||
nfft >>= 1;
|
||||
|
||||
kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
|
||||
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
|
||||
|
||||
if (lenmem == NULL) {
|
||||
st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
|
||||
} else {
|
||||
if (*lenmem >= memneeded)
|
||||
st = (kiss_fftr_cfg) mem;
|
||||
*lenmem = memneeded;
|
||||
}
|
||||
if (!st)
|
||||
return NULL;
|
||||
|
||||
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
|
||||
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
|
||||
st->super_twiddles = st->tmpbuf + nfft;
|
||||
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
|
||||
|
||||
for (i = 0; i < nfft/2; ++i) {
|
||||
double phase =
|
||||
-3.14159265358979323846264338327 * ((double) (i+1) / nfft + .5);
|
||||
if (inverse_fft)
|
||||
phase *= -1;
|
||||
kf_cexp (st->super_twiddles+i,phase);
|
||||
}
|
||||
return st;
|
||||
}
|
||||
|
||||
void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
|
||||
{
|
||||
/* input buffer timedata is stored row-wise */
|
||||
int k,ncfft;
|
||||
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
|
||||
|
||||
if ( st->substate->inverse) {
|
||||
fprintf(stderr,"kiss fft usage error: improper alloc\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
ncfft = st->substate->nfft;
|
||||
|
||||
/*perform the parallel fft of two real signals packed in real,imag*/
|
||||
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
|
||||
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
|
||||
* contains the sum of the even-numbered elements of the input time sequence
|
||||
* The imag part is the sum of the odd-numbered elements
|
||||
*
|
||||
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
|
||||
* yielding DC of input time sequence
|
||||
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
|
||||
* yielding Nyquist bin of input time sequence
|
||||
*/
|
||||
|
||||
tdc.r = st->tmpbuf[0].r;
|
||||
tdc.i = st->tmpbuf[0].i;
|
||||
C_FIXDIV(tdc,2);
|
||||
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
|
||||
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
|
||||
freqdata[0].r = tdc.r + tdc.i;
|
||||
freqdata[ncfft].r = tdc.r - tdc.i;
|
||||
#ifdef USE_SIMD
|
||||
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
|
||||
#else
|
||||
freqdata[ncfft].i = freqdata[0].i = 0;
|
||||
#endif
|
||||
|
||||
for ( k=1;k <= ncfft/2 ; ++k ) {
|
||||
fpk = st->tmpbuf[k];
|
||||
fpnk.r = st->tmpbuf[ncfft-k].r;
|
||||
fpnk.i = - st->tmpbuf[ncfft-k].i;
|
||||
C_FIXDIV(fpk,2);
|
||||
C_FIXDIV(fpnk,2);
|
||||
|
||||
C_ADD( f1k, fpk , fpnk );
|
||||
C_SUB( f2k, fpk , fpnk );
|
||||
C_MUL( tw , f2k , st->super_twiddles[k-1]);
|
||||
|
||||
freqdata[k].r = HALF_OF(f1k.r + tw.r);
|
||||
freqdata[k].i = HALF_OF(f1k.i + tw.i);
|
||||
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
|
||||
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
|
||||
}
|
||||
}
|
||||
|
||||
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata)
|
||||
{
|
||||
/* input buffer timedata is stored row-wise */
|
||||
int k, ncfft;
|
||||
|
||||
if (st->substate->inverse == 0) {
|
||||
fprintf (stderr, "kiss fft usage error: improper alloc\n");
|
||||
exit (1);
|
||||
}
|
||||
|
||||
ncfft = st->substate->nfft;
|
||||
|
||||
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
|
||||
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
|
||||
C_FIXDIV(st->tmpbuf[0],2);
|
||||
|
||||
for (k = 1; k <= ncfft / 2; ++k) {
|
||||
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
|
||||
fk = freqdata[k];
|
||||
fnkc.r = freqdata[ncfft - k].r;
|
||||
fnkc.i = -freqdata[ncfft - k].i;
|
||||
C_FIXDIV( fk , 2 );
|
||||
C_FIXDIV( fnkc , 2 );
|
||||
|
||||
C_ADD (fek, fk, fnkc);
|
||||
C_SUB (tmp, fk, fnkc);
|
||||
C_MUL (fok, tmp, st->super_twiddles[k-1]);
|
||||
C_ADD (st->tmpbuf[k], fek, fok);
|
||||
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
|
||||
#ifdef USE_SIMD
|
||||
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
|
||||
#else
|
||||
st->tmpbuf[ncfft - k].i *= -1;
|
||||
#endif
|
||||
}
|
||||
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
|
||||
}
|
|
@ -1,54 +0,0 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
#ifndef KISS_FTR_H
|
||||
#define KISS_FTR_H
|
||||
|
||||
#include "kiss_fft.h"
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Real optimized version can save about 45% cpu time vs. complex fft of a real seq.
|
||||
|
||||
|
||||
|
||||
*/
|
||||
|
||||
typedef struct kiss_fftr_state *kiss_fftr_cfg;
|
||||
|
||||
|
||||
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem, size_t * lenmem);
|
||||
/*
|
||||
nfft must be even
|
||||
|
||||
If you don't care to allocate space, use mem = lenmem = NULL
|
||||
*/
|
||||
|
||||
|
||||
void kiss_fftr(kiss_fftr_cfg cfg,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata);
|
||||
/*
|
||||
input timedata has nfft scalar points
|
||||
output freqdata has nfft/2+1 complex points
|
||||
*/
|
||||
|
||||
void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata);
|
||||
/*
|
||||
input freqdata has nfft/2+1 complex points
|
||||
output timedata has nfft scalar points
|
||||
*/
|
||||
|
||||
#define kiss_fftr_free KISS_FFT_FREE
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1 @@
|
|||
Subproject commit 8f47a67f595a6641c566087bf5277034be64f24d
|
2
test.c
2
test.c
|
@ -9,7 +9,7 @@
|
|||
#include "ft8/encode.h"
|
||||
#include "ft8/constants.h"
|
||||
|
||||
#include "fft/kiss_fftr.h"
|
||||
#include "kissfft/kiss_fftr.h"
|
||||
#include "common/common.h"
|
||||
#include "common/debug.h"
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue