kopia lustrzana https://github.com/kgoba/ft8_lib
Working towards decoding, added FFT routines and a LDPC decoder
rodzic
0de42ee1bb
commit
b8fc6e92d8
11
Makefile
11
Makefile
|
@ -1,13 +1,18 @@
|
|||
CXXFLAGS = -std=c++14 -I.
|
||||
LDFLAGS = -lm
|
||||
|
||||
gen_ft8: gen_ft8.o ft8/encode.o ft8/pack.o ft8/text.o ft8/pack_v2.o ft8/encode_v2.o common/wave.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
||||
.PHONY: run_tests all
|
||||
|
||||
.PHONY: run_tests
|
||||
all: gen_ft8 wav_decode test
|
||||
|
||||
run_tests: test
|
||||
@./test
|
||||
|
||||
gen_ft8: gen_ft8.o ft8/encode.o ft8/pack.o ft8/text.o ft8/pack_v2.o ft8/encode_v2.o common/wave.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
||||
|
||||
test: test.o ft8/encode.o ft8/pack.o ft8/text.o ft8/pack_v2.o ft8/encode_v2.o ft8/unpack.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
||||
|
||||
decode_ft8: decode_ft8.o fft/kiss_fftr.o fft/kiss_fft.o ft8/ldpc.o common/wave.o
|
||||
$(CXX) $(LDFLAGS) -o $@ $^
|
|
@ -25,10 +25,10 @@ I am working on the revised FT8 protocol with 77-bit payload (introduced since W
|
|||
|
||||
# What doesn't
|
||||
|
||||
* Encoding contest mode message
|
||||
* Encoding contest mode messages
|
||||
* Encoding extended range signal reports (<-30dB or >=0dB S/N)
|
||||
* Encoding compound callsigns with country prefixes and mode suffixes
|
||||
* Decoding
|
||||
* Decoding (working on it)
|
||||
|
||||
# What to do with it
|
||||
|
||||
|
@ -40,5 +40,7 @@ Thanks to Robert Morris, AB1HL, whose Python code (https://github.com/rtmrtmrtmr
|
|||
|
||||
This would not of course be possible without the original WSJT-X code, which is mostly written in Fortran (http://physics.princeton.edu/pulsar/K1JT/wsjtx.html). I believe that is the only 'documentation' of the FT8 protocol available, and the source code was used as such in this project.
|
||||
|
||||
Thanks to Mark Borgerding for his FFT implementation (https://github.com/mborgerding/kissfft). I have included a portion of his code.
|
||||
|
||||
Karlis Goba,
|
||||
YL3JG
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
|
||||
// Save signal in floating point format (-1 .. +1) as a WAVE file using 16-bit signed integers.
|
||||
void save_wav(const float *signal, int num_samples, int sample_rate, const char *path) {
|
||||
FILE *f = fopen(path, "wb");
|
||||
char subChunk1ID[4] = {'f', 'm', 't', ' '};
|
||||
uint32_t subChunk1Size = 16; // 16 for PCM
|
||||
uint16_t audioFormat = 1; // PCM = 1
|
||||
|
@ -34,6 +33,8 @@ void save_wav(const float *signal, int num_samples, int sample_rate, const char
|
|||
raw_data[i] = int(0.5 + (x * 32767.0));
|
||||
}
|
||||
|
||||
FILE *f = fopen(path, "wb");
|
||||
|
||||
// NOTE: works only on little-endian architecture
|
||||
fwrite(chunkID, sizeof(chunkID), 1, f);
|
||||
fwrite(&chunkSize, sizeof(chunkSize), 1, f);
|
||||
|
@ -57,3 +58,64 @@ void save_wav(const float *signal, int num_samples, int sample_rate, const char
|
|||
|
||||
free(raw_data);
|
||||
}
|
||||
|
||||
|
||||
// Load signal in floating point format (-1 .. +1) as a WAVE file using 16-bit signed integers.
|
||||
int load_wav(float *signal, int &num_samples, int &sample_rate, const char *path) {
|
||||
char subChunk1ID[4]; // = {'f', 'm', 't', ' '};
|
||||
uint32_t subChunk1Size; // = 16; // 16 for PCM
|
||||
uint16_t audioFormat; // = 1; // PCM = 1
|
||||
uint16_t numChannels; // = 1;
|
||||
uint16_t bitsPerSample; // = 16;
|
||||
uint32_t sampleRate;
|
||||
uint16_t blockAlign; // = numChannels * bitsPerSample / 8;
|
||||
uint32_t byteRate; // = sampleRate * blockAlign;
|
||||
|
||||
char subChunk2ID[4]; // = {'d', 'a', 't', 'a'};
|
||||
uint32_t subChunk2Size; // = num_samples * blockAlign;
|
||||
|
||||
char chunkID[4]; // = {'R', 'I', 'F', 'F'};
|
||||
uint32_t chunkSize; // = 4 + (8 + subChunk1Size) + (8 + subChunk2Size);
|
||||
char format[4]; // = {'W', 'A', 'V', 'E'};
|
||||
|
||||
FILE *f = fopen(path, "rb");
|
||||
|
||||
// NOTE: works only on little-endian architecture
|
||||
fread((void *)chunkID, sizeof(chunkID), 1, f);
|
||||
fread((void *)&chunkSize, sizeof(chunkSize), 1, f);
|
||||
fread((void *)format, sizeof(format), 1, f);
|
||||
|
||||
fread((void *)subChunk1ID, sizeof(subChunk1ID), 1, f);
|
||||
fread((void *)&subChunk1Size, sizeof(subChunk1Size), 1, f);
|
||||
if (subChunk1Size != 16) return -1;
|
||||
|
||||
fread((void *)&audioFormat, sizeof(audioFormat), 1, f);
|
||||
fread((void *)&numChannels, sizeof(numChannels), 1, f);
|
||||
fread((void *)&sampleRate, sizeof(sampleRate), 1, f);
|
||||
fread((void *)&byteRate, sizeof(byteRate), 1, f);
|
||||
fread((void *)&blockAlign, sizeof(blockAlign), 1, f);
|
||||
fread((void *)&bitsPerSample, sizeof(bitsPerSample), 1, f);
|
||||
|
||||
if (audioFormat != 1 || numChannels != 1 || bitsPerSample != 16) return -1;
|
||||
|
||||
fread((void *)subChunk2ID, sizeof(subChunk2ID), 1, f);
|
||||
fread((void *)&subChunk2Size, sizeof(subChunk2Size), 1, f);
|
||||
|
||||
if (subChunk2Size / blockAlign > num_samples) return -2;
|
||||
|
||||
num_samples = subChunk2Size / blockAlign;
|
||||
sample_rate = sampleRate;
|
||||
|
||||
int16_t *raw_data = (int16_t *)malloc(num_samples * blockAlign);
|
||||
|
||||
fread((void *)raw_data, blockAlign, num_samples, f);
|
||||
for (int i = 0; i < num_samples; i++) {
|
||||
signal[i] = raw_data[i] / 32768.0f;
|
||||
}
|
||||
|
||||
free(raw_data);
|
||||
|
||||
fclose(f);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -6,4 +6,4 @@ void save_wav(const float *signal, int num_samples, int sample_rate, const char
|
|||
|
||||
|
||||
// Load signal in floating point format (-1 .. +1) as a WAVE file using 16-bit signed integers.
|
||||
void load_wav(float *signal, int &num_samples, int &sample_rate, const char *path);
|
||||
int load_wav(float *signal, int &num_samples, int &sample_rate, const char *path);
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <cmath>
|
||||
|
||||
#include "common/wave.h"
|
||||
#include "ft8/pack.h"
|
||||
#include "ft8/encode.h"
|
||||
#include "ft8/pack_v2.h"
|
||||
#include "ft8/encode_v2.h"
|
||||
|
||||
#include "ft8/ldpc.h"
|
||||
#include "fft/kiss_fftr.h"
|
||||
|
||||
|
||||
void usage() {
|
||||
printf("Decode a 15-second WAV file.\n");
|
||||
}
|
||||
|
||||
|
||||
float hann_i(int i, int N) {
|
||||
float x = sinf((float)M_PI * i / (N - 1));
|
||||
return x*x;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Expect one command-line argument
|
||||
if (argc < 2) {
|
||||
usage();
|
||||
return -1;
|
||||
}
|
||||
|
||||
const char *wav_path = argv[1];
|
||||
|
||||
int sample_rate = 12000;
|
||||
int num_samples = 15 * sample_rate;
|
||||
float signal[num_samples];
|
||||
|
||||
int rc = load_wav(signal, num_samples, sample_rate, wav_path);
|
||||
if (rc < 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
//return 0;
|
||||
|
||||
const int nfft = 2 * (int)(sample_rate / 6.25); // 2 bins per FSK tone
|
||||
|
||||
size_t fft_work_size;
|
||||
kiss_fftr_alloc(nfft, 0, 0, &fft_work_size);
|
||||
|
||||
printf("N_FFT = %d\n", nfft);
|
||||
printf("FFT work area = %lu\n", fft_work_size);
|
||||
|
||||
void *fft_work = malloc(fft_work_size);
|
||||
kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size);
|
||||
|
||||
kiss_fft_scalar timedata[nfft];
|
||||
kiss_fft_cpx freqdata[nfft/2 + 1];
|
||||
kiss_fftr(fft_cfg, timedata, freqdata);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,158 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
/* kiss_fft.h
|
||||
defines kiss_fft_scalar as either short or a float type
|
||||
and defines
|
||||
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
|
||||
#include "kiss_fft.h"
|
||||
#include <limits.h>
|
||||
|
||||
#define MAXFACTORS 32
|
||||
/* e.g. an fft of length 128 has 4 factors
|
||||
as far as kissfft is concerned
|
||||
4*4*4*2
|
||||
*/
|
||||
|
||||
struct kiss_fft_state{
|
||||
int nfft;
|
||||
int inverse;
|
||||
int factors[2*MAXFACTORS];
|
||||
kiss_fft_cpx twiddles[1];
|
||||
};
|
||||
|
||||
/*
|
||||
Explanation of macros dealing with complex math:
|
||||
|
||||
C_MUL(m,a,b) : m = a*b
|
||||
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
|
||||
C_SUB( res, a,b) : res = a - b
|
||||
C_SUBFROM( res , a) : res -= a
|
||||
C_ADDTO( res , a) : res += a
|
||||
* */
|
||||
#ifdef FIXED_POINT
|
||||
#if (FIXED_POINT==32)
|
||||
# define FRACBITS 31
|
||||
# define SAMPPROD int64_t
|
||||
#define SAMP_MAX 2147483647
|
||||
#else
|
||||
# define FRACBITS 15
|
||||
# define SAMPPROD int32_t
|
||||
#define SAMP_MAX 32767
|
||||
#endif
|
||||
|
||||
#define SAMP_MIN -SAMP_MAX
|
||||
|
||||
#if defined(CHECK_OVERFLOW)
|
||||
# define CHECK_OVERFLOW_OP(a,op,b) \
|
||||
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
|
||||
fprintf(stderr,"WARNING:overflow @ " __FILE__ "(%d): (%d " #op" %d) = %ld\n",__LINE__,(a),(b),(SAMPPROD)(a) op (SAMPPROD)(b) ); }
|
||||
#endif
|
||||
|
||||
|
||||
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
|
||||
# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
|
||||
|
||||
# define S_MUL(a,b) sround( smul(a,b) )
|
||||
|
||||
# define C_MUL(m,a,b) \
|
||||
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
|
||||
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
|
||||
|
||||
# define DIVSCALAR(x,k) \
|
||||
(x) = sround( smul( x, SAMP_MAX/k ) )
|
||||
|
||||
# define C_FIXDIV(c,div) \
|
||||
do { DIVSCALAR( (c).r , div); \
|
||||
DIVSCALAR( (c).i , div); }while (0)
|
||||
|
||||
# define C_MULBYSCALAR( c, s ) \
|
||||
do{ (c).r = sround( smul( (c).r , s ) ) ;\
|
||||
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
|
||||
|
||||
#else /* not FIXED_POINT*/
|
||||
|
||||
# define S_MUL(a,b) ( (a)*(b) )
|
||||
#define C_MUL(m,a,b) \
|
||||
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
|
||||
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
|
||||
# define C_FIXDIV(c,div) /* NOOP */
|
||||
# define C_MULBYSCALAR( c, s ) \
|
||||
do{ (c).r *= (s);\
|
||||
(c).i *= (s); }while(0)
|
||||
#endif
|
||||
|
||||
#ifndef CHECK_OVERFLOW_OP
|
||||
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
|
||||
#endif
|
||||
|
||||
#define C_ADD( res, a,b)\
|
||||
do { \
|
||||
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
|
||||
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
|
||||
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
|
||||
}while(0)
|
||||
#define C_SUB( res, a,b)\
|
||||
do { \
|
||||
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
|
||||
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
|
||||
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
|
||||
}while(0)
|
||||
#define C_ADDTO( res , a)\
|
||||
do { \
|
||||
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
|
||||
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
|
||||
(res).r += (a).r; (res).i += (a).i;\
|
||||
}while(0)
|
||||
|
||||
#define C_SUBFROM( res , a)\
|
||||
do {\
|
||||
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
|
||||
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
|
||||
(res).r -= (a).r; (res).i -= (a).i; \
|
||||
}while(0)
|
||||
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
# define KISS_FFT_COS(phase) floor(.5+SAMP_MAX * cos (phase))
|
||||
# define KISS_FFT_SIN(phase) floor(.5+SAMP_MAX * sin (phase))
|
||||
# define HALF_OF(x) ((x)>>1)
|
||||
#elif defined(USE_SIMD)
|
||||
# define KISS_FFT_COS(phase) _mm_set1_ps( cos(phase) )
|
||||
# define KISS_FFT_SIN(phase) _mm_set1_ps( sin(phase) )
|
||||
# define HALF_OF(x) ((x)*_mm_set1_ps(.5))
|
||||
#else
|
||||
# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
|
||||
# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
|
||||
# define HALF_OF(x) ((x)*.5)
|
||||
#endif
|
||||
|
||||
#define kf_cexp(x,phase) \
|
||||
do{ \
|
||||
(x)->r = KISS_FFT_COS(phase);\
|
||||
(x)->i = KISS_FFT_SIN(phase);\
|
||||
}while(0)
|
||||
|
||||
|
||||
/* a debugging function */
|
||||
#define pcpx(c)\
|
||||
fprintf(stderr,"%g + %gi\n",(double)((c)->r),(double)((c)->i) )
|
||||
|
||||
|
||||
#ifdef KISS_FFT_USE_ALLOCA
|
||||
// define this to allow use of alloca instead of malloc for temporary buffers
|
||||
// Temporary buffers are used in two case:
|
||||
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
|
||||
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
|
||||
#include <alloca.h>
|
||||
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
|
||||
#define KISS_FFT_TMP_FREE(ptr)
|
||||
#else
|
||||
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
|
||||
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
|
||||
#endif
|
|
@ -0,0 +1,402 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
|
||||
#include "_kiss_fft_guts.h"
|
||||
/* The guts header contains all the multiplication and addition macros that are defined for
|
||||
fixed or floating point complex numbers. It also delares the kf_ internal functions.
|
||||
*/
|
||||
|
||||
static void kf_bfly2(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
int m
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx * Fout2;
|
||||
kiss_fft_cpx * tw1 = st->twiddles;
|
||||
kiss_fft_cpx t;
|
||||
Fout2 = Fout + m;
|
||||
do{
|
||||
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
|
||||
|
||||
C_MUL (t, *Fout2 , *tw1);
|
||||
tw1 += fstride;
|
||||
C_SUB( *Fout2 , *Fout , t );
|
||||
C_ADDTO( *Fout , t );
|
||||
++Fout2;
|
||||
++Fout;
|
||||
}while (--m);
|
||||
}
|
||||
|
||||
static void kf_bfly4(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
const size_t m
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx *tw1,*tw2,*tw3;
|
||||
kiss_fft_cpx scratch[6];
|
||||
size_t k=m;
|
||||
const size_t m2=2*m;
|
||||
const size_t m3=3*m;
|
||||
|
||||
|
||||
tw3 = tw2 = tw1 = st->twiddles;
|
||||
|
||||
do {
|
||||
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
|
||||
|
||||
C_MUL(scratch[0],Fout[m] , *tw1 );
|
||||
C_MUL(scratch[1],Fout[m2] , *tw2 );
|
||||
C_MUL(scratch[2],Fout[m3] , *tw3 );
|
||||
|
||||
C_SUB( scratch[5] , *Fout, scratch[1] );
|
||||
C_ADDTO(*Fout, scratch[1]);
|
||||
C_ADD( scratch[3] , scratch[0] , scratch[2] );
|
||||
C_SUB( scratch[4] , scratch[0] , scratch[2] );
|
||||
C_SUB( Fout[m2], *Fout, scratch[3] );
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
tw3 += fstride*3;
|
||||
C_ADDTO( *Fout , scratch[3] );
|
||||
|
||||
if(st->inverse) {
|
||||
Fout[m].r = scratch[5].r - scratch[4].i;
|
||||
Fout[m].i = scratch[5].i + scratch[4].r;
|
||||
Fout[m3].r = scratch[5].r + scratch[4].i;
|
||||
Fout[m3].i = scratch[5].i - scratch[4].r;
|
||||
}else{
|
||||
Fout[m].r = scratch[5].r + scratch[4].i;
|
||||
Fout[m].i = scratch[5].i - scratch[4].r;
|
||||
Fout[m3].r = scratch[5].r - scratch[4].i;
|
||||
Fout[m3].i = scratch[5].i + scratch[4].r;
|
||||
}
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
static void kf_bfly3(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
size_t m
|
||||
)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
kiss_fft_cpx *tw1,*tw2;
|
||||
kiss_fft_cpx scratch[5];
|
||||
kiss_fft_cpx epi3;
|
||||
epi3 = st->twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=st->twiddles;
|
||||
|
||||
do{
|
||||
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
|
||||
|
||||
C_MUL(scratch[1],Fout[m] , *tw1);
|
||||
C_MUL(scratch[2],Fout[m2] , *tw2);
|
||||
|
||||
C_ADD(scratch[3],scratch[1],scratch[2]);
|
||||
C_SUB(scratch[0],scratch[1],scratch[2]);
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
|
||||
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
|
||||
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
|
||||
|
||||
C_MULBYSCALAR( scratch[0] , epi3.i );
|
||||
|
||||
C_ADDTO(*Fout,scratch[3]);
|
||||
|
||||
Fout[m2].r = Fout[m].r + scratch[0].i;
|
||||
Fout[m2].i = Fout[m].i - scratch[0].r;
|
||||
|
||||
Fout[m].r -= scratch[0].i;
|
||||
Fout[m].i += scratch[0].r;
|
||||
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
static void kf_bfly5(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
int m
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
int u;
|
||||
kiss_fft_cpx scratch[13];
|
||||
kiss_fft_cpx * twiddles = st->twiddles;
|
||||
kiss_fft_cpx *tw;
|
||||
kiss_fft_cpx ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=st->twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
|
||||
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
|
||||
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
|
||||
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
|
||||
|
||||
C_ADD( scratch[7],scratch[1],scratch[4]);
|
||||
C_SUB( scratch[10],scratch[1],scratch[4]);
|
||||
C_ADD( scratch[8],scratch[2],scratch[3]);
|
||||
C_SUB( scratch[9],scratch[2],scratch[3]);
|
||||
|
||||
Fout0->r += scratch[7].r + scratch[8].r;
|
||||
Fout0->i += scratch[7].i + scratch[8].i;
|
||||
|
||||
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
|
||||
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
|
||||
|
||||
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
|
||||
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
|
||||
|
||||
C_SUB(*Fout1,scratch[5],scratch[6]);
|
||||
C_ADD(*Fout4,scratch[5],scratch[6]);
|
||||
|
||||
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
|
||||
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
|
||||
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
|
||||
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
|
||||
|
||||
C_ADD(*Fout2,scratch[11],scratch[12]);
|
||||
C_SUB(*Fout3,scratch[11],scratch[12]);
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
static void kf_bfly_generic(
|
||||
kiss_fft_cpx * Fout,
|
||||
const size_t fstride,
|
||||
const kiss_fft_cfg st,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
kiss_fft_cpx * twiddles = st->twiddles;
|
||||
kiss_fft_cpx t;
|
||||
int Norig = st->nfft;
|
||||
|
||||
kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratch[q1] = Fout[ k ];
|
||||
C_FIXDIV(scratch[q1],p);
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratch[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
C_MUL(t,scratch[q] , twiddles[twidx] );
|
||||
C_ADDTO( Fout[ k ] ,t);
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
KISS_FFT_TMP_FREE(scratch);
|
||||
}
|
||||
|
||||
static
|
||||
void kf_work(
|
||||
kiss_fft_cpx * Fout,
|
||||
const kiss_fft_cpx * f,
|
||||
const size_t fstride,
|
||||
int in_stride,
|
||||
int * factors,
|
||||
const kiss_fft_cfg st
|
||||
)
|
||||
{
|
||||
kiss_fft_cpx * Fout_beg=Fout;
|
||||
const int p=*factors++; /* the radix */
|
||||
const int m=*factors++; /* stage's fft length/p */
|
||||
const kiss_fft_cpx * Fout_end = Fout + p*m;
|
||||
|
||||
#ifdef _OPENMP
|
||||
// use openmp extensions at the
|
||||
// top-level (not recursive)
|
||||
if (fstride==1 && p<=5)
|
||||
{
|
||||
int k;
|
||||
|
||||
// execute the p different work units in different threads
|
||||
# pragma omp parallel for
|
||||
for (k=0;k<p;++k)
|
||||
kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
|
||||
// all threads have joined by this point
|
||||
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(Fout,fstride,st,m); break;
|
||||
case 3: kf_bfly3(Fout,fstride,st,m); break;
|
||||
case 4: kf_bfly4(Fout,fstride,st,m); break;
|
||||
case 5: kf_bfly5(Fout,fstride,st,m); break;
|
||||
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (m==1) {
|
||||
do{
|
||||
*Fout = *f;
|
||||
f += fstride*in_stride;
|
||||
}while(++Fout != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
kf_work( Fout , f, fstride*p, in_stride, factors,st);
|
||||
f += fstride*in_stride;
|
||||
}while( (Fout += m) != Fout_end );
|
||||
}
|
||||
|
||||
Fout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(Fout,fstride,st,m); break;
|
||||
case 3: kf_bfly3(Fout,fstride,st,m); break;
|
||||
case 4: kf_bfly4(Fout,fstride,st,m); break;
|
||||
case 5: kf_bfly5(Fout,fstride,st,m); break;
|
||||
default: kf_bfly_generic(Fout,fstride,st,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
/* facbuf is populated by p1,m1,p2,m2, ...
|
||||
where
|
||||
p[i] * m[i] = m[i-1]
|
||||
m0 = n */
|
||||
static
|
||||
void kf_factor(int n,int * facbuf)
|
||||
{
|
||||
int p=4;
|
||||
double floor_sqrt;
|
||||
floor_sqrt = floor( sqrt((double)n) );
|
||||
|
||||
/*factor out powers of 4, powers of 2, then any remaining primes */
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p > floor_sqrt)
|
||||
p = n; /* no more factors, skip to end */
|
||||
}
|
||||
n /= p;
|
||||
*facbuf++ = p;
|
||||
*facbuf++ = n;
|
||||
} while (n > 1);
|
||||
}
|
||||
|
||||
/*
|
||||
*
|
||||
* User-callable function to allocate all necessary storage space for the fft.
|
||||
*
|
||||
* The return value is a contiguous block of memory, allocated with malloc. As such,
|
||||
* It can be freed with free(), rather than a kiss_fft-specific function.
|
||||
* */
|
||||
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
|
||||
{
|
||||
kiss_fft_cfg st=NULL;
|
||||
size_t memneeded = sizeof(struct kiss_fft_state)
|
||||
+ sizeof(kiss_fft_cpx)*(nfft-1); /* twiddle factors*/
|
||||
|
||||
if ( lenmem==NULL ) {
|
||||
st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded );
|
||||
}else{
|
||||
if (mem != NULL && *lenmem >= memneeded)
|
||||
st = (kiss_fft_cfg)mem;
|
||||
*lenmem = memneeded;
|
||||
}
|
||||
if (st) {
|
||||
int i;
|
||||
st->nfft=nfft;
|
||||
st->inverse = inverse_fft;
|
||||
|
||||
for (i=0;i<nfft;++i) {
|
||||
const double pi=3.141592653589793238462643383279502884197169399375105820974944;
|
||||
double phase = -2*pi*i / nfft;
|
||||
if (st->inverse)
|
||||
phase *= -1;
|
||||
kf_cexp(st->twiddles+i, phase );
|
||||
}
|
||||
|
||||
kf_factor(nfft,st->factors);
|
||||
}
|
||||
return st;
|
||||
}
|
||||
|
||||
|
||||
void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
|
||||
{
|
||||
if (fin == fout) {
|
||||
//NOTE: this is not really an in-place FFT algorithm.
|
||||
//It just performs an out-of-place FFT into a temp buffer
|
||||
kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft);
|
||||
kf_work(tmpbuf,fin,1,in_stride, st->factors,st);
|
||||
memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft);
|
||||
KISS_FFT_TMP_FREE(tmpbuf);
|
||||
}else{
|
||||
kf_work( fout, fin, 1,in_stride, st->factors,st );
|
||||
}
|
||||
}
|
||||
|
||||
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
|
||||
{
|
||||
kiss_fft_stride(cfg,fin,fout,1);
|
||||
}
|
||||
|
||||
|
||||
void kiss_fft_cleanup(void)
|
||||
{
|
||||
// nothing needed any more
|
||||
}
|
||||
|
||||
int kiss_fft_next_fast_size(int n)
|
||||
{
|
||||
while(1) {
|
||||
int m=n;
|
||||
while ( (m%2) == 0 ) m/=2;
|
||||
while ( (m%3) == 0 ) m/=3;
|
||||
while ( (m%5) == 0 ) m/=5;
|
||||
if (m<=1)
|
||||
break; /* n is completely factorable by twos, threes, and fives */
|
||||
n++;
|
||||
}
|
||||
return n;
|
||||
}
|
|
@ -0,0 +1,132 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
#ifndef KISS_FFT_H
|
||||
#define KISS_FFT_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/*
|
||||
ATTENTION!
|
||||
If you would like a :
|
||||
-- a utility that will handle the caching of fft objects
|
||||
-- real-only (no imaginary time component ) FFT
|
||||
-- a multi-dimensional FFT
|
||||
-- a command-line utility to perform ffts
|
||||
-- a command-line utility to perform fast-convolution filtering
|
||||
|
||||
Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c
|
||||
in the tools/ directory.
|
||||
*/
|
||||
|
||||
#ifdef USE_SIMD
|
||||
# include <xmmintrin.h>
|
||||
# define kiss_fft_scalar __m128
|
||||
#define KISS_FFT_MALLOC(nbytes) _mm_malloc(nbytes,16)
|
||||
#define KISS_FFT_FREE _mm_free
|
||||
#else
|
||||
#define KISS_FFT_MALLOC malloc
|
||||
#define KISS_FFT_FREE free
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
#include <sys/types.h>
|
||||
# if (FIXED_POINT == 32)
|
||||
# define kiss_fft_scalar int32_t
|
||||
# else
|
||||
# define kiss_fft_scalar int16_t
|
||||
# endif
|
||||
#else
|
||||
# ifndef kiss_fft_scalar
|
||||
/* default is float */
|
||||
# define kiss_fft_scalar float
|
||||
# endif
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
kiss_fft_scalar r;
|
||||
kiss_fft_scalar i;
|
||||
}kiss_fft_cpx;
|
||||
|
||||
typedef struct kiss_fft_state* kiss_fft_cfg;
|
||||
|
||||
/*
|
||||
* kiss_fft_alloc
|
||||
*
|
||||
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
|
||||
*
|
||||
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL);
|
||||
*
|
||||
* The return value from fft_alloc is a cfg buffer used internally
|
||||
* by the fft routine or NULL.
|
||||
*
|
||||
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using malloc.
|
||||
* The returned value should be free()d when done to avoid memory leaks.
|
||||
*
|
||||
* The state can be placed in a user supplied buffer 'mem':
|
||||
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
|
||||
* then the function places the cfg in mem and the size used in *lenmem
|
||||
* and returns mem.
|
||||
*
|
||||
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
|
||||
* then the function returns NULL and places the minimum cfg
|
||||
* buffer size in *lenmem.
|
||||
* */
|
||||
|
||||
kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem);
|
||||
|
||||
/*
|
||||
* kiss_fft(cfg,in_out_buf)
|
||||
*
|
||||
* Perform an FFT on a complex input buffer.
|
||||
* for a forward FFT,
|
||||
* fin should be f[0] , f[1] , ... ,f[nfft-1]
|
||||
* fout will be F[0] , F[1] , ... ,F[nfft-1]
|
||||
* Note that each element is complex and can be accessed like
|
||||
f[k].r and f[k].i
|
||||
* */
|
||||
void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout);
|
||||
|
||||
/*
|
||||
A more generic version of the above function. It reads its input from every Nth sample.
|
||||
* */
|
||||
void kiss_fft_stride(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int fin_stride);
|
||||
|
||||
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
|
||||
buffer and can be simply free()d when no longer needed*/
|
||||
#define kiss_fft_free KISS_FFT_FREE
|
||||
|
||||
/*
|
||||
Cleans up some memory that gets managed internally. Not necessary to call, but it might clean up
|
||||
your compiler output to call this before you exit.
|
||||
*/
|
||||
void kiss_fft_cleanup(void);
|
||||
|
||||
|
||||
/*
|
||||
* Returns the smallest integer k, such that k>=n and k has only "fast" factors (2,3,5)
|
||||
*/
|
||||
int kiss_fft_next_fast_size(int n);
|
||||
|
||||
/* for real ffts, we need an even size */
|
||||
#define kiss_fftr_next_fast_size_real(n) \
|
||||
(kiss_fft_next_fast_size( ((n)+1)>>1)<<1)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,153 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
#include "kiss_fftr.h"
|
||||
#include "_kiss_fft_guts.h"
|
||||
|
||||
struct kiss_fftr_state{
|
||||
kiss_fft_cfg substate;
|
||||
kiss_fft_cpx * tmpbuf;
|
||||
kiss_fft_cpx * super_twiddles;
|
||||
#ifdef USE_SIMD
|
||||
void * pad;
|
||||
#endif
|
||||
};
|
||||
|
||||
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
|
||||
{
|
||||
int i;
|
||||
kiss_fftr_cfg st = NULL;
|
||||
size_t subsize = 0, memneeded;
|
||||
|
||||
if (nfft & 1) {
|
||||
fprintf(stderr,"Real FFT optimization must be even.\n");
|
||||
return NULL;
|
||||
}
|
||||
nfft >>= 1;
|
||||
|
||||
kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
|
||||
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
|
||||
|
||||
if (lenmem == NULL) {
|
||||
st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
|
||||
} else {
|
||||
if (*lenmem >= memneeded)
|
||||
st = (kiss_fftr_cfg) mem;
|
||||
*lenmem = memneeded;
|
||||
}
|
||||
if (!st)
|
||||
return NULL;
|
||||
|
||||
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
|
||||
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
|
||||
st->super_twiddles = st->tmpbuf + nfft;
|
||||
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
|
||||
|
||||
for (i = 0; i < nfft/2; ++i) {
|
||||
double phase =
|
||||
-3.14159265358979323846264338327 * ((double) (i+1) / nfft + .5);
|
||||
if (inverse_fft)
|
||||
phase *= -1;
|
||||
kf_cexp (st->super_twiddles+i,phase);
|
||||
}
|
||||
return st;
|
||||
}
|
||||
|
||||
void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
|
||||
{
|
||||
/* input buffer timedata is stored row-wise */
|
||||
int k,ncfft;
|
||||
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
|
||||
|
||||
if ( st->substate->inverse) {
|
||||
fprintf(stderr,"kiss fft usage error: improper alloc\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
ncfft = st->substate->nfft;
|
||||
|
||||
/*perform the parallel fft of two real signals packed in real,imag*/
|
||||
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
|
||||
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
|
||||
* contains the sum of the even-numbered elements of the input time sequence
|
||||
* The imag part is the sum of the odd-numbered elements
|
||||
*
|
||||
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
|
||||
* yielding DC of input time sequence
|
||||
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
|
||||
* yielding Nyquist bin of input time sequence
|
||||
*/
|
||||
|
||||
tdc.r = st->tmpbuf[0].r;
|
||||
tdc.i = st->tmpbuf[0].i;
|
||||
C_FIXDIV(tdc,2);
|
||||
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
|
||||
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
|
||||
freqdata[0].r = tdc.r + tdc.i;
|
||||
freqdata[ncfft].r = tdc.r - tdc.i;
|
||||
#ifdef USE_SIMD
|
||||
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
|
||||
#else
|
||||
freqdata[ncfft].i = freqdata[0].i = 0;
|
||||
#endif
|
||||
|
||||
for ( k=1;k <= ncfft/2 ; ++k ) {
|
||||
fpk = st->tmpbuf[k];
|
||||
fpnk.r = st->tmpbuf[ncfft-k].r;
|
||||
fpnk.i = - st->tmpbuf[ncfft-k].i;
|
||||
C_FIXDIV(fpk,2);
|
||||
C_FIXDIV(fpnk,2);
|
||||
|
||||
C_ADD( f1k, fpk , fpnk );
|
||||
C_SUB( f2k, fpk , fpnk );
|
||||
C_MUL( tw , f2k , st->super_twiddles[k-1]);
|
||||
|
||||
freqdata[k].r = HALF_OF(f1k.r + tw.r);
|
||||
freqdata[k].i = HALF_OF(f1k.i + tw.i);
|
||||
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
|
||||
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
|
||||
}
|
||||
}
|
||||
|
||||
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata)
|
||||
{
|
||||
/* input buffer timedata is stored row-wise */
|
||||
int k, ncfft;
|
||||
|
||||
if (st->substate->inverse == 0) {
|
||||
fprintf (stderr, "kiss fft usage error: improper alloc\n");
|
||||
exit (1);
|
||||
}
|
||||
|
||||
ncfft = st->substate->nfft;
|
||||
|
||||
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
|
||||
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
|
||||
C_FIXDIV(st->tmpbuf[0],2);
|
||||
|
||||
for (k = 1; k <= ncfft / 2; ++k) {
|
||||
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
|
||||
fk = freqdata[k];
|
||||
fnkc.r = freqdata[ncfft - k].r;
|
||||
fnkc.i = -freqdata[ncfft - k].i;
|
||||
C_FIXDIV( fk , 2 );
|
||||
C_FIXDIV( fnkc , 2 );
|
||||
|
||||
C_ADD (fek, fk, fnkc);
|
||||
C_SUB (tmp, fk, fnkc);
|
||||
C_MUL (fok, tmp, st->super_twiddles[k-1]);
|
||||
C_ADD (st->tmpbuf[k], fek, fok);
|
||||
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
|
||||
#ifdef USE_SIMD
|
||||
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
|
||||
#else
|
||||
st->tmpbuf[ncfft - k].i *= -1;
|
||||
#endif
|
||||
}
|
||||
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
|
||||
}
|
|
@ -0,0 +1,54 @@
|
|||
/*
|
||||
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
|
||||
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
* See COPYING file for more information.
|
||||
*/
|
||||
|
||||
#ifndef KISS_FTR_H
|
||||
#define KISS_FTR_H
|
||||
|
||||
#include "kiss_fft.h"
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Real optimized version can save about 45% cpu time vs. complex fft of a real seq.
|
||||
|
||||
|
||||
|
||||
*/
|
||||
|
||||
typedef struct kiss_fftr_state *kiss_fftr_cfg;
|
||||
|
||||
|
||||
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem, size_t * lenmem);
|
||||
/*
|
||||
nfft must be even
|
||||
|
||||
If you don't care to allocate space, use mem = lenmem = NULL
|
||||
*/
|
||||
|
||||
|
||||
void kiss_fftr(kiss_fftr_cfg cfg,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata);
|
||||
/*
|
||||
input timedata has nfft scalar points
|
||||
output freqdata has nfft/2+1 complex points
|
||||
*/
|
||||
|
||||
void kiss_fftri(kiss_fftr_cfg cfg,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata);
|
||||
/*
|
||||
input freqdata has nfft/2+1 complex points
|
||||
output timedata has nfft scalar points
|
||||
*/
|
||||
|
||||
#define kiss_fftr_free KISS_FFT_FREE
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
|
@ -0,0 +1,294 @@
|
|||
// LDPC(174,87) parameters from WSJT-X.
|
||||
// this is an indirection table that moves a
|
||||
// codeword's 87 systematic (message) bits to the end.
|
||||
int colorder[] = {
|
||||
0, 1, 2, 3, 30, 4, 5, 6, 7, 8, 9, 10, 11, 32, 12, 40, 13, 14, 15, 16,
|
||||
17, 18, 37, 45, 29, 19, 20, 21, 41, 22, 42, 31, 33, 34, 44, 35, 47,
|
||||
51, 50, 43, 36, 52, 63, 46, 25, 55, 27, 24, 23, 53, 39, 49, 59, 38,
|
||||
48, 61, 60, 57, 28, 62, 56, 58, 65, 66, 26, 70, 64, 69, 68, 67, 74,
|
||||
71, 54, 76, 72, 75, 78, 77, 80, 79, 73, 83, 84, 81, 82, 85, 86, 87,
|
||||
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
|
||||
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
|
||||
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
|
||||
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145,
|
||||
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
|
||||
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173
|
||||
};
|
||||
|
||||
// this is the LDPC(174,87) parity check matrix.
|
||||
// 87 rows.
|
||||
// each row describes one parity check.
|
||||
// each number is an index into the codeword (1-origin).
|
||||
// the codeword bits mentioned in each row must xor to zero.
|
||||
// From WSJT-X's bpdecode174.f90.
|
||||
int Nm[][7] = {
|
||||
{1, 30, 60, 89, 118, 147, 0},
|
||||
{2, 31, 61, 90, 119, 147, 0},
|
||||
{3, 32, 62, 91, 120, 148, 0},
|
||||
{4, 33, 63, 92, 121, 149, 0},
|
||||
{2, 34, 64, 93, 122, 150, 0},
|
||||
{5, 33, 65, 94, 123, 148, 0},
|
||||
{6, 34, 66, 95, 124, 151, 0},
|
||||
{7, 35, 67, 96, 120, 152, 0},
|
||||
{8, 36, 68, 97, 125, 153, 0},
|
||||
{9, 37, 69, 98, 126, 152, 0},
|
||||
{10, 38, 70, 99, 127, 154, 0},
|
||||
{11, 39, 71, 100, 126, 155, 0},
|
||||
{12, 40, 61, 101, 128, 145, 0},
|
||||
{10, 33, 60, 95, 128, 156, 0},
|
||||
{13, 41, 72, 97, 126, 157, 0},
|
||||
{13, 42, 73, 90, 129, 156, 0},
|
||||
{14, 39, 74, 99, 130, 158, 0},
|
||||
{15, 43, 75, 102, 131, 159, 0},
|
||||
{16, 43, 71, 103, 118, 160, 0},
|
||||
{17, 44, 76, 98, 130, 156, 0},
|
||||
{18, 45, 60, 96, 132, 161, 0},
|
||||
{19, 46, 73, 83, 133, 162, 0},
|
||||
{12, 38, 77, 102, 134, 163, 0},
|
||||
{19, 47, 78, 104, 135, 147, 0},
|
||||
{1, 32, 77, 105, 136, 164, 0},
|
||||
{20, 48, 73, 106, 123, 163, 0},
|
||||
{21, 41, 79, 107, 137, 165, 0},
|
||||
{22, 42, 66, 108, 138, 152, 0},
|
||||
{18, 42, 80, 109, 139, 154, 0},
|
||||
{23, 49, 81, 110, 135, 166, 0},
|
||||
{16, 50, 82, 91, 129, 158, 0},
|
||||
{3, 48, 63, 107, 124, 167, 0},
|
||||
{6, 51, 67, 111, 134, 155, 0},
|
||||
{24, 35, 77, 100, 122, 162, 0},
|
||||
{20, 45, 76, 112, 140, 157, 0},
|
||||
{21, 36, 64, 92, 130, 159, 0},
|
||||
{8, 52, 83, 111, 118, 166, 0},
|
||||
{21, 53, 84, 113, 138, 168, 0},
|
||||
{25, 51, 79, 89, 122, 158, 0},
|
||||
{22, 44, 75, 107, 133, 155, 172},
|
||||
{9, 54, 84, 90, 141, 169, 0},
|
||||
{22, 54, 85, 110, 136, 161, 0},
|
||||
{8, 37, 65, 102, 129, 170, 0},
|
||||
{19, 39, 85, 114, 139, 150, 0},
|
||||
{26, 55, 71, 93, 142, 167, 0},
|
||||
{27, 56, 65, 96, 133, 160, 174},
|
||||
{28, 31, 86, 100, 117, 171, 0},
|
||||
{28, 52, 70, 104, 132, 144, 0},
|
||||
{24, 57, 68, 95, 137, 142, 0},
|
||||
{7, 30, 72, 110, 143, 151, 0},
|
||||
{4, 51, 76, 115, 127, 168, 0},
|
||||
{16, 45, 87, 114, 125, 172, 0},
|
||||
{15, 30, 86, 115, 123, 150, 0},
|
||||
{23, 46, 64, 91, 144, 173, 0},
|
||||
{23, 35, 75, 113, 145, 153, 0},
|
||||
{14, 41, 87, 108, 117, 149, 170},
|
||||
{25, 40, 85, 94, 124, 159, 0},
|
||||
{25, 58, 69, 116, 143, 174, 0},
|
||||
{29, 43, 61, 116, 132, 162, 0},
|
||||
{15, 58, 88, 112, 121, 164, 0},
|
||||
{4, 59, 72, 114, 119, 163, 173},
|
||||
{27, 47, 86, 98, 134, 153, 0},
|
||||
{5, 44, 78, 109, 141, 0, 0},
|
||||
{10, 46, 69, 103, 136, 165, 0},
|
||||
{9, 50, 59, 93, 128, 164, 0},
|
||||
{14, 57, 58, 109, 120, 166, 0},
|
||||
{17, 55, 62, 116, 125, 154, 0},
|
||||
{3, 54, 70, 101, 140, 170, 0},
|
||||
{1, 36, 82, 108, 127, 174, 0},
|
||||
{5, 53, 81, 105, 140, 0, 0},
|
||||
{29, 53, 67, 99, 142, 173, 0},
|
||||
{18, 49, 74, 97, 115, 167, 0},
|
||||
{2, 57, 63, 103, 138, 157, 0},
|
||||
{26, 38, 79, 112, 135, 171, 0},
|
||||
{11, 52, 66, 88, 119, 148, 0},
|
||||
{20, 40, 68, 117, 141, 160, 0},
|
||||
{11, 48, 81, 89, 146, 169, 0},
|
||||
{29, 47, 80, 92, 146, 172, 0},
|
||||
{6, 32, 87, 104, 145, 169, 0},
|
||||
{27, 34, 74, 106, 131, 165, 0},
|
||||
{12, 56, 84, 88, 139, 0, 0},
|
||||
{13, 56, 62, 111, 146, 171, 0},
|
||||
{26, 37, 80, 105, 144, 151, 0},
|
||||
{17, 31, 82, 113, 121, 161, 0},
|
||||
{28, 49, 59, 94, 137, 0, 0},
|
||||
{7, 55, 83, 101, 131, 168, 0},
|
||||
{24, 50, 78, 106, 143, 149, 0},
|
||||
};
|
||||
|
||||
// Mn from WSJT-X's bpdecode174.f90.
|
||||
// each row corresponds to a codeword bit.
|
||||
// the numbers indicate which three parity
|
||||
// checks (rows in Nm) refer to the codeword bit.
|
||||
// 1-origin.
|
||||
int Mn[][3] = {
|
||||
{1, 25, 69},
|
||||
{2, 5, 73},
|
||||
{3, 32, 68},
|
||||
{4, 51, 61},
|
||||
{6, 63, 70},
|
||||
{7, 33, 79},
|
||||
{8, 50, 86},
|
||||
{9, 37, 43},
|
||||
{10, 41, 65},
|
||||
{11, 14, 64},
|
||||
{12, 75, 77},
|
||||
{13, 23, 81},
|
||||
{15, 16, 82},
|
||||
{17, 56, 66},
|
||||
{18, 53, 60},
|
||||
{19, 31, 52},
|
||||
{20, 67, 84},
|
||||
{21, 29, 72},
|
||||
{22, 24, 44},
|
||||
{26, 35, 76},
|
||||
{27, 36, 38},
|
||||
{28, 40, 42},
|
||||
{30, 54, 55},
|
||||
{34, 49, 87},
|
||||
{39, 57, 58},
|
||||
{45, 74, 83},
|
||||
{46, 62, 80},
|
||||
{47, 48, 85},
|
||||
{59, 71, 78},
|
||||
{1, 50, 53},
|
||||
{2, 47, 84},
|
||||
{3, 25, 79},
|
||||
{4, 6, 14},
|
||||
{5, 7, 80},
|
||||
{8, 34, 55},
|
||||
{9, 36, 69},
|
||||
{10, 43, 83},
|
||||
{11, 23, 74},
|
||||
{12, 17, 44},
|
||||
{13, 57, 76},
|
||||
{15, 27, 56},
|
||||
{16, 28, 29},
|
||||
{18, 19, 59},
|
||||
{20, 40, 63},
|
||||
{21, 35, 52},
|
||||
{22, 54, 64},
|
||||
{24, 62, 78},
|
||||
{26, 32, 77},
|
||||
{30, 72, 85},
|
||||
{31, 65, 87},
|
||||
{33, 39, 51},
|
||||
{37, 48, 75},
|
||||
{38, 70, 71},
|
||||
{41, 42, 68},
|
||||
{45, 67, 86},
|
||||
{46, 81, 82},
|
||||
{49, 66, 73},
|
||||
{58, 60, 66},
|
||||
{61, 65, 85},
|
||||
{1, 14, 21},
|
||||
{2, 13, 59},
|
||||
{3, 67, 82},
|
||||
{4, 32, 73},
|
||||
{5, 36, 54},
|
||||
{6, 43, 46},
|
||||
{7, 28, 75},
|
||||
{8, 33, 71},
|
||||
{9, 49, 76},
|
||||
{10, 58, 64},
|
||||
{11, 48, 68},
|
||||
{12, 19, 45},
|
||||
{15, 50, 61},
|
||||
{16, 22, 26},
|
||||
{17, 72, 80},
|
||||
{18, 40, 55},
|
||||
{20, 35, 51},
|
||||
{23, 25, 34},
|
||||
{24, 63, 87},
|
||||
{27, 39, 74},
|
||||
{29, 78, 83},
|
||||
{30, 70, 77},
|
||||
{31, 69, 84},
|
||||
{22, 37, 86},
|
||||
{38, 41, 81},
|
||||
{42, 44, 57},
|
||||
{47, 53, 62},
|
||||
{52, 56, 79},
|
||||
{60, 75, 81},
|
||||
{1, 39, 77},
|
||||
{2, 16, 41},
|
||||
{3, 31, 54},
|
||||
{4, 36, 78},
|
||||
{5, 45, 65},
|
||||
{6, 57, 85},
|
||||
{7, 14, 49},
|
||||
{8, 21, 46},
|
||||
{9, 15, 72},
|
||||
{10, 20, 62},
|
||||
{11, 17, 71},
|
||||
{12, 34, 47},
|
||||
{13, 68, 86},
|
||||
{18, 23, 43},
|
||||
{19, 64, 73},
|
||||
{24, 48, 79},
|
||||
{25, 70, 83},
|
||||
{26, 80, 87},
|
||||
{27, 32, 40},
|
||||
{28, 56, 69},
|
||||
{29, 63, 66},
|
||||
{30, 42, 50},
|
||||
{33, 37, 82},
|
||||
{35, 60, 74},
|
||||
{38, 55, 84},
|
||||
{44, 52, 61},
|
||||
{51, 53, 72},
|
||||
{58, 59, 67},
|
||||
{47, 56, 76},
|
||||
{1, 19, 37},
|
||||
{2, 61, 75},
|
||||
{3, 8, 66},
|
||||
{4, 60, 84},
|
||||
{5, 34, 39},
|
||||
{6, 26, 53},
|
||||
{7, 32, 57},
|
||||
{9, 52, 67},
|
||||
{10, 12, 15},
|
||||
{11, 51, 69},
|
||||
{13, 14, 65},
|
||||
{16, 31, 43},
|
||||
{17, 20, 36},
|
||||
{18, 80, 86},
|
||||
{21, 48, 59},
|
||||
{22, 40, 46},
|
||||
{23, 33, 62},
|
||||
{24, 30, 74},
|
||||
{25, 42, 64},
|
||||
{27, 49, 85},
|
||||
{28, 38, 73},
|
||||
{29, 44, 81},
|
||||
{35, 68, 70},
|
||||
{41, 63, 76},
|
||||
{45, 49, 71},
|
||||
{50, 58, 87},
|
||||
{48, 54, 83},
|
||||
{13, 55, 79},
|
||||
{77, 78, 82},
|
||||
{1, 2, 24},
|
||||
{3, 6, 75},
|
||||
{4, 56, 87},
|
||||
{5, 44, 53},
|
||||
{7, 50, 83},
|
||||
{8, 10, 28},
|
||||
{9, 55, 62},
|
||||
{11, 29, 67},
|
||||
{12, 33, 40},
|
||||
{14, 16, 20},
|
||||
{15, 35, 73},
|
||||
{17, 31, 39},
|
||||
{18, 36, 57},
|
||||
{19, 46, 76},
|
||||
{21, 42, 84},
|
||||
{22, 34, 59},
|
||||
{23, 26, 61},
|
||||
{25, 60, 65},
|
||||
{27, 64, 80},
|
||||
{30, 37, 66},
|
||||
{32, 45, 72},
|
||||
{38, 51, 86},
|
||||
{41, 77, 79},
|
||||
{43, 56, 68},
|
||||
{47, 74, 82},
|
||||
{40, 52, 78},
|
||||
{54, 61, 71},
|
||||
{46, 58, 69},
|
||||
};
|
|
@ -0,0 +1,266 @@
|
|||
//
|
||||
// LDPC decoder for FT8.
|
||||
//
|
||||
// given a 174-bit codeword as an array of log-likelihood of zero,
|
||||
// return a 174-bit corrected codeword, or zero-length array.
|
||||
// last 87 bits are the (systematic) plain-text.
|
||||
// this is an implementation of the sum-product algorithm
|
||||
// from Sarah Johnson's Iterative Error Correction book.
|
||||
// codeword[i] = log ( P(x=0) / P(x=1) )
|
||||
//
|
||||
// cc -O3 libldpc.c -shared -fPIC -o libldpc.so
|
||||
//
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include "arrays.h"
|
||||
|
||||
int ldpc_check(int codeword[]);
|
||||
|
||||
|
||||
// thank you Douglas Bagnall
|
||||
// https://math.stackexchange.com/a/446411
|
||||
float fast_tanh(float x)
|
||||
{
|
||||
if (x < -4.97f)
|
||||
{
|
||||
return -1.0f;
|
||||
}
|
||||
if (x > 4.97f)
|
||||
{
|
||||
return 1.0f;
|
||||
}
|
||||
float x2 = x * x;
|
||||
float a = x * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
|
||||
float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
|
||||
return a / b;
|
||||
}
|
||||
|
||||
|
||||
// codeword is 174 log-likelihoods.
|
||||
// plain is a return value, 174 ints, to be 0 or 1.
|
||||
// iters is how hard to try.
|
||||
// ok == 87 means success.
|
||||
void ldpc_decode(float codeword[], int iters, int plain[], int *ok)
|
||||
{
|
||||
float m[87][174]; // ~60 kB
|
||||
float e[87][174]; // ~60 kB
|
||||
int best_score = -1;
|
||||
int best_cw[174];
|
||||
|
||||
for (int i = 0; i < 174; i++)
|
||||
for (int j = 0; j < 87; j++)
|
||||
m[j][i] = codeword[i];
|
||||
|
||||
for (int i = 0; i < 174; i++)
|
||||
for (int j = 0; j < 87; j++)
|
||||
e[j][i] = 0.0f;
|
||||
|
||||
for (int iter = 0; iter < iters; iter++)
|
||||
{
|
||||
for (int j = 0; j < 87; j++)
|
||||
{
|
||||
for (int ii1 = 0; ii1 < 7; ii1++)
|
||||
{
|
||||
int i1 = Nm[j][ii1] - 1;
|
||||
if (i1 < 0)
|
||||
continue;
|
||||
float a = 1.0f;
|
||||
for (int ii2 = 0; ii2 < 7; ii2++)
|
||||
{
|
||||
int i2 = Nm[j][ii2] - 1;
|
||||
if (i2 >= 0 && i2 != i1)
|
||||
{
|
||||
a *= fast_tanh(m[j][i2] / 2.0f);
|
||||
}
|
||||
}
|
||||
e[j][i1] = log((1 + a) / (1 - a));
|
||||
}
|
||||
}
|
||||
|
||||
int cw[174];
|
||||
for (int i = 0; i < 174; i++)
|
||||
{
|
||||
float l = codeword[i];
|
||||
for (int j = 0; j < 3; j++)
|
||||
l += e[Mn[i][j] - 1][i];
|
||||
cw[i] = (l <= 0.0f);
|
||||
}
|
||||
int score = ldpc_check(cw);
|
||||
if (score == 87)
|
||||
{
|
||||
// Found a perfect answer
|
||||
#if 0
|
||||
int cw1[174];
|
||||
for(int i = 0; i < 174; i++)
|
||||
cw1[i] = cw[colorder[i]];
|
||||
for(int i = 0; i < 87; i++)
|
||||
plain[i] = cw1[174-87+i];
|
||||
#else
|
||||
for (int i = 0; i < 174; i++)
|
||||
plain[i] = cw[colorder[i]];
|
||||
#endif
|
||||
*ok = 87;
|
||||
return;
|
||||
}
|
||||
|
||||
if (score > best_score)
|
||||
{
|
||||
for (int i = 0; i < 174; i++)
|
||||
best_cw[i] = cw[i];
|
||||
best_score = score;
|
||||
}
|
||||
|
||||
for (int i = 0; i < 174; i++)
|
||||
{
|
||||
for (int ji1 = 0; ji1 < 3; ji1++)
|
||||
{
|
||||
int j1 = Mn[i][ji1] - 1;
|
||||
float l = codeword[i];
|
||||
for (int ji2 = 0; ji2 < 3; ji2++)
|
||||
{
|
||||
if (ji1 != ji2)
|
||||
{
|
||||
int j2 = Mn[i][ji2] - 1;
|
||||
l += e[j2][i];
|
||||
}
|
||||
}
|
||||
m[j1][i] = l;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// decode didn't work, return something anyway.
|
||||
#if 0
|
||||
int cw1[174];
|
||||
for(int i = 0; i < 174; i++)
|
||||
cw1[i] = best_cw[colorder[i]];
|
||||
for(int i = 0; i < 87; i++)
|
||||
plain[i] = cw1[174-87+i];
|
||||
#else
|
||||
for (int i = 0; i < 174; i++)
|
||||
plain[i] = best_cw[colorder[i]];
|
||||
#endif
|
||||
|
||||
*ok = best_score;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// does a 174-bit codeword pass the FT8's LDPC parity checks?
|
||||
// returns the number of parity checks that passed.
|
||||
// 87 means total success.
|
||||
//
|
||||
int ldpc_check(int codeword[])
|
||||
{
|
||||
int score = 0;
|
||||
|
||||
// Nm[87][7]
|
||||
for (int j = 0; j < 87; j++)
|
||||
{
|
||||
int x = 0;
|
||||
for (int ii1 = 0; ii1 < 7; ii1++)
|
||||
{
|
||||
int i1 = Nm[j][ii1] - 1;
|
||||
if (i1 >= 0)
|
||||
{
|
||||
x ^= codeword[i1];
|
||||
}
|
||||
}
|
||||
if (x == 0)
|
||||
score++;
|
||||
}
|
||||
return score;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
def bp_decode(codeword, max_iterations = 10):
|
||||
## 174 codeword bits
|
||||
## 87 parity checks
|
||||
|
||||
mnx = numpy.array(Mn, dtype=numpy.int32)
|
||||
nmx = numpy.array(Nm, dtype=numpy.int32)
|
||||
|
||||
ncw = 3
|
||||
tov = numpy.zeros( (3, N) )
|
||||
toc = numpy.zeros( (7, M) )
|
||||
tanhtoc = numpy.zeros( (7, M) )
|
||||
zn = numpy.zeros(N)
|
||||
nclast = 0
|
||||
ncnt = 0
|
||||
|
||||
# initialize messages to checks
|
||||
for j in range(M):
|
||||
for i in range(nrw[j]):
|
||||
toc[i, j] = codeword[nmx[j, i] - 1]
|
||||
|
||||
for iteration in range(max_iterations):
|
||||
# Update bit log likelihood ratios (tov=0 in iteration 0).
|
||||
#for i in range(N):
|
||||
# zn[i] = codeword[i] + numpy.sum(tov[:,i])
|
||||
zn = codeword + numpy.sum(tov, axis = 0)
|
||||
#print(numpy.sum(tov, axis=0))
|
||||
|
||||
# Check to see if we have a codeword (check before we do any iteration).
|
||||
cw = numpy.zeros(N, dtype=numpy.int32)
|
||||
cw[zn > 0] = 1
|
||||
ncheck = 0
|
||||
for i in range(M):
|
||||
synd = numpy.sum(cw[ nmx[i, :nrw[i]]-1 ])
|
||||
if synd % 2 > 0:
|
||||
ncheck += 1
|
||||
|
||||
if ncheck == 0:
|
||||
# we have a codeword - reorder the columns and return it
|
||||
codeword = cw[colorder]
|
||||
#nerr = 0
|
||||
#for i in range(N):
|
||||
# if (2*cw[i]-1)*codeword[i] < 0:
|
||||
# nerr += 1
|
||||
|
||||
#print("DECODED!", nerr)
|
||||
return codeword[M:N]
|
||||
|
||||
if iter > 0:
|
||||
# this code block implements an early stopping criterion
|
||||
nd = ncheck - nclast
|
||||
if nd < 0: # of unsatisfied parity checks decreased
|
||||
ncnt = 0 # reset counter
|
||||
else:
|
||||
ncnt += 1
|
||||
|
||||
if ncnt >= 5 and iter >= 10 and ncheck >= 15:
|
||||
nharderror = -1
|
||||
#return numpy.array([])
|
||||
|
||||
nclast = ncheck
|
||||
|
||||
# Send messages from bits to check nodes
|
||||
for j in range(M):
|
||||
for i in range(nrw[j]):
|
||||
ibj = nmx[j, i] - 1
|
||||
toc[i, j] = zn[ibj]
|
||||
for kk in range(ncw): # subtract off what the bit had received from the check
|
||||
if mnx[ibj, kk] - 1 == j:
|
||||
toc[i, j] -= tov[kk, ibj]
|
||||
|
||||
# send messages from check nodes to variable nodes
|
||||
#for i in range(M):
|
||||
# tanhtoc[:,i] = numpy.tanh(-toc[:,i] / 2)
|
||||
tanhtoc = numpy.tanh(-toc / 2)
|
||||
|
||||
for j in range(N):
|
||||
for i in range(ncw):
|
||||
ichk = mnx[j, i] - 1 # Mn(:,j) are the checks that include bit j
|
||||
Tmn = 1.0
|
||||
for k in range(nrw[ichk]):
|
||||
if nmx[ichk, k] - 1 == j: continue
|
||||
Tmn *= tanhtoc[k, ichk]
|
||||
y = numpy.arctanh(-Tmn)
|
||||
#y = platanh(-Tmn)
|
||||
tov[i, j] = 2*y
|
||||
|
||||
return numpy.array([])
|
||||
*/
|
|
@ -0,0 +1,7 @@
|
|||
#pragma once
|
||||
|
||||
// codeword is 174 log-likelihoods.
|
||||
// plain is a return value, 174 ints, to be 0 or 1.
|
||||
// iters is how hard to try.
|
||||
// ok == 87 means success.
|
||||
void ldpc_decode(float codeword[], int iters, int plain[], int *ok);
|
Ładowanie…
Reference in New Issue