2021-11-08 20:44:37 +00:00
|
|
|
#include <stdbool.h>
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#include "ft8/ft8.h"
|
|
|
|
|
2018-12-27 20:33:07 +00:00
|
|
|
#include "constants.h"
|
2021-08-12 10:43:25 +00:00
|
|
|
#include "crc.h"
|
|
|
|
#include "ldpc.h"
|
|
|
|
#include "unpack.h"
|
2021-11-08 20:44:37 +00:00
|
|
|
#include "fft/kiss_fftr.h"
|
|
|
|
#include "common/debug.h"
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
const int kMin_score = 10; // Minimum sync score threshold for candidates
|
|
|
|
const int kMax_candidates = 120;
|
|
|
|
const int kLDPC_iterations = 20;
|
2019-01-02 18:54:18 +00:00
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
const int kMax_decoded_messages = 50;
|
|
|
|
|
|
|
|
const int kFreq_osr = 2;
|
|
|
|
const int kTime_osr = 2;
|
|
|
|
|
|
|
|
const float kFSK_dev = 6.25f; // tone deviation in Hz and symbol rate
|
2021-08-12 10:43:25 +00:00
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
/// Input structure to find_sync() function. This structure describes stored waterfall data over the whole message slot.
|
|
|
|
/// Fields time_osr and freq_osr specify additional oversampling rate for time and frequency resolution.
|
|
|
|
/// If time_osr=1, FFT magnitude data is collected once for every symbol transmitted, i.e. every 1/6.25 = 0.16 seconds.
|
|
|
|
/// Values time_osr > 1 mean each symbol is further subdivided in time.
|
|
|
|
/// If freq_osr=1, each bin in the FFT magnitude data corresponds to 6.25 Hz, which is the tone spacing.
|
|
|
|
/// Values freq_osr > 1 mean the tone spacing is further subdivided by FFT analysis.
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
int num_blocks; ///< number of total blocks (symbols) in terms of 160 ms time periods
|
|
|
|
int num_bins; ///< number of FFT bins in terms of 6.25 Hz
|
|
|
|
int time_osr; ///< number of time subdivisions
|
|
|
|
int freq_osr; ///< number of frequency subdivisions
|
|
|
|
uint8_t *mag; ///< FFT magnitudes stored as uint8_t[blocks][time_osr][freq_osr][num_bins]
|
|
|
|
} waterfall_t;
|
|
|
|
|
|
|
|
/// Output structure of find_sync() and input structure of extract_likelihood().
|
|
|
|
/// Holds the position of potential start of a message in time and frequency.
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
int16_t score; ///< Candidate score (non-negative number; higher score means higher likelihood)
|
|
|
|
int16_t time_offset; ///< Index of the time block
|
|
|
|
int16_t freq_offset; ///< Index of the frequency bin
|
|
|
|
uint8_t time_sub; ///< Index of the time subdivision used
|
|
|
|
uint8_t freq_sub; ///< Index of the frequency subdivision used
|
|
|
|
} candidate_t;
|
|
|
|
|
|
|
|
/// Structure that holds the decoded message
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
// TODO: check again that this size is enough
|
|
|
|
char text[25]; // plain text
|
|
|
|
uint16_t hash; // hash value to be used in hash table and quick checking for duplicates
|
|
|
|
} message_t;
|
|
|
|
|
|
|
|
/// Structure that contains the status of various steps during decoding of a message
|
|
|
|
typedef struct
|
|
|
|
{
|
|
|
|
int ldpc_errors;
|
|
|
|
uint16_t crc_extracted;
|
|
|
|
uint16_t crc_calculated;
|
|
|
|
int unpack_status;
|
|
|
|
} decode_status_t;
|
|
|
|
|
|
|
|
// forward declarations
|
|
|
|
static void extract_likelihood(const waterfall_t *power, const candidate_t *cand, float *log174);
|
2018-12-27 20:33:07 +00:00
|
|
|
static float max2(float a, float b);
|
|
|
|
static float max4(float a, float b, float c, float d);
|
2021-08-12 10:43:25 +00:00
|
|
|
static void heapify_down(candidate_t heap[], int heap_size);
|
|
|
|
static void heapify_up(candidate_t heap[], int heap_size);
|
2021-08-06 06:57:08 +00:00
|
|
|
static void decode_symbol(const uint8_t *power, int bit_idx, float *log174);
|
|
|
|
static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, int bit_idx, float *log174);
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2021-08-12 10:43:25 +00:00
|
|
|
static int get_index(const waterfall_t *power, int block, int time_sub, int freq_sub, int bin)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
|
|
|
return ((((block * power->time_osr) + time_sub) * power->freq_osr + freq_sub) * power->num_bins) + bin;
|
2019-11-10 07:04:00 +00:00
|
|
|
}
|
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
static int find_sync(const waterfall_t *power, int num_candidates, candidate_t heap[], int min_score)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
int heap_size = 0;
|
2021-08-13 09:39:37 +00:00
|
|
|
int sym_stride = power->time_osr * power->freq_osr * power->num_bins;
|
2018-12-27 20:33:07 +00:00
|
|
|
|
|
|
|
// Here we allow time offsets that exceed signal boundaries, as long as we still have all data bits.
|
|
|
|
// I.e. we can afford to skip the first 7 or the last 7 Costas symbols, as long as we track how many
|
|
|
|
// sync symbols we included in the score, so the score is averaged.
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int time_sub = 0; time_sub < power->time_osr; ++time_sub)
|
|
|
|
{
|
|
|
|
for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub)
|
|
|
|
{
|
2021-08-18 08:07:12 +00:00
|
|
|
for (int time_offset = -12; time_offset < 24; ++time_offset)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2021-08-18 08:07:12 +00:00
|
|
|
for (int freq_offset = 0; freq_offset + 7 < power->num_bins; ++freq_offset)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
int score = 0;
|
2021-08-18 08:07:12 +00:00
|
|
|
int num_average = 0;
|
2019-11-10 07:04:00 +00:00
|
|
|
|
|
|
|
// Compute average score over sync symbols (m+k = 0-7, 36-43, 72-79)
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int m = 0; m <= 72; m += 36)
|
|
|
|
{
|
|
|
|
for (int k = 0; k < 7; ++k)
|
|
|
|
{
|
2021-08-12 12:04:15 +00:00
|
|
|
int block = time_offset + m + k;
|
2019-11-10 07:04:00 +00:00
|
|
|
// Check for time boundaries
|
2021-08-12 12:04:15 +00:00
|
|
|
if (block < 0)
|
2021-08-05 10:56:35 +00:00
|
|
|
continue;
|
2021-08-12 12:04:15 +00:00
|
|
|
if (block >= power->num_blocks)
|
2021-08-05 10:56:35 +00:00
|
|
|
break;
|
2019-11-10 07:04:00 +00:00
|
|
|
|
2021-08-12 12:04:15 +00:00
|
|
|
int offset = get_index(power, block, time_sub, freq_sub, freq_offset);
|
2019-11-10 07:04:00 +00:00
|
|
|
const uint8_t *p8 = power->mag + offset;
|
|
|
|
|
|
|
|
// Weighted difference between the expected and all other symbols
|
|
|
|
// Does not work as well as the alternative score below
|
2021-08-13 09:39:37 +00:00
|
|
|
// score += 8 * p8[kFT8_Costas_pattern[k]] -
|
|
|
|
// p8[0] - p8[1] - p8[2] - p8[3] -
|
|
|
|
// p8[4] - p8[5] - p8[6] - p8[7];
|
2021-08-18 08:07:12 +00:00
|
|
|
// ++num_average;
|
2019-11-10 07:04:00 +00:00
|
|
|
|
|
|
|
// Check only the neighbors of the expected symbol frequency- and time-wise
|
2021-08-06 06:57:08 +00:00
|
|
|
int sm = kFT8_Costas_pattern[k]; // Index of the expected bin
|
2021-08-05 10:56:35 +00:00
|
|
|
if (sm > 0)
|
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
// look at one frequency bin lower
|
|
|
|
score += p8[sm] - p8[sm - 1];
|
2021-08-18 08:07:12 +00:00
|
|
|
++num_average;
|
2019-11-10 07:04:00 +00:00
|
|
|
}
|
2021-08-05 10:56:35 +00:00
|
|
|
if (sm < 7)
|
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
// look at one frequency bin higher
|
|
|
|
score += p8[sm] - p8[sm + 1];
|
2021-08-18 08:07:12 +00:00
|
|
|
++num_average;
|
2019-11-10 07:04:00 +00:00
|
|
|
}
|
2021-08-18 08:07:12 +00:00
|
|
|
if ((k > 0) && (block > 0))
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
// look one symbol back in time
|
2021-08-13 09:39:37 +00:00
|
|
|
score += p8[sm] - p8[sm - sym_stride];
|
2021-08-18 08:07:12 +00:00
|
|
|
++num_average;
|
2019-11-10 07:04:00 +00:00
|
|
|
}
|
2021-08-18 08:07:12 +00:00
|
|
|
if ((k < 6) && ((block + 1) < power->num_blocks))
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
// look one symbol forward in time
|
2021-08-13 09:39:37 +00:00
|
|
|
score += p8[sm] - p8[sm + sym_stride];
|
2021-08-18 08:07:12 +00:00
|
|
|
++num_average;
|
2019-11-10 07:04:00 +00:00
|
|
|
}
|
|
|
|
}
|
2018-12-27 20:33:07 +00:00
|
|
|
}
|
2021-08-18 08:07:12 +00:00
|
|
|
|
|
|
|
if (num_average > 0)
|
|
|
|
score /= num_average;
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
if (score < min_score)
|
|
|
|
continue;
|
2019-11-12 13:36:32 +00:00
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
// If the heap is full AND the current candidate is better than
|
2019-11-10 07:04:00 +00:00
|
|
|
// the worst in the heap, we remove the worst and make space
|
2021-08-05 10:56:35 +00:00
|
|
|
if (heap_size == num_candidates && score > heap[0].score)
|
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
heap[0] = heap[heap_size - 1];
|
|
|
|
--heap_size;
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2019-11-10 07:04:00 +00:00
|
|
|
heapify_down(heap, heap_size);
|
|
|
|
}
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2019-11-10 07:04:00 +00:00
|
|
|
// If there's free space in the heap, we add the current candidate
|
2021-08-05 10:56:35 +00:00
|
|
|
if (heap_size < num_candidates)
|
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
heap[heap_size].score = score;
|
|
|
|
heap[heap_size].time_offset = time_offset;
|
|
|
|
heap[heap_size].freq_offset = freq_offset;
|
|
|
|
heap[heap_size].time_sub = time_sub;
|
|
|
|
heap[heap_size].freq_sub = freq_sub;
|
|
|
|
++heap_size;
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2019-11-10 07:04:00 +00:00
|
|
|
heapify_up(heap, heap_size);
|
|
|
|
}
|
2018-12-27 20:33:07 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-08-18 08:07:12 +00:00
|
|
|
// Sort the candidates by sync strength - here we benefit from the heap structure
|
|
|
|
int len_unsorted = heap_size;
|
|
|
|
while (len_unsorted > 1)
|
|
|
|
{
|
|
|
|
candidate_t tmp = heap[len_unsorted - 1];
|
|
|
|
heap[len_unsorted - 1] = heap[0];
|
|
|
|
heap[0] = tmp;
|
|
|
|
len_unsorted--;
|
|
|
|
heapify_down(heap, len_unsorted);
|
|
|
|
}
|
|
|
|
|
2018-12-27 20:33:07 +00:00
|
|
|
return heap_size;
|
|
|
|
}
|
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
/// Compute log likelihood log(p(1) / p(0)) of 174 message bits for later use in soft-decision LDPC decoding
|
|
|
|
/// @param[in] power Waterfall data collected during message slot
|
|
|
|
/// @param[in] cand Candidate to extract the message from
|
|
|
|
/// @param[out] log174 Output of decoded log likelihoods for each of the 174 message bits
|
|
|
|
static void extract_likelihood(const waterfall_t *power, const candidate_t *cand, float *log174)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2021-08-13 09:39:37 +00:00
|
|
|
int sym_stride = power->time_osr * power->freq_osr * power->num_bins;
|
2021-08-05 11:07:31 +00:00
|
|
|
int offset = get_index(power, cand->time_offset, cand->time_sub, cand->freq_sub, cand->freq_offset);
|
2018-12-27 20:33:07 +00:00
|
|
|
|
|
|
|
// Go over FSK tones and skip Costas sync symbols
|
|
|
|
const int n_syms = 1;
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int k = 0; k < FT8_ND; k += n_syms)
|
|
|
|
{
|
2019-11-10 07:04:00 +00:00
|
|
|
// Add either 7 or 14 extra symbols to account for sync
|
2021-08-05 10:56:35 +00:00
|
|
|
int sym_idx = (k < FT8_ND / 2) ? (k + 7) : (k + 14);
|
2018-12-27 20:33:07 +00:00
|
|
|
int bit_idx = 3 * k;
|
|
|
|
|
2021-08-16 17:02:52 +00:00
|
|
|
int block = cand->time_offset + sym_idx;
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2021-08-16 17:02:52 +00:00
|
|
|
// Check for time boundaries
|
|
|
|
if ((block < 0) || (block >= power->num_blocks))
|
|
|
|
{
|
|
|
|
log174[bit_idx] = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// Pointer to 8 bins of the current symbol
|
|
|
|
const uint8_t *ps = power->mag + offset + (sym_idx * sym_stride);
|
|
|
|
|
|
|
|
decode_symbol(ps, bit_idx, log174);
|
|
|
|
}
|
2018-12-27 20:33:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Compute the variance of log174
|
2021-08-05 10:56:35 +00:00
|
|
|
float sum = 0;
|
|
|
|
float sum2 = 0;
|
2021-08-16 17:02:52 +00:00
|
|
|
for (int i = 0; i < FT8_LDPC_N; ++i)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
|
|
|
sum += log174[i];
|
2018-12-27 20:33:07 +00:00
|
|
|
sum2 += log174[i] * log174[i];
|
|
|
|
}
|
2021-08-16 17:02:52 +00:00
|
|
|
float inv_n = 1.0f / FT8_LDPC_N;
|
2021-08-12 10:43:25 +00:00
|
|
|
float variance = (sum2 - (sum * sum * inv_n)) * inv_n;
|
2018-12-27 20:33:07 +00:00
|
|
|
|
2021-08-12 11:32:49 +00:00
|
|
|
// Normalize log174 distribution and scale it with experimentally found coefficient
|
2021-08-18 08:07:12 +00:00
|
|
|
float norm_factor = sqrtf(24.0f / variance);
|
2021-08-16 17:02:52 +00:00
|
|
|
for (int i = 0; i < FT8_LDPC_N; ++i)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
log174[i] *= norm_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
static bool decode(const waterfall_t *power, const candidate_t *cand, message_t *message, int max_iterations, decode_status_t *status)
|
2021-08-12 10:43:25 +00:00
|
|
|
{
|
2021-08-16 17:02:52 +00:00
|
|
|
float log174[FT8_LDPC_N]; // message bits encoded as likelihood
|
2021-08-12 10:43:25 +00:00
|
|
|
extract_likelihood(power, cand, log174);
|
|
|
|
|
2021-08-16 17:02:52 +00:00
|
|
|
uint8_t plain174[FT8_LDPC_N]; // message bits (0/1)
|
2021-11-08 20:44:37 +00:00
|
|
|
ft8_bp_decode(log174, max_iterations, plain174, &status->ldpc_errors);
|
2021-08-13 09:39:37 +00:00
|
|
|
// ldpc_decode(log174, max_iterations, plain174, &status->ldpc_errors);
|
2021-08-12 10:43:25 +00:00
|
|
|
|
|
|
|
if (status->ldpc_errors > 0)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-08-16 17:02:52 +00:00
|
|
|
// Extract payload + CRC (first FT8_LDPC_K bits) packed into a byte array
|
|
|
|
uint8_t a91[FT8_LDPC_K_BYTES];
|
2021-11-08 20:44:37 +00:00
|
|
|
ft8_pack_bits(plain174, FT8_LDPC_K, a91);
|
2021-08-12 10:43:25 +00:00
|
|
|
|
|
|
|
// Extract CRC and check it
|
2021-11-08 20:44:37 +00:00
|
|
|
status->crc_extracted = ft8_extract_crc(a91);
|
2021-08-12 11:32:49 +00:00
|
|
|
// [1]: 'The CRC is calculated on the source-encoded message, zero-extended from 77 to 82 bits.'
|
2021-08-12 10:43:25 +00:00
|
|
|
a91[9] &= 0xF8;
|
2021-08-12 11:32:49 +00:00
|
|
|
a91[10] &= 0x00;
|
2021-08-12 10:43:25 +00:00
|
|
|
status->crc_calculated = ft8_crc(a91, 96 - 14);
|
|
|
|
|
|
|
|
if (status->crc_extracted != status->crc_calculated)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-11-08 20:44:37 +00:00
|
|
|
status->unpack_status = ft8_unpack77(a91, message->text);
|
2021-08-12 10:43:25 +00:00
|
|
|
|
|
|
|
if (status->unpack_status < 0)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reuse binary message CRC as hash value for the message
|
|
|
|
message->hash = status->crc_extracted;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
static float max2(float a, float b)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
return (a >= b) ? a : b;
|
|
|
|
}
|
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
static float max4(float a, float b, float c, float d)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
return max2(max2(a, b), max2(c, d));
|
|
|
|
}
|
|
|
|
|
2021-08-12 10:43:25 +00:00
|
|
|
static void heapify_down(candidate_t heap[], int heap_size)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
// heapify from the root down
|
|
|
|
int current = 0;
|
2021-08-05 10:56:35 +00:00
|
|
|
while (true)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
int largest = current;
|
|
|
|
int left = 2 * current + 1;
|
|
|
|
int right = left + 1;
|
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
if (left < heap_size && heap[left].score < heap[largest].score)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
largest = left;
|
|
|
|
}
|
2021-08-05 10:56:35 +00:00
|
|
|
if (right < heap_size && heap[right].score < heap[largest].score)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
largest = right;
|
|
|
|
}
|
2021-08-05 10:56:35 +00:00
|
|
|
if (largest == current)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2021-08-12 10:43:25 +00:00
|
|
|
candidate_t tmp = heap[largest];
|
2018-12-27 20:33:07 +00:00
|
|
|
heap[largest] = heap[current];
|
|
|
|
heap[current] = tmp;
|
|
|
|
current = largest;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-08-12 10:43:25 +00:00
|
|
|
static void heapify_up(candidate_t heap[], int heap_size)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
// heapify from the last node up
|
|
|
|
int current = heap_size - 1;
|
2021-08-05 10:56:35 +00:00
|
|
|
while (current > 0)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
int parent = (current - 1) / 2;
|
2021-08-05 10:56:35 +00:00
|
|
|
if (heap[current].score >= heap[parent].score)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2021-08-12 10:43:25 +00:00
|
|
|
candidate_t tmp = heap[parent];
|
2018-12-27 20:33:07 +00:00
|
|
|
heap[parent] = heap[current];
|
|
|
|
heap[current] = tmp;
|
|
|
|
current = parent;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute unnormalized log likelihood log(p(1) / p(0)) of 3 message bits (1 FSK symbol)
|
2021-08-06 06:57:08 +00:00
|
|
|
static void decode_symbol(const uint8_t *power, int bit_idx, float *log174)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
// Cleaned up code for the simple case of n_syms==1
|
|
|
|
float s2[8];
|
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int j = 0; j < 8; ++j)
|
|
|
|
{
|
2021-08-06 06:57:08 +00:00
|
|
|
s2[j] = (float)power[kFT8_Gray_map[j]];
|
2018-12-27 20:33:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
log174[bit_idx + 0] = max4(s2[4], s2[5], s2[6], s2[7]) - max4(s2[0], s2[1], s2[2], s2[3]);
|
|
|
|
log174[bit_idx + 1] = max4(s2[2], s2[3], s2[6], s2[7]) - max4(s2[0], s2[1], s2[4], s2[5]);
|
|
|
|
log174[bit_idx + 2] = max4(s2[1], s2[3], s2[5], s2[7]) - max4(s2[0], s2[2], s2[4], s2[6]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute unnormalized log likelihood log(p(1) / p(0)) of bits corresponding to several FSK symbols at once
|
2021-08-06 06:57:08 +00:00
|
|
|
static void decode_multi_symbols(const uint8_t *power, int num_bins, int n_syms, int bit_idx, float *log174)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
const int n_bits = 3 * n_syms;
|
|
|
|
const int n_tones = (1 << n_bits);
|
2021-08-05 10:56:35 +00:00
|
|
|
|
2018-12-27 20:33:07 +00:00
|
|
|
float s2[n_tones];
|
|
|
|
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int j = 0; j < n_tones; ++j)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
int j1 = j & 0x07;
|
2021-08-05 10:56:35 +00:00
|
|
|
if (n_syms == 1)
|
|
|
|
{
|
2021-08-06 06:57:08 +00:00
|
|
|
s2[j] = (float)power[kFT8_Gray_map[j1]];
|
2018-12-27 20:33:07 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
int j2 = (j >> 3) & 0x07;
|
2021-08-05 10:56:35 +00:00
|
|
|
if (n_syms == 2)
|
|
|
|
{
|
2021-08-06 06:57:08 +00:00
|
|
|
s2[j] = (float)power[kFT8_Gray_map[j2]];
|
|
|
|
s2[j] += (float)power[kFT8_Gray_map[j1] + 4 * num_bins];
|
2018-12-27 20:33:07 +00:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
int j3 = (j >> 6) & 0x07;
|
2021-08-06 06:57:08 +00:00
|
|
|
s2[j] = (float)power[kFT8_Gray_map[j3]];
|
|
|
|
s2[j] += (float)power[kFT8_Gray_map[j2] + 4 * num_bins];
|
|
|
|
s2[j] += (float)power[kFT8_Gray_map[j1] + 8 * num_bins];
|
2018-12-27 20:33:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Extract bit significance (and convert them to float)
|
|
|
|
// 8 FSK tones = 3 bits
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int i = 0; i < n_bits; ++i)
|
|
|
|
{
|
2021-08-16 17:02:52 +00:00
|
|
|
if (bit_idx + i >= FT8_LDPC_N)
|
2021-08-05 10:56:35 +00:00
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
// Respect array size
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t mask = (n_tones >> (i + 1));
|
|
|
|
float max_zero = -1000, max_one = -1000;
|
2021-08-05 10:56:35 +00:00
|
|
|
for (int n = 0; n < n_tones; ++n)
|
|
|
|
{
|
|
|
|
if (n & mask)
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
max_one = max2(max_one, s2[n]);
|
|
|
|
}
|
2021-08-05 10:56:35 +00:00
|
|
|
else
|
|
|
|
{
|
2018-12-27 20:33:07 +00:00
|
|
|
max_zero = max2(max_zero, s2[n]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
log174[bit_idx + i] = max_one - max_zero;
|
2021-08-05 10:56:35 +00:00
|
|
|
}
|
2019-01-02 18:54:18 +00:00
|
|
|
}
|
2021-11-08 20:44:37 +00:00
|
|
|
|
|
|
|
static float hann_i(int i, int N)
|
|
|
|
{
|
|
|
|
float x = sinf((float)M_PI * i / N);
|
|
|
|
return x * x;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float hamming_i(int i, int N)
|
|
|
|
{
|
|
|
|
const float a0 = (float)25 / 46;
|
|
|
|
const float a1 = 1 - a0;
|
|
|
|
|
|
|
|
float x1 = cosf(2 * (float)M_PI * i / N);
|
|
|
|
return a0 - a1 * x1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float blackman_i(int i, int N)
|
|
|
|
{
|
|
|
|
const float alpha = 0.16f; // or 2860/18608
|
|
|
|
const float a0 = (1 - alpha) / 2;
|
|
|
|
const float a1 = 1.0f / 2;
|
|
|
|
const float a2 = alpha / 2;
|
|
|
|
|
|
|
|
float x1 = cosf(2 * (float)M_PI * i / N);
|
|
|
|
float x2 = 2 * x1 * x1 - 1; // Use double angle formula
|
|
|
|
|
|
|
|
return a0 - a1 * x1 + a2 * x2;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute FFT magnitudes (log power) for each timeslot in the signal
|
|
|
|
static void extract_power(const float signal[], waterfall_t *power, int block_size)
|
|
|
|
{
|
|
|
|
const int subblock_size = block_size / power->time_osr;
|
|
|
|
const int nfft = block_size * power->freq_osr;
|
|
|
|
const float fft_norm = 2.0f / nfft;
|
|
|
|
const int len_window = 1.8f * block_size; // hand-picked and optimized
|
|
|
|
|
|
|
|
float window[nfft];
|
|
|
|
for (int i = 0; i < nfft; ++i)
|
|
|
|
{
|
|
|
|
// window[i] = 1;
|
|
|
|
// window[i] = hann_i(i, nfft);
|
|
|
|
// window[i] = blackman_i(i, nfft);
|
|
|
|
// window[i] = hamming_i(i, nfft);
|
|
|
|
window[i] = (i < len_window) ? hann_i(i, len_window) : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t fft_work_size;
|
|
|
|
kiss_fftr_alloc(nfft, 0, 0, &fft_work_size);
|
|
|
|
|
|
|
|
LOG(LOG_INFO, "Block size = %d\n", block_size);
|
|
|
|
LOG(LOG_INFO, "Subblock size = %d\n", subblock_size);
|
|
|
|
LOG(LOG_INFO, "N_FFT = %d\n", nfft);
|
|
|
|
LOG(LOG_INFO, "FFT work area = %lu\n", fft_work_size);
|
|
|
|
|
|
|
|
void *fft_work = malloc(fft_work_size);
|
|
|
|
kiss_fftr_cfg fft_cfg = kiss_fftr_alloc(nfft, 0, fft_work, &fft_work_size);
|
|
|
|
|
|
|
|
int offset = 0;
|
|
|
|
float max_mag = -120.0f;
|
|
|
|
for (int idx_block = 0; idx_block < power->num_blocks; ++idx_block)
|
|
|
|
{
|
|
|
|
// Loop over two possible time offsets (0 and block_size/2)
|
|
|
|
for (int time_sub = 0; time_sub < power->time_osr; ++time_sub)
|
|
|
|
{
|
|
|
|
kiss_fft_scalar timedata[nfft];
|
|
|
|
kiss_fft_cpx freqdata[nfft / 2 + 1];
|
|
|
|
float mag_db[nfft / 2 + 1];
|
|
|
|
|
|
|
|
// Extract windowed signal block
|
|
|
|
for (int pos = 0; pos < nfft; ++pos)
|
|
|
|
{
|
|
|
|
timedata[pos] = window[pos] * signal[(idx_block * block_size) + (time_sub * subblock_size) + pos];
|
|
|
|
}
|
|
|
|
|
|
|
|
kiss_fftr(fft_cfg, timedata, freqdata);
|
|
|
|
|
|
|
|
// Compute log magnitude in decibels
|
|
|
|
for (int idx_bin = 0; idx_bin < nfft / 2 + 1; ++idx_bin)
|
|
|
|
{
|
|
|
|
float mag2 = (freqdata[idx_bin].i * freqdata[idx_bin].i) + (freqdata[idx_bin].r * freqdata[idx_bin].r);
|
|
|
|
mag_db[idx_bin] = 10.0f * log10f(1E-12f + mag2 * fft_norm * fft_norm);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Loop over two possible frequency bin offsets (for averaging)
|
|
|
|
for (int freq_sub = 0; freq_sub < power->freq_osr; ++freq_sub)
|
|
|
|
{
|
|
|
|
for (int pos = 0; pos < power->num_bins; ++pos)
|
|
|
|
{
|
|
|
|
float db = mag_db[pos * power->freq_osr + freq_sub];
|
|
|
|
// Scale decibels to unsigned 8-bit range and clamp the value
|
|
|
|
// Range 0-240 covers -120..0 dB in 0.5 dB steps
|
|
|
|
int scaled = (int)(2 * db + 240);
|
|
|
|
|
|
|
|
power->mag[offset] = (scaled < 0) ? 0 : ((scaled > 255) ? 255 : scaled);
|
|
|
|
++offset;
|
|
|
|
|
|
|
|
if (db > max_mag)
|
|
|
|
max_mag = db;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
LOG(LOG_INFO, "Max magnitude: %.1f dB\n", max_mag);
|
|
|
|
|
|
|
|
free(fft_work);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ft8_decode(float *signal, int num_samples, int sample_rate, ft8_decode_callback_t callback, void *ctx)
|
|
|
|
{
|
|
|
|
// compute DSP parameters that depend on the sample rate
|
|
|
|
const int num_bins = (int)(sample_rate / (2 * kFSK_dev)); // number bins of FSK tone width that the spectrum can be divided into
|
|
|
|
const int block_size = (int)(sample_rate / kFSK_dev); // samples corresponding to one FSK symbol
|
|
|
|
const int subblock_size = block_size / kTime_osr;
|
|
|
|
const int nfft = block_size * kFreq_osr;
|
|
|
|
const int num_blocks = (num_samples - nfft + subblock_size) / block_size;
|
|
|
|
|
|
|
|
// Compute FFT over the whole signal and store it
|
|
|
|
uint8_t mag_power[num_blocks * kFreq_osr * kTime_osr * num_bins];
|
|
|
|
waterfall_t power = {
|
|
|
|
.num_blocks = num_blocks,
|
|
|
|
.num_bins = num_bins,
|
|
|
|
.time_osr = kTime_osr,
|
|
|
|
.freq_osr = kFreq_osr,
|
|
|
|
.mag = mag_power};
|
|
|
|
extract_power(signal, &power, block_size);
|
|
|
|
|
|
|
|
// Find top candidates by Costas sync score and localize them in time and frequency
|
|
|
|
candidate_t candidate_list[kMax_candidates];
|
|
|
|
int num_candidates = find_sync(&power, kMax_candidates, candidate_list, kMin_score);
|
|
|
|
|
|
|
|
// Hash table for decoded messages (to check for duplicates)
|
|
|
|
int num_decoded = 0;
|
|
|
|
message_t decoded[kMax_decoded_messages];
|
|
|
|
message_t *decoded_hashtable[kMax_decoded_messages];
|
|
|
|
|
|
|
|
// Initialize hash table pointers
|
|
|
|
for (int i = 0; i < kMax_decoded_messages; ++i)
|
|
|
|
{
|
|
|
|
decoded_hashtable[i] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Go over candidates and attempt to decode messages
|
|
|
|
for (int idx = 0; idx < num_candidates; ++idx)
|
|
|
|
{
|
|
|
|
const candidate_t *cand = &candidate_list[idx];
|
|
|
|
if (cand->score < kMin_score)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
float freq_hz = (cand->freq_offset + (float)cand->freq_sub / kFreq_osr) * kFSK_dev;
|
|
|
|
float time_sec = (cand->time_offset + (float)cand->time_sub / kTime_osr) / kFSK_dev;
|
|
|
|
|
|
|
|
message_t message;
|
|
|
|
decode_status_t status;
|
|
|
|
if (!decode(&power, cand, &message, kLDPC_iterations, &status))
|
|
|
|
{
|
|
|
|
if (status.ldpc_errors > 0)
|
|
|
|
{
|
|
|
|
LOG(LOG_DEBUG, "LDPC decode: %d errors\n", status.ldpc_errors);
|
|
|
|
}
|
|
|
|
else if (status.crc_calculated != status.crc_extracted)
|
|
|
|
{
|
|
|
|
LOG(LOG_DEBUG, "CRC mismatch!\n");
|
|
|
|
}
|
|
|
|
else if (status.unpack_status != 0)
|
|
|
|
{
|
|
|
|
LOG(LOG_DEBUG, "Error while unpacking!\n");
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
int idx_hash = message.hash % kMax_decoded_messages;
|
|
|
|
bool found_empty_slot = false;
|
|
|
|
bool found_duplicate = false;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (decoded_hashtable[idx_hash] == NULL)
|
|
|
|
{
|
|
|
|
found_empty_slot = true;
|
|
|
|
}
|
|
|
|
else if ((decoded_hashtable[idx_hash]->hash == message.hash) && (0 == strcmp(decoded_hashtable[idx_hash]->text, message.text)))
|
|
|
|
{
|
|
|
|
found_duplicate = true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// move on to check the next entry in hash table
|
|
|
|
idx_hash = (idx_hash + 1) % kMax_decoded_messages;
|
|
|
|
}
|
|
|
|
} while (!found_empty_slot && !found_duplicate);
|
|
|
|
|
|
|
|
if (found_empty_slot)
|
|
|
|
{
|
|
|
|
// fill the empty hashtable slot
|
|
|
|
memcpy(&decoded[idx_hash], &message, sizeof(message));
|
|
|
|
decoded_hashtable[idx_hash] = &decoded[idx_hash];
|
|
|
|
++num_decoded;
|
|
|
|
|
|
|
|
// report message through callback
|
|
|
|
// TODO: compute SNR
|
|
|
|
callback(message.text, freq_hz, time_sec, 0.0, cand->score, ctx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return num_decoded;
|
|
|
|
}
|