Added Waterfall class and candidate search+decoding

pull/37/head
Karlis Goba 2022-08-15 12:22:58 +03:00
rodzic aec8f7677a
commit 5f512a2f89
1 zmienionych plików z 129 dodań i 91 usunięć

Wyświetl plik

@ -17,8 +17,8 @@ FT8_PAYLOAD_BITS = 77
MIN_FREQ = 300
MAX_FREQ = 3000
def lin_to_db(x):
return 20*np.log10(x + 1e-12)
def lin_to_db(x, eps=1e-12):
return 20*np.log10(x + eps)
def db_to_lin(x):
return 10**(x/20)
@ -39,42 +39,69 @@ def quantize(H, mag_db_step=0.5, phase_divs=256):
return db_to_lin(mag_db) * np.exp(1j * phase)
class Waterfall:
def __init__(self):
def __init__(self, freq_osr=2, time_osr=2, freq_min=300, freq_max=3000):
self.H = None
self.freq_osr = self.time_osr = None
pass
self.freq_osr = freq_osr
self.time_osr = time_osr
self.window_type = 'hann'
self.freq_step = FT8_TONE_DEVIATION / self.freq_osr # frequency step corresponding to one bin, Hz
self.time_step = FT8_SYMBOL_PERIOD / self.time_osr # time step corresponding to one STFT position, seconds
self.bin_min = int(freq_min / self.freq_step)
self.bin_max = int(freq_max / self.freq_step) + 1
# self.freq_first = self.bin_min * self.freq_step
# self.time_first = FT8_SYMBOL_PERIOD * self.freq_osr / 2
def load_signal(self, sig, fs):
sym_size = int(fs * FT8_SYMBOL_PERIOD)
nfft = sym_size * self.freq_osr
_, _, H = signal.stft(sig, window=self.window_type, nfft=nfft, nperseg=nfft, noverlap=nfft - (sym_size//self.time_osr), boundary=None, padded=None)
self.H = quantize(H)
A = np.abs(H)
self.Apow = A**2
self.Adb = lin_to_db(A)
print(f'Max magnitude {self.Adb[:, self.bin_min:self.bin_max].max(axis=(0, 1)):.1f} dB')
print(f'Waterfall shape {H.shape}')
def search_sync_coarse(H, bin_min, bin_max, freq_osr, time_osr, min_score=4.0, max_cand=30):
Adb = lin_to_db(np.abs(H))
freq_step = FT8_TONE_DEVIATION / freq_osr
time_step = FT8_SYMBOL_PERIOD / time_osr
print(f'Using bins {bin_min}..{bin_max} ({bin_max - bin_min})')
def search_sync_coarse(wf, min_score=2.5, max_cand=30, snr_mode=2):
print(f'Using bins {wf.bin_min}..{wf.bin_max} ({wf.bin_max - wf.bin_min})')
score_map = dict()
for freq_sub in range(freq_osr):
for bin_first in range(bin_min + freq_sub, bin_max - FT8_NUM_TONES * freq_osr, freq_osr):
for freq_sub in range(wf.freq_osr):
for bin_first in range(wf.bin_min + freq_sub, wf.bin_max - FT8_NUM_TONES * wf.freq_osr, wf.freq_osr):
for time_sub in range(time_osr):
for time_start in range(-10 * time_osr + time_sub, 21 * time_osr + time_sub, time_osr):
for time_start in range(-10 * wf.time_osr + time_sub, 21 * wf.time_osr + time_sub, wf.time_osr):
# calc sync score at (bin_first, time_start)
score = []
snr_sig = snr_noise = 0
for sync_start in FT8_SYNC_POS:
for sync_pos, sync_tone in enumerate(FT8_SYNC_SYMS):
pos = time_start + (sync_start + sync_pos) * time_osr
if pos >= 0 and pos < Adb.shape[1]:
sym_db = Adb[bin_first + sync_tone * freq_osr, pos]
if pos - 1 >= 0:
sym_prev_db = Adb[bin_first + sync_tone * freq_osr, pos - 1]
score.append(sym_db - sym_prev_db)
if pos + 1 < H.shape[1]:
sym_next_db = Adb[bin_first + sync_tone * freq_osr, pos + 1]
score.append(sym_db - sym_next_db)
if bin_first + (sync_tone - 1) * freq_osr >= bin_min:
sym_down_db = Adb[bin_first + (sync_tone - 1) * freq_osr, pos]
score.append(sym_db - sym_down_db)
if bin_first + (sync_tone + 1) * freq_osr < bin_max:
sym_up_db = Adb[bin_first + (sync_tone + 1) * freq_osr, pos]
score.append(sym_db - sym_up_db)
score_avg = np.mean(score)
for sync_pos, sync_tone in enumerate(FT8_SYNC_SYMS, start=sync_start):
pos = time_start + sync_pos * wf.time_osr
if pos >= 0 and pos < wf.Adb.shape[1]:
if snr_mode == 0:
snr_sig += wf.Apow[bin_first + sync_tone * wf.freq_osr, pos]
for noise_tone in range(7):
if noise_tone != sync_tone:
snr_noise += wf.Apow[bin_first + noise_tone * wf.freq_osr, pos]
else:
sym_db = wf.Adb[bin_first + sync_tone * wf.freq_osr, pos]
if bin_first + (sync_tone - 1) * freq_osr >= wf.bin_min:
sym_down_db = wf.Adb[bin_first + (sync_tone - 1) * wf.freq_osr, pos]
score.append(sym_db - sym_down_db)
if bin_first + (sync_tone + 1) * wf.freq_osr < wf.bin_max:
sym_up_db = wf.Adb[bin_first + (sync_tone + 1) * wf.freq_osr, pos]
score.append(sym_db - sym_up_db)
if snr_mode == 2:
if pos - 1 >= 0:
sym_prev_db = wf.Adb[bin_first + sync_tone * wf.freq_osr, pos - 1]
score.append(sym_db - sym_prev_db)
if pos + 1 < wf.Adb.shape[1]:
sym_next_db = wf.Adb[bin_first + sync_tone * wf.freq_osr, pos + 1]
score.append(sym_db - sym_next_db)
if snr_mode == 0:
score_avg = 10*np.log10(snr_sig / (snr_noise / 6))
else:
score_avg = np.mean(score)
if score_avg > min_score:
is_better = True
# if (bin_first, time_start) in score_map:
@ -93,7 +120,9 @@ def search_sync_coarse(H, bin_min, bin_max, freq_osr, time_osr, min_score=4.0, m
top_keys = sorted(score_map.keys(), key=lambda x: score_map[x], reverse=True)[:max_cand]
for idx, (bin, pos) in enumerate(sorted(top_keys)):
print(f'{idx+1}: {freq_step * bin:.2f}\t{time_step * pos:+.02f}\t{score_map[(bin, pos)]:.2f}')
print(f'{idx+1}: {wf.freq_step * bin:.2f}\t{wf.time_step * pos:+.02f}\t{score_map[(bin, pos)]:.2f}')
time_offset = FT8_SYMBOL_PERIOD / 4
return [(wf.freq_step * bin, wf.time_step * pos - time_offset) for (bin, pos) in sorted(top_keys)]
def downsample_fft(H, bin_f0, fs2=100, freq_osr=1, time_osr=1):
@ -112,15 +141,15 @@ def downsample_fft(H, bin_f0, fs2=100, freq_osr=1, time_osr=1):
H2 = np.roll(H2, -shift, axis=0)
_, sig2 = signal.istft(H2, window='hann', nperseg=nfft2, noverlap=nfft2 - (sym_size2//time_osr), input_onesided=False)
f0_new = (taper_width + pad_width - shift) * freq_step2
return sig2, f0_new
f0_down = (taper_width + pad_width - shift) * freq_step2
return sig2, f0_down
def search_sync_fine(sig2, fs2, f0_new, pos_start):
def search_sync_fine(sig2, fs2, f0_down, pos_start):
sym_size2 = int(fs2 * FT8_SYMBOL_PERIOD)
n = np.arange(sym_size2)
f_tones = np.arange(f0_new, f0_new + FT8_NUM_TONES*FT8_TONE_DEVIATION, FT8_TONE_DEVIATION)
f_tones = np.arange(f0_down, f0_down + FT8_NUM_TONES*FT8_TONE_DEVIATION, FT8_TONE_DEVIATION)
ctones_conj = np.exp(-1j * 2*np.pi * np.expand_dims(n, n.ndim) * np.expand_dims(f_tones/fs2, 0))
ctweak_plus_tone = np.exp(-1j * 2*np.pi * n * FT8_TONE_DEVIATION/fs2)
ctweak_minus_tone = np.exp(1j * 2*np.pi * n * FT8_TONE_DEVIATION/fs2)
@ -128,11 +157,12 @@ def search_sync_fine(sig2, fs2, f0_new, pos_start):
max_power, max_freq_offset, max_pos_offset = None, None, None
all_powers = []
win = signal.windows.kaiser(sym_size2, beta=2.0)
for freq_offset in np.linspace(-2.5, 2.5, 21):
for freq_offset in np.linspace(-3.2, 3.2, 21):
power_time = []
ctweak = np.exp(-1j * 2*np.pi * n * freq_offset/fs2)
for pos_offset in range(-sym_size2//2, sym_size2//2 + 1):
power = 0
power_sig = 0
power_nse = 1e-12
for sync_start in FT8_SYNC_POS:
for sync_pos, sync_tone in enumerate(FT8_SYNC_SYMS):
pos1 = pos_start + pos_offset + sym_size2 * (sync_start + sync_pos)
@ -140,23 +170,25 @@ def search_sync_fine(sig2, fs2, f0_new, pos_start):
if pos1 >= 0 and pos1 + sym_size2 < len(sig2):
demod = win * sig2[pos1:pos1 + sym_size2] * ctones_conj[:, sync_tone] * ctweak
mag2_sym = np.abs(np.sum(demod))**2
# power += mag2_sym
mag2_minus = np.abs(np.sum(demod * ctweak_minus_tone))**2
mag2_plus = np.abs(np.sum(demod * ctweak_plus_tone))**2
power += 2*mag2_sym - mag2_minus - mag2_plus
power_sig += mag2_sym
power_nse += (mag2_minus + mag2_plus)/2
# demod_prev = win * sig2[pos1 - sym_size2:pos1] * ctones_conj[:, sync_tone] * ctweak
# demod_next = win * sig2[pos1 + sym_size2:pos1 + 2*sym_size2] * ctones_conj[:, sync_tone] * ctweak
# mag2_prev = np.abs(np.sum(demod_prev))**2
# mag2_next = np.abs(np.sum(demod_next))**2
# power += 2*mag2_sym - mag2_prev - mag2_next
# power = lin_to_db(power_sig / power_nse)/2
power = power_sig / power_nse
power_time.append(power)
if max_power is None or power > max_power:
max_power = power
max_freq_offset = freq_offset
max_pos_offset = pos_offset
print(f'{freq_offset:.1f}, {(np.argmax(power_time) - sym_size2//2)/fs2:.3f}, {np.max(power_time)}')
# print(f'{freq_offset:.1f}, {(np.argmax(power_time) - sym_size2//2)/fs2:.3f}, {np.max(power_time)}')
all_powers.append(power_time)
return max_freq_offset, max_pos_offset
@ -194,63 +226,69 @@ print(f'Sample rate {fs} Hz')
freq_osr = 2
time_osr = 2
sym_size = int(fs * FT8_SYMBOL_PERIOD)
nfft = sym_size * freq_osr
freq_step = fs / nfft
_, _, H = signal.stft(sig, window='hann', nperseg=nfft, noverlap=nfft - (sym_size//time_osr), boundary=None, padded=None)
H = quantize(H)
Adb = lin_to_db(np.abs(H))
print(f'Max magnitude {Adb.max(axis=(0, 1)):.1f} dB')
print(f'Waterfall shape {Adb.shape}')
bin_min = int(MIN_FREQ / freq_step)
bin_max = int(MAX_FREQ / freq_step) + 1
search_sync_coarse(H, bin_min, bin_max, freq_osr, time_osr)
wf = Waterfall(freq_osr=freq_osr, time_osr=time_osr, freq_min=MIN_FREQ, freq_max=MAX_FREQ)
wf.load_signal(sig, fs)
use_downsample = True
f0 = float(sys.argv[2])
time_start = float(sys.argv[3])
bin_f0 = int(0.5 + f0 / freq_step)
f0_real = bin_f0 * freq_step
print(f'Frequency {f0:.2f} Hz (bin {bin_f0}), coarse {f0_real:.2f} Hz')
if use_downsample:
fs2 = 100
env_alpha = 0.06
sig2, f0_new = downsample_fft(H[:, ::time_osr], bin_f0, fs2=fs2, freq_osr=freq_osr, time_osr=1)
print(f'Downsampled signal to {fs2} Hz sample rate, freq shift {f0_real} Hz -> {f0_new} Hz')
pos_start = int(0.5 + time_start * fs2)
max_freq_offset, max_pos_offset = search_sync_fine(sig2, fs2, f0_new, pos_start)
print(f'Max power at {f0_real:.2f} + {max_freq_offset:.2f} = {f0_real + max_freq_offset:.2f} Hz, {max_pos_offset/fs2:.3f} s')
env = signal.filtfilt(env_alpha, [1, -(1-env_alpha)], np.abs(sig2))
# max_freq_offset = f0 - f0_real
# max_pos_offset = 0
sym_size2 = int(fs2 * FT8_SYMBOL_PERIOD)
ctweak = np.exp(-1j * 2*np.pi * np.arange(len(sig2)) * (f0_new + max_freq_offset)/fs2)
sig3 = (sig2*ctweak)[pos_start + max_pos_offset:pos_start + max_pos_offset + int(FT8_NUM_SYMBOLS*FT8_SYMBOL_PERIOD*fs2)]
_, _, H2 = signal.stft(sig3, window='boxcar', nperseg=sym_size2, noverlap=0, return_onesided=False, boundary=None, padded=False)
A2db = lin_to_db(np.abs(H2))
A2db = A2db[0:FT8_NUM_TONES, :]
if len(sys.argv) > 2:
f0 = float(sys.argv[2])
time_start = float(sys.argv[3])
candidates = [(f0, time_start)]
else:
pos_start = int(0.5 + (time_start + FT8_SYMBOL_PERIOD/2) * fs / sym_size * time_osr)
print(f'Start time {time_start:.3f} s (pos {pos_start}), coarse {pos_start / time_osr * sym_size / fs - FT8_SYMBOL_PERIOD/2:.3f} s')
A2db = Adb[bin_f0:bin_f0+freq_osr*FT8_NUM_TONES:freq_osr, pos_start:pos_start+FT8_NUM_SYMBOLS*time_osr:time_osr]
candidates = search_sync_coarse(wf)
A2db -= np.max(A2db, axis=0)
num_decoded = 0
for f0, time_start in candidates:
bin_f0 = int(0.5 + f0 / wf.freq_step)
f0_real = bin_f0 * wf.freq_step
print(f'Frequency {f0:.2f} Hz (bin {bin_f0}), coarse {f0_real:.2f} Hz')
bits_logl, A2db_bits = extract_logl_db(A2db)
(num_errors, bits) = ldpc.bp_solve(bits_logl, max_iters=30, max_no_improvement=15)
print(f'LDPC decode: {num_errors} errors')
if num_errors == 0:
print(f'Payload bits: {"".join([str(x) for x in bits[:FT8_PAYLOAD_BITS]])}')
print(f'CRC bits : {"".join([str(x) for x in bits[FT8_PAYLOAD_BITS:FT8_LDPC_PAYLOAD_BITS]])}')
print(f'Parity bits : {"".join([str(x) for x in bits[FT8_LDPC_PAYLOAD_BITS:]])}')
if use_downsample:
fs2 = 100
env_alpha = 0.06
sig2, f0_down = downsample_fft(wf.H[:, ::time_osr], bin_f0, fs2=fs2, freq_osr=freq_osr, time_osr=1)
print(f'Downsampled signal to {fs2} Hz sample rate, freq shift {f0_real} Hz -> {f0_down} Hz')
pos_start = int(0.5 + time_start * fs2)
max_freq_offset, max_pos_offset = search_sync_fine(sig2, fs2, f0_down, pos_start)
f0_down_fine, pos_fine = max_freq_offset + f0_down, pos_start + max_pos_offset
print(f'Fine sync at {f0_real:.2f} + {max_freq_offset:.2f} = {f0_real + max_freq_offset:.2f} Hz, {pos_start/fs2:.3f} + {max_pos_offset/fs2:.3f} = {pos_fine/fs2:.3f} s')
env = signal.filtfilt(env_alpha, [1, -(1-env_alpha)], np.abs(sig2))
sym_size2 = int(fs2 * FT8_SYMBOL_PERIOD)
ctweak = np.exp(-1j * 2*np.pi * np.arange(len(sig2)) * f0_down_fine/fs2)
slice_pos = pos_start + max_pos_offset
slice_length = int(FT8_NUM_SYMBOLS*FT8_SYMBOL_PERIOD*fs2)
pad_left = pad_right = 0
if slice_pos < 0:
pad_left = -slice_pos
slice_pos = 0
if slice_pos + slice_length > len(sig2) + pad_left:
pad_right = slice_pos + slice_length - (len(sig2) + pad_left)
sig3 = np.pad(sig2*ctweak, (pad_left, pad_right), mode='constant', constant_values=(0, 0))[slice_pos:slice_pos + slice_length]
_, _, H2 = signal.stft(sig3, window='boxcar', nperseg=sym_size2, noverlap=0, return_onesided=False, boundary=None, padded=False)
A2db = lin_to_db(np.abs(H2[0:FT8_NUM_TONES, :]))
else:
time_offset = FT8_SYMBOL_PERIOD / 4
pos_start = int(0.5 + (time_start + time_offset) / wf.time_step)
print(f'Start time {time_start:.3f} s (pos {pos_start}), coarse {pos_start * wf.time_step - time_offset:.3f} s')
# TODO: zero padding for time axis
A2db = wf.Adb[bin_f0:bin_f0+freq_osr*FT8_NUM_TONES:freq_osr, pos_start:pos_start+FT8_NUM_SYMBOLS*time_osr:time_osr]
A2db -= np.max(A2db, axis=0)
bits_logl, A2db_bits = extract_logl_db(A2db)
(num_errors, bits) = ldpc.bp_solve(bits_logl, max_iters=30, max_no_improvement=15)
print(f'LDPC decode: {num_errors} errors')
if num_errors == 0:
print(f'Payload bits: {"".join([str(x) for x in bits[:FT8_PAYLOAD_BITS]])}')
print(f'CRC bits : {"".join([str(x) for x in bits[FT8_PAYLOAD_BITS:FT8_LDPC_PAYLOAD_BITS]])}')
print(f'Parity bits : {"".join([str(x) for x in bits[FT8_LDPC_PAYLOAD_BITS:]])}')
num_decoded += 1
print(f'Total decoded: {num_decoded}')
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker