kopia lustrzana https://github.com/inkstitch/inkstitch
1148 wiersze
42 KiB
Python
1148 wiersze
42 KiB
Python
#!/usr/bin/python
|
|
#
|
|
# documentation: see included index.html
|
|
# LICENSE:
|
|
# Copyright 2010 by Jon Howell,
|
|
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
|
|
# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
|
|
# New parts are licensed under AGPL3 or later.
|
|
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
|
|
#
|
|
# Important resources:
|
|
# lxml interface for walking SVG tree:
|
|
# http://codespeak.net/lxml/tutorial.html#elementpath
|
|
# Inkscape library for extracting paths from SVG:
|
|
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
|
|
# Shapely computational geometry library:
|
|
# http://gispython.org/shapely/manual.html#multipolygons
|
|
# Embroidery file format documentation:
|
|
# http://www.achatina.de/sewing/main/TECHNICL.HTM
|
|
|
|
import sys
|
|
sys.path.append("/usr/share/inkscape/extensions")
|
|
import os
|
|
import subprocess
|
|
from copy import deepcopy
|
|
import time
|
|
from itertools import chain, izip
|
|
import inkex
|
|
import simplepath
|
|
import simplestyle
|
|
import simpletransform
|
|
from bezmisc import bezierlength, beziertatlength, bezierpointatt
|
|
from cspsubdiv import cspsubdiv
|
|
import cubicsuperpath
|
|
import math
|
|
import lxml.etree as etree
|
|
import shapely.geometry as shgeo
|
|
import shapely.affinity as affinity
|
|
from pprint import pformat
|
|
|
|
import PyEmb
|
|
|
|
dbg = open("/tmp/embroider-debug.txt", "w")
|
|
PyEmb.dbg = dbg
|
|
|
|
SVG_PATH_TAG = inkex.addNS('path', 'svg')
|
|
SVG_DEFS_TAG = inkex.addNS('defs', 'svg')
|
|
SVG_GROUP_TAG = inkex.addNS('g', 'svg')
|
|
|
|
class EmbroideryElement(object):
|
|
def __init__(self, node, options):
|
|
self.node = node
|
|
self.options = options
|
|
|
|
def get_param(self, param, default):
|
|
value = self.node.get("embroider_" + param)
|
|
|
|
if value is None or not value.strip():
|
|
if default is None:
|
|
try:
|
|
default = getattr(self.options, "%s_mm" % param) * self.options.pixels_per_mm
|
|
except AttributeError:
|
|
default = getattr(self.options, param, None)
|
|
|
|
return default
|
|
|
|
return value.strip()
|
|
|
|
def get_boolean_param(self, param, default=None):
|
|
value = self.get_param(param, default)
|
|
|
|
if isinstance(value, bool):
|
|
return value
|
|
else:
|
|
return value and (value.lower() in ('yes', 'y', 'true', 't', '1'))
|
|
|
|
def get_float_param(self, param, default=None):
|
|
value = self.get_param(param, default)
|
|
|
|
try:
|
|
return float(value)
|
|
except TypeError:
|
|
return default
|
|
|
|
|
|
def get_int_param(self, param, default=None):
|
|
value = self.get_param(param, default)
|
|
|
|
try:
|
|
return int(value)
|
|
except ValueError:
|
|
return default
|
|
|
|
def get_style(self, style_name):
|
|
style = simplestyle.parseStyle(self.node.get("style"))
|
|
if (style_name not in style):
|
|
return None
|
|
value = style[style_name]
|
|
if value == 'none':
|
|
return None
|
|
return value
|
|
|
|
def has_style(self, style_name):
|
|
style = simplestyle.parseStyle(self.node.get("style"))
|
|
return style_name in style
|
|
|
|
def parse_path(self):
|
|
# A CSP is a "cubic superpath".
|
|
#
|
|
# A "path" is a sequence of strung-together bezier curves.
|
|
#
|
|
# A "superpath" is a collection of paths that are all in one object.
|
|
#
|
|
# The "cubic" bit in "cubic superpath" is because the bezier curves
|
|
# inkscape uses involve cubic polynomials.
|
|
#
|
|
# Each path is a collection of tuples, each of the form:
|
|
#
|
|
# (control_before, point, control_after)
|
|
#
|
|
# A bezier curve segment is defined by an endpoint, a control point,
|
|
# a second control point, and a final endpoint. A path is a bunch of
|
|
# bezier curves strung together. One could represent a path as a set
|
|
# of four-tuples, but there would be redundancy because the ending
|
|
# point of one bezier is the starting point of the next. Instead, a
|
|
# path is a set of 3-tuples as shown above, and one must construct
|
|
# each bezier curve by taking the appropriate endpoints and control
|
|
# points. Bleh. It should be noted that a straight segment is
|
|
# represented by having the control point on each end equal to that
|
|
# end's point.
|
|
#
|
|
# In a path, each element in the 3-tuple is itself a tuple of (x, y).
|
|
# Tuples all the way down. Hasn't anyone heard of using classes?
|
|
|
|
path = cubicsuperpath.parsePath(self.node.get("d"))
|
|
|
|
# print >> sys.stderr, pformat(path)
|
|
|
|
# start with the identity transform
|
|
transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
|
|
|
|
# combine this node's transform with all parent groups' transforms
|
|
transform = simpletransform.composeParents(self.node, transform)
|
|
|
|
# apply the combined transform to this node's path
|
|
simpletransform.applyTransformToPath(transform, path)
|
|
|
|
return path
|
|
|
|
def flatten(self, path):
|
|
"""approximate a path containing beziers with a series of points"""
|
|
|
|
path = deepcopy(path)
|
|
|
|
cspsubdiv(path, self.options.flat)
|
|
|
|
flattened = []
|
|
|
|
for comp in path:
|
|
vertices = []
|
|
for ctl in comp:
|
|
vertices.append((ctl[1][0], ctl[1][1]))
|
|
flattened.append(vertices)
|
|
|
|
return flattened
|
|
|
|
def to_patches(self):
|
|
raise NotImplementedError("%s must implement to_path()" % self.__class__.__name__)
|
|
|
|
def fatal(self, message):
|
|
print >> sys.stderr, "error:", message
|
|
sys.exit(1)
|
|
|
|
|
|
class Fill(EmbroideryElement):
|
|
def __init__(self, *args, **kwargs):
|
|
super(Fill, self).__init__(*args, **kwargs)
|
|
|
|
self.shape = self.get_shape()
|
|
|
|
@property
|
|
def angle(self):
|
|
return math.radians(self.get_float_param('angle', 0))
|
|
|
|
@property
|
|
def color(self):
|
|
return self.get_style("fill")
|
|
|
|
@property
|
|
def flip(self):
|
|
return self.get_boolean_param("flip", False)
|
|
|
|
@property
|
|
def row_spacing(self):
|
|
return self.get_float_param("row_spacing")
|
|
|
|
@property
|
|
def max_stitch_length(self):
|
|
return self.get_float_param("max_stitch_length")
|
|
|
|
@property
|
|
def staggers(self):
|
|
return self.get_int_param("staggers", 4)
|
|
|
|
@property
|
|
def paths(self):
|
|
return self.flatten(self.parse_path())
|
|
|
|
def get_shape(self):
|
|
poly_ary = []
|
|
for sub_path in self.paths:
|
|
point_ary = []
|
|
last_pt = None
|
|
for pt in sub_path:
|
|
if (last_pt is not None):
|
|
vp = (pt[0] - last_pt[0], pt[1] - last_pt[1])
|
|
dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0))
|
|
# dbg.write("dp %s\n" % dp)
|
|
if (dp > 0.01):
|
|
# I think too-close points confuse shapely.
|
|
point_ary.append(pt)
|
|
last_pt = pt
|
|
else:
|
|
last_pt = pt
|
|
poly_ary.append(point_ary)
|
|
|
|
print >> dbg, poly_ary
|
|
|
|
# shapely's idea of "holes" are to subtract everything in the second set
|
|
# from the first. So let's at least make sure the "first" thing is the
|
|
# biggest path.
|
|
# TODO: actually figure out which things are holes and which are shells
|
|
poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True)
|
|
|
|
polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
|
|
# print >> sys.stderr, "polygon valid:", polygon.is_valid
|
|
return polygon
|
|
|
|
def intersect_region_with_grating(self):
|
|
# the max line length I'll need to intersect the whole shape is the diagonal
|
|
(minx, miny, maxx, maxy) = self.shape.bounds
|
|
upper_left = PyEmb.Point(minx, miny)
|
|
lower_right = PyEmb.Point(maxx, maxy)
|
|
length = (upper_left - lower_right).length()
|
|
half_length = length / 2.0
|
|
|
|
# Now get a unit vector rotated to the requested angle. I use -angle
|
|
# because shapely rotates clockwise, but my geometry textbooks taught
|
|
# me to consider angles as counter-clockwise from the X axis.
|
|
direction = PyEmb.Point(1, 0).rotate(-self.angle)
|
|
|
|
# and get a normal vector
|
|
normal = direction.rotate(math.pi / 2)
|
|
|
|
# I'll start from the center, move in the normal direction some amount,
|
|
# and then walk left and right half_length in each direction to create
|
|
# a line segment in the grating.
|
|
center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)
|
|
|
|
# I need to figure out how far I need to go along the normal to get to
|
|
# the edge of the shape. To do that, I'll rotate the bounding box
|
|
# angle degrees clockwise and ask for the new bounding box. The max
|
|
# and min y tell me how far to go.
|
|
|
|
_, start, _, end = affinity.rotate(self.shape, self.angle, origin='center', use_radians=True).bounds
|
|
|
|
# convert start and end to be relative to center (simplifies things later)
|
|
start -= center.y
|
|
end -= center.y
|
|
|
|
# offset start slightly so that rows are always an even multiple of
|
|
# row_spacing_px from the origin. This makes it so that abutting
|
|
# fill regions at the same angle and spacing always line up nicely.
|
|
start -= (start + normal * center) % self.row_spacing
|
|
|
|
rows = []
|
|
|
|
while start < end:
|
|
p0 = center + normal.mul(start) + direction.mul(half_length)
|
|
p1 = center + normal.mul(start) - direction.mul(half_length)
|
|
endpoints = [p0.as_tuple(), p1.as_tuple()]
|
|
grating_line = shgeo.LineString(endpoints)
|
|
|
|
res = grating_line.intersection(self.shape)
|
|
|
|
if (isinstance(res, shgeo.MultiLineString)):
|
|
runs = map(lambda line_string: line_string.coords, res.geoms)
|
|
else:
|
|
if res.is_empty or len(res.coords) == 1:
|
|
# ignore if we intersected at a single point or no points
|
|
start += self.row_spacing
|
|
continue
|
|
runs = [res.coords]
|
|
|
|
runs.sort(key=lambda seg: (PyEmb.Point(*seg[0]) - upper_left).length())
|
|
|
|
if self.flip:
|
|
runs.reverse()
|
|
runs = map(lambda run: tuple(reversed(run)), runs)
|
|
|
|
rows.append(runs)
|
|
|
|
start += self.row_spacing
|
|
|
|
return rows
|
|
|
|
def pull_runs(self, rows):
|
|
# Given a list of rows, each containing a set of line segments,
|
|
# break the area up into contiguous patches of line segments.
|
|
#
|
|
# This is done by repeatedly pulling off the first line segment in
|
|
# each row and calling that a shape. We have to be careful to make
|
|
# sure that the line segments are part of the same shape. Consider
|
|
# the letter "H", with an embroidery angle of 45 degrees. When
|
|
# we get to the bottom of the lower left leg, the next row will jump
|
|
# over to midway up the lower right leg. We want to stop there and
|
|
# start a new patch.
|
|
|
|
# Segments more than this far apart are considered not to be part of
|
|
# the same run.
|
|
row_distance_cutoff = self.row_spacing * 1.1
|
|
|
|
def make_quadrilateral(segment1, segment2):
|
|
return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))
|
|
|
|
def is_same_run(segment1, segment2):
|
|
if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > row_distance_cutoff:
|
|
return False
|
|
|
|
quad = make_quadrilateral(segment1, segment2)
|
|
quad_area = quad.area
|
|
intersection_area = self.shape.intersection(quad).area
|
|
|
|
return (intersection_area / quad_area) >= 0.9
|
|
|
|
# for row in rows:
|
|
# print >> sys.stderr, len(row)
|
|
|
|
# print >>sys.stderr, "\n".join(str(len(row)) for row in rows)
|
|
|
|
runs = []
|
|
count = 0
|
|
while (len(rows) > 0):
|
|
run = []
|
|
prev = None
|
|
|
|
for row_num in xrange(len(rows)):
|
|
row = rows[row_num]
|
|
first, rest = row[0], row[1:]
|
|
|
|
# TODO: only accept actually adjacent rows here
|
|
if prev is not None and not is_same_run(prev, first):
|
|
break
|
|
|
|
run.append(first)
|
|
prev = first
|
|
|
|
rows[row_num] = rest
|
|
|
|
# print >> sys.stderr, len(run)
|
|
runs.append(run)
|
|
rows = [row for row in rows if len(row) > 0]
|
|
|
|
count += 1
|
|
|
|
return runs
|
|
|
|
def to_patches(self):
|
|
rows_of_segments = self.intersect_region_with_grating()
|
|
groups_of_segments = self.pull_runs(rows_of_segments)
|
|
|
|
# "east" is the name of the direction that is to the right along a row
|
|
east = PyEmb.Point(1, 0).rotate(-self.angle)
|
|
|
|
# print >> sys.stderr, len(groups_of_segments)
|
|
|
|
patches = []
|
|
for group_of_segments in groups_of_segments:
|
|
patch = Patch(color=self.color)
|
|
first_segment = True
|
|
swap = False
|
|
last_end = None
|
|
|
|
for segment in group_of_segments:
|
|
# We want our stitches to look like this:
|
|
#
|
|
# ---*-----------*-----------
|
|
# ------*-----------*--------
|
|
# ---------*-----------*-----
|
|
# ------------*-----------*--
|
|
# ---*-----------*-----------
|
|
#
|
|
# Each successive row of stitches will be staggered, with
|
|
# num_staggers rows before the pattern repeats. A value of
|
|
# 4 gives a nice fill while hiding the needle holes. The
|
|
# first row is offset 0%, the second 25%, the third 50%, and
|
|
# the fourth 75%.
|
|
#
|
|
# Actually, instead of just starting at an offset of 0, we
|
|
# can calculate a row's offset relative to the origin. This
|
|
# way if we have two abutting fill regions, they'll perfectly
|
|
# tile with each other. That's important because we often get
|
|
# abutting fill regions from pull_runs().
|
|
|
|
(beg, end) = segment
|
|
|
|
if (swap):
|
|
(beg, end) = (end, beg)
|
|
|
|
beg = PyEmb.Point(*beg)
|
|
end = PyEmb.Point(*end)
|
|
|
|
row_direction = (end - beg).unit()
|
|
segment_length = (end - beg).length()
|
|
|
|
# only stitch the first point if it's a reasonable distance away from the
|
|
# last stitch
|
|
if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_mm:
|
|
patch.add_stitch(beg)
|
|
|
|
# Now, imagine the coordinate axes rotated by 'angle' degrees, such that
|
|
# the rows are parallel to the X axis. We can find the coordinates in these
|
|
# axes of the beginning point in this way:
|
|
relative_beg = beg.rotate(self.angle)
|
|
|
|
absolute_row_num = round(relative_beg.y / self.row_spacing)
|
|
row_stagger = absolute_row_num % self.staggers
|
|
row_stagger_offset = (float(row_stagger) / self.staggers) * self.max_stitch_length
|
|
|
|
first_stitch_offset = (relative_beg.x - row_stagger_offset) % self.max_stitch_length
|
|
|
|
first_stitch = beg - east * first_stitch_offset
|
|
|
|
# we might have chosen our first stitch just outside this row, so move back in
|
|
if (first_stitch - beg) * row_direction < 0:
|
|
first_stitch += row_direction * self.max_stitch_length
|
|
|
|
offset = (first_stitch - beg).length()
|
|
|
|
while offset < segment_length:
|
|
patch.add_stitch(beg + offset * row_direction)
|
|
offset += self.max_stitch_length
|
|
|
|
if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
|
|
patch.add_stitch(end)
|
|
|
|
last_end = end
|
|
swap = not swap
|
|
|
|
patches.append(patch)
|
|
return patches
|
|
|
|
|
|
class Stroke(EmbroideryElement):
|
|
@property
|
|
def color(self):
|
|
return self.get_style("stroke")
|
|
|
|
@property
|
|
def width(self):
|
|
stroke_width = self.get_style("stroke-width")
|
|
|
|
if stroke_width.endswith("px"):
|
|
stroke_width = stroke_width[:-2]
|
|
|
|
return float(stroke_width)
|
|
|
|
@property
|
|
def dashed(self):
|
|
return self.get_style("stroke-dasharray") is not None
|
|
|
|
@property
|
|
def running_stitch_length(self):
|
|
return self.get_float_param("running_stitch_length")
|
|
|
|
@property
|
|
def zigzag_spacing(self):
|
|
return self.get_float_param("zigzag_spacing")
|
|
|
|
@property
|
|
def repeats(self):
|
|
return self.get_int_param("repeats", 1)
|
|
|
|
@property
|
|
def paths(self):
|
|
return self.flatten(self.parse_path())
|
|
|
|
def is_running_stitch(self):
|
|
# stroke width <= 0.5 pixels is deprecated in favor of dashed lines
|
|
return self.dashed or self.width <= 0.5
|
|
|
|
def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width):
|
|
patch = Patch(color=self.color)
|
|
p0 = emb_point_list[0]
|
|
rho = 0.0
|
|
side = 1
|
|
last_segment_direction = None
|
|
|
|
for repeat in xrange(self.repeats):
|
|
if repeat % 2 == 0:
|
|
order = range(1, len(emb_point_list))
|
|
else:
|
|
order = range(-2, -len(emb_point_list) - 1, -1)
|
|
|
|
for segi in order:
|
|
p1 = emb_point_list[segi]
|
|
|
|
# how far we have to go along segment
|
|
seg_len = (p1 - p0).length()
|
|
if (seg_len == 0):
|
|
continue
|
|
|
|
# vector pointing along segment
|
|
along = (p1 - p0).unit()
|
|
|
|
# vector pointing to edge of stroke width
|
|
perp = along.rotate_left().mul(stroke_width * 0.5)
|
|
|
|
if stroke_width == 0.0 and last_segment_direction is not None:
|
|
if abs(1.0 - along * last_segment_direction) > 0.5:
|
|
# if greater than 45 degree angle, stitch the corner
|
|
rho = self.zigzag_spacing
|
|
patch.add_stitch(p0)
|
|
|
|
# iteration variable: how far we are along segment
|
|
while (rho <= seg_len):
|
|
left_pt = p0 + along * rho + perp * side
|
|
patch.add_stitch(left_pt)
|
|
rho += self.zigzag_spacing
|
|
side = -side
|
|
|
|
p0 = p1
|
|
last_segment_direction = along
|
|
rho -= seg_len
|
|
|
|
if (p0 - patch.stitches[-1]).length() > 0.1:
|
|
patch.add_stitch(p0)
|
|
|
|
return patch
|
|
|
|
def to_patches(self):
|
|
patches = []
|
|
|
|
for path in self.paths:
|
|
path = [PyEmb.Point(x, y) for x, y in path]
|
|
if self.is_running_stitch():
|
|
patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0)
|
|
else:
|
|
patch = self.stroke_points(path, self.zigzag_spacing/2.0, stroke_width=self.width)
|
|
|
|
patches.append(patch)
|
|
|
|
return patches
|
|
|
|
|
|
class SatinColumn(EmbroideryElement):
|
|
def __init__(self, *args, **kwargs):
|
|
super(SatinColumn, self).__init__(*args, **kwargs)
|
|
|
|
self.csp = self.parse_path()
|
|
self.flattened_beziers = self.get_flattened_paths()
|
|
|
|
@property
|
|
def color(self):
|
|
return self.get_style("stroke")
|
|
|
|
@property
|
|
def zigzag_spacing(self):
|
|
# peak-to-peak distance between zigzags
|
|
return self.get_float_param("zigzag_spacing")
|
|
|
|
@property
|
|
def pull_compensation(self):
|
|
# In satin stitch, the stitches have a tendency to pull together and
|
|
# narrow the entire column. We can compensate for this by stitching
|
|
# wider than we desire the column to end up.
|
|
return self.get_float_param("pull_compensation", 0)
|
|
|
|
@property
|
|
def contour_underlay(self):
|
|
# "Contour underlay" is stitching just inside the rectangular shape
|
|
# of the satin column; that is, up one side and down the other.
|
|
return self.get_boolean_param("contour_underlay")
|
|
|
|
@property
|
|
def contour_underlay_stitch_length(self):
|
|
# use "contour_underlay_stitch_length", or, if not set, default to "stitch_length"
|
|
return self.get_float_param("contour_underlay_stitch_length", self.get_float_param("stitch_length"))
|
|
|
|
@property
|
|
def contour_underlay_inset(self):
|
|
# how far inside the edge of the column to stitch the underlay
|
|
return self.get_float_param("contour_underlay_inset", 0.4)
|
|
|
|
@property
|
|
def center_walk_underlay(self):
|
|
# "Center walk underlay" is stitching down and back in the centerline
|
|
# between the two sides of the satin column.
|
|
return self.get_boolean_param("center_walk_underlay")
|
|
|
|
@property
|
|
def center_walk_underlay_stitch_length(self):
|
|
# use "center_walk_underlay_stitch_length", or, if not set, default to "stitch_length"
|
|
return self.get_float_param("center_walk_underlay_stitch_length", self.get_float_param("stitch_length"))
|
|
|
|
@property
|
|
def zigzag_underlay(self):
|
|
return self.get_boolean_param("zigzag_underlay")
|
|
|
|
@property
|
|
def zigzag_underlay_spacing(self):
|
|
# peak-to-peak distance between zigzags in zigzag underlay
|
|
return self.get_float_param("zigzag_underlay_spacing", 1)
|
|
|
|
@property
|
|
def zigzag_underlay_inset(self):
|
|
# how far in from the edge of the satin the points in the zigzags
|
|
# should be
|
|
|
|
# Default to half of the contour underlay inset. That is, if we're
|
|
# doing both contour underlay and zigzag underlay, make sure the
|
|
# points of the zigzag fall outside the contour underlay but inside
|
|
# the edges of the satin column.
|
|
return self.get_float_param("zigzag_underlay_inset", self.contour_underlay_inset / 2.0)
|
|
|
|
def get_flattened_paths(self):
|
|
# Given a pair of paths made up of bezier segments, flatten
|
|
# each individual bezier segment into line segments that approximate
|
|
# the curves. Retain the divisions between beziers -- we'll use those
|
|
# later.
|
|
|
|
paths = []
|
|
|
|
for path in self.csp:
|
|
# See the documentation in the parent class for parse_path() for a
|
|
# description of the format of the CSP. Each bezier is constructed
|
|
# using two neighboring 3-tuples in the list.
|
|
|
|
path = []
|
|
|
|
# iterate over pairs of 3-tuples
|
|
for prev, current in zip(path[:-1], path[1:]):
|
|
flattened = self.flatten([prev, current])
|
|
flattened = [PyEmb.point(x, y) for x, y in flattened]
|
|
path.append(flattened)
|
|
|
|
paths.append(path)
|
|
|
|
return zip(*paths)
|
|
|
|
def validate_satin_column(self):
|
|
# The node should have exactly two paths with no fill. Each
|
|
# path should have the same number of points, meaning that they
|
|
# will both be made up of the same number of bezier curves.
|
|
|
|
node_id = self.node.get("id")
|
|
|
|
if len(self.csp) != 2:
|
|
self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp)))
|
|
|
|
if self.get_style("fill") is not None:
|
|
self.fatal("satin column: object %s has a fill (but should not)" % node_id)
|
|
|
|
if len(self.csp[0]) != len(self.csp[1]):
|
|
self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(self.csp[0]), len(self.csp[1])))
|
|
|
|
def offset_points(pos1, pos2, offset_px):
|
|
# Expand or contract two points about their midpoint. This is
|
|
# useful for pull compensation and insetting underlay.
|
|
|
|
distance = (pos1 - pos2).length()
|
|
|
|
if distance < 0.0001:
|
|
# if they're the same point, we don't know which direction
|
|
# to offset in, so we have to just return the points
|
|
return pos1, pos2
|
|
|
|
# don't contract beyond the midpoint, or we'll start expanding
|
|
if offset_px < -distance / 2.0:
|
|
offset_px = -distance / 2.0
|
|
|
|
pos1 = pos1 + (pos1 - pos2).unit() * offset_px
|
|
pos2 = pos2 + (pos2 - pos1).unit() * offset_px
|
|
|
|
return pos1, pos2
|
|
|
|
def walk(path, start_pos, start_index, distance):
|
|
# Move <distance> pixels along <path>, which is a sequence of line
|
|
# segments defined by points.
|
|
|
|
# <start_index> is the index of the line segment in <path> that
|
|
# we're currently on. <start_pos> is where along that line
|
|
# segment we are. Return a new position and index.
|
|
|
|
pos = start_pos
|
|
index = start_index
|
|
last_index = len(path) - 1
|
|
distance_remaining = distance
|
|
|
|
while True:
|
|
if index >= last_index:
|
|
return pos, last_index
|
|
|
|
segment_end = path[index + 1]
|
|
segment = segment_end - pos
|
|
segment_length = segment.length()
|
|
|
|
if segment_length > distance_remaining:
|
|
# our walk ends partway along this segment
|
|
return pos + segment.unit() * distance, index
|
|
else:
|
|
# our walk goes past the end of this segment, so advance
|
|
# one point
|
|
index += 1
|
|
distance_remaining -= segment_length
|
|
pos = segment_end
|
|
|
|
def walk_paths(self, spacing, offset):
|
|
# Take a bezier segment from each path in turn, and plot out an
|
|
# equal number of points on each bezier. Return the points plotted.
|
|
# The points will be contracted or expanded by offset using
|
|
# offset_points().
|
|
|
|
points = [[], []]
|
|
|
|
def add_pair(pos1, pos2):
|
|
pos1, pos2 = offset_points(pos1, pos2, offset)
|
|
points[0].append(pos1)
|
|
points[1].append(pos2)
|
|
|
|
# We may not be able to fit an even number of zigzags in each pair of
|
|
# beziers. We'll store the remaining bit of the beziers after handling
|
|
# each section.
|
|
remainder_path1 = []
|
|
remainder_path2 = []
|
|
|
|
for segment1, segment2 in self.flattened_beziers:
|
|
subpath1 = remainder_path1 + segment1
|
|
subpath2 = remainder_path2 + segment2
|
|
|
|
len1 = shgeo.LineString(subpath1).length
|
|
len2 = shgeo.LineString(subpath2).length
|
|
|
|
# Base the number of stitches in each section on the _longest_ of
|
|
# the two beziers. Otherwise, things could get too sparse when one
|
|
# side is significantly longer (e.g. when going around a corner).
|
|
# The risk here is that we poke a hole in the fabric if we try to
|
|
# cram too many stitches on the short bezier. The user will need
|
|
# to avoid this through careful construction of paths.
|
|
#
|
|
# TODO: some commercial machine embroidery software compensates by
|
|
# pulling in some of the "inner" stitches toward the center a bit.
|
|
|
|
# note, this rounds down using integer-division
|
|
num_points = max(len1, len2) / spacing
|
|
|
|
spacing1 = len1 / num_points
|
|
spacing2 = len2 / num_points
|
|
|
|
pos1 = subpath1[0]
|
|
index1 = 0
|
|
|
|
pos2 = subpath2[0]
|
|
index2 = 0
|
|
|
|
for i in xrange(int(num_points)):
|
|
add_pair(pos1, pos2)
|
|
|
|
pos1, index1 = walk(subpath1, pos1, index1, spacing1)
|
|
pos2, index2 = walk(subpath2, pos2, index2, spacing2)
|
|
|
|
if index1 < len(subpath1) - 1:
|
|
remainder_path1 = [pos1] + subpath1[index1 + 1:]
|
|
else:
|
|
remainder_path1 = []
|
|
|
|
if index2 < len(subpath2) - 1:
|
|
remainder_path2 = [pos2] + subpath2[index2 + 1:]
|
|
else:
|
|
remainder_path2 = []
|
|
|
|
# We're off by one in the algorithm above, so we need one more
|
|
# pair of points. We also want to add points at the very end to
|
|
# make sure we match the vectors on screen as best as possible.
|
|
# Try to avoid doing both if they're going to stack up too
|
|
# closely.
|
|
|
|
if remainder_path1:
|
|
end1 = remainder_path1[-1]
|
|
end2 = remainder_path2[-1]
|
|
|
|
if (end1 - pos1).length() > 0.3 * spacing:
|
|
add_pair(pos1, pos2)
|
|
|
|
add_pair(end1, end2)
|
|
|
|
return points
|
|
|
|
def contour_underlay(self):
|
|
# "contour walk" underlay: do stitches up one side and down the
|
|
# other.
|
|
forward, back = self.walk_paths(self.contour_underlay_stitch_length,
|
|
-self.contour_underlay_inset)
|
|
return Patch(color=self.color, stitches=(forward + list(reversed(back))))
|
|
|
|
def center_walk(self):
|
|
# Center walk underlay is just a running stitch down and back on the
|
|
# center line between the bezier curves.
|
|
|
|
# Do it like contour underlay, but inset all the way to the center.
|
|
forward, back = self.walk_paths(self.center_walk_underlay_stitch_len_px,
|
|
-100000)
|
|
return Patch(color=self.color, stitches=(forward + list(reversed(back))))
|
|
|
|
def zigzag_underlay(self):
|
|
# zigzag underlay, usually done at a much lower density than the
|
|
# satin itself. It looks like this:
|
|
#
|
|
# \/\/\/\/\/\/\/\/\/\/|
|
|
# /\/\/\/\/\/\/\/\/\/\|
|
|
#
|
|
# In combination with the "contour walk" underlay, this is the
|
|
# "German underlay" described here:
|
|
# http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/
|
|
|
|
patch = Patch(color=self.color)
|
|
|
|
sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0,
|
|
-self.zigzag_underlay_inset)
|
|
|
|
# This organizes the points in each side in the order that they'll be
|
|
# visited.
|
|
sides = [sides[0][::2] + list(reversed(sides[0][1::2])),
|
|
sides[1][1::2] + list(reversed(sides[1][::2]))]
|
|
|
|
# This fancy bit of iterable magic just repeatedly takes a point
|
|
# from each side in turn.
|
|
for point in chain.from_iterable(izip(*sides)):
|
|
patch.add_stitch(point)
|
|
|
|
return patch
|
|
|
|
def satin(self):
|
|
# satin: do a zigzag pattern, alternating between the paths. The
|
|
# zigzag looks like this to make the satin stitches look perpendicular
|
|
# to the column:
|
|
#
|
|
# /|/|/|/|/|/|/|/|
|
|
|
|
print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation
|
|
|
|
patch = Patch()
|
|
|
|
sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation)
|
|
|
|
# Like in zigzag_underlay(): take a point from each side in turn.
|
|
for point in chain.from_iterable(izip(*sides)):
|
|
patch.add_stitch(point)
|
|
|
|
return patch
|
|
|
|
def to_patches(self):
|
|
# Stitch a variable-width satin column, zig-zagging between two paths.
|
|
|
|
# The algorithm will draw zigzags between each consecutive pair of
|
|
# beziers. The boundary points between beziers serve as "checkpoints",
|
|
# allowing the user to control how the zigzags flow around corners.
|
|
|
|
# First, verify that we have valid paths.
|
|
self.validate_satin_column()
|
|
|
|
patches = []
|
|
|
|
if self.center_walk_underlay:
|
|
patches.append(self.center_walk_underlay)
|
|
|
|
if self.contour_underlay:
|
|
patches.append(self.contour_underlay())
|
|
|
|
if self.zigzag_underlay:
|
|
# zigzag underlay comes after contour walk underlay, so that the
|
|
# zigzags sit on the contour walk underlay like rail ties on rails.
|
|
patches.append(self.zigzag_underlay())
|
|
|
|
patches.append(self.satin())
|
|
|
|
return patches
|
|
|
|
|
|
class Patch:
|
|
def __init__(self, color=None, stitches=None):
|
|
self.color = color
|
|
self.stitches = stitches or []
|
|
|
|
def __add__(self, other):
|
|
if isinstance(other, Patch):
|
|
return Patch(self.color, self.stitches + other.stitches)
|
|
else:
|
|
raise TypeError("Patch can only be added to another Patch")
|
|
|
|
def add_stitch(self, stitch):
|
|
self.stitches.append(stitch)
|
|
|
|
def reverse(self):
|
|
return Patch(self.color, self.stitches[::-1])
|
|
|
|
|
|
def patches_to_stitches(patch_list, collapse_len_px=0):
|
|
stitches = []
|
|
|
|
last_stitch = None
|
|
last_color = None
|
|
for patch in patch_list:
|
|
jump_stitch = True
|
|
for stitch in patch.stitches:
|
|
if last_stitch and last_color == patch.color:
|
|
l = (stitch - last_stitch).length()
|
|
if l <= 0.1:
|
|
# filter out duplicate successive stitches
|
|
jump_stitch = False
|
|
continue
|
|
|
|
if jump_stitch:
|
|
# consider collapsing jump stitch, if it is pretty short
|
|
if l < collapse_len_px:
|
|
# dbg.write("... collapsed\n")
|
|
jump_stitch = False
|
|
|
|
# dbg.write("stitch color %s\n" % patch.color)
|
|
|
|
newStitch = PyEmb.Stitch(stitch.x, stitch.y, patch.color, jump_stitch)
|
|
stitches.append(newStitch)
|
|
|
|
jump_stitch = False
|
|
last_stitch = stitch
|
|
last_color = patch.color
|
|
|
|
return stitches
|
|
|
|
|
|
def stitches_to_paths(stitches):
|
|
paths = []
|
|
last_color = None
|
|
last_stitch = None
|
|
for stitch in stitches:
|
|
if stitch.jump_stitch:
|
|
if last_color == stitch.color:
|
|
paths.append([None, []])
|
|
if last_stitch is not None:
|
|
paths[-1][1].append(['M', last_stitch.as_tuple()])
|
|
paths[-1][1].append(['L', stitch.as_tuple()])
|
|
last_color = None
|
|
if stitch.color != last_color:
|
|
paths.append([stitch.color, []])
|
|
paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()])
|
|
last_color = stitch.color
|
|
last_stitch = stitch
|
|
return paths
|
|
|
|
|
|
def emit_inkscape(parent, stitches):
|
|
for color, path in stitches_to_paths(stitches):
|
|
# dbg.write('path: %s %s\n' % (color, repr(path)))
|
|
inkex.etree.SubElement(parent,
|
|
inkex.addNS('path', 'svg'),
|
|
{'style': simplestyle.formatStyle(
|
|
{'stroke': color if color is not None else '#000000',
|
|
'stroke-width': "0.4",
|
|
'fill': 'none'}),
|
|
'd': simplepath.formatPath(path),
|
|
})
|
|
|
|
|
|
class Embroider(inkex.Effect):
|
|
def __init__(self, *args, **kwargs):
|
|
inkex.Effect.__init__(self)
|
|
self.OptionParser.add_option("-r", "--row_spacing_mm",
|
|
action="store", type="float",
|
|
dest="row_spacing_mm", default=0.4,
|
|
help="row spacing (mm)")
|
|
self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
|
|
action="store", type="float",
|
|
dest="zigzag_spacing_mm", default=1.0,
|
|
help="zigzag spacing (mm)")
|
|
self.OptionParser.add_option("-l", "--max_stitch_len_mm",
|
|
action="store", type="float",
|
|
dest="max_stitch_length_mm", default=3.0,
|
|
help="max stitch length (mm)")
|
|
self.OptionParser.add_option("--running_stitch_len_mm",
|
|
action="store", type="float",
|
|
dest="running_stitch_length_mm", default=3.0,
|
|
help="running stitch length (mm)")
|
|
self.OptionParser.add_option("-c", "--collapse_len_mm",
|
|
action="store", type="float",
|
|
dest="collapse_length_mm", default=0.0,
|
|
help="max collapse length (mm)")
|
|
self.OptionParser.add_option("-f", "--flatness",
|
|
action="store", type="float",
|
|
dest="flat", default=0.1,
|
|
help="Minimum flatness of the subdivided curves")
|
|
self.OptionParser.add_option("--hide_layers",
|
|
action="store", type="choice",
|
|
choices=["true", "false"],
|
|
dest="hide_layers", default="true",
|
|
help="Hide all other layers when the embroidery layer is generated")
|
|
self.OptionParser.add_option("-O", "--output_format",
|
|
action="store", type="choice",
|
|
choices=["melco", "csv", "gcode"],
|
|
dest="output_format", default="melco",
|
|
help="File output format")
|
|
self.OptionParser.add_option("-P", "--path",
|
|
action="store", type="string",
|
|
dest="path", default=".",
|
|
help="Directory in which to store output file")
|
|
self.OptionParser.add_option("-b", "--max-backups",
|
|
action="store", type="int",
|
|
dest="max_backups", default=5,
|
|
help="Max number of backups of output files to keep.")
|
|
self.OptionParser.add_option("-p", "--pixels_per_mm",
|
|
action="store", type="int",
|
|
dest="pixels_per_mm", default=10,
|
|
help="Number of on-screen pixels per millimeter.")
|
|
self.patches = []
|
|
|
|
def handle_node(self, node):
|
|
print >> dbg, "handling node", node.get('id'), node.get('tag')
|
|
|
|
element = EmbroideryElement(node, self.options)
|
|
|
|
if element.has_style('display') and element.get_style('display') is None:
|
|
return
|
|
|
|
if node.tag == SVG_DEFS_TAG:
|
|
return
|
|
|
|
for child in node:
|
|
self.handle_node(child)
|
|
|
|
if node.tag != SVG_PATH_TAG:
|
|
return
|
|
|
|
# dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))
|
|
|
|
if element.get_boolean_param("satin_column"):
|
|
self.elements.append(SatinColumn(node, self.options))
|
|
else:
|
|
elements = []
|
|
|
|
if element.get_style("fill"):
|
|
elements.append(Fill(node, self.options))
|
|
|
|
if element.get_style("stroke"):
|
|
elements.append(Stroke(node, self.options))
|
|
|
|
if element.get_boolean_param("stroke_first", False):
|
|
elements.reverse()
|
|
|
|
self.elements.extend(elements)
|
|
|
|
def get_output_path(self):
|
|
svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'))
|
|
csv_filename = svg_filename.replace('.svg', '.csv')
|
|
output_path = os.path.join(self.options.path, csv_filename)
|
|
|
|
def add_suffix(path, suffix):
|
|
if suffix > 0:
|
|
path = "%s.%s" % (path, suffix)
|
|
|
|
return path
|
|
|
|
def move_if_exists(path, suffix=0):
|
|
source = add_suffix(path, suffix)
|
|
|
|
if suffix >= self.options.max_backups:
|
|
return
|
|
|
|
dest = add_suffix(path, suffix + 1)
|
|
|
|
if os.path.exists(source):
|
|
move_if_exists(path, suffix + 1)
|
|
os.rename(source, dest)
|
|
|
|
move_if_exists(output_path)
|
|
|
|
return output_path
|
|
|
|
def hide_layers(self):
|
|
for g in self.document.getroot().findall(SVG_GROUP_TAG):
|
|
if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
|
|
g.set("style", "display:none")
|
|
|
|
def effect(self):
|
|
# Printing anything other than a valid SVG on stdout blows inkscape up.
|
|
old_stdout = sys.stdout
|
|
sys.stdout = sys.stderr
|
|
|
|
self.patch_list = []
|
|
|
|
print >> dbg, "starting nodes: %s\n" % time.time()
|
|
dbg.flush()
|
|
|
|
self.elements = []
|
|
|
|
if self.selected:
|
|
# be sure to visit selected nodes in the order they're stacked in
|
|
# the document
|
|
for node in self.document.getroot().iter():
|
|
if node.get("id") in self.selected:
|
|
self.handle_node(node)
|
|
else:
|
|
self.handle_node(self.document.getroot())
|
|
|
|
print >> dbg, "finished nodes: %s" % time.time()
|
|
dbg.flush()
|
|
|
|
if not self.elements:
|
|
if self.selected:
|
|
inkex.errormsg("No embroiderable paths selected.")
|
|
else:
|
|
inkex.errormsg("No embroiderable paths found in document.")
|
|
inkex.errormsg("Tip: use Path -> Object to Path to convert non-paths before embroidering.")
|
|
return
|
|
|
|
if self.options.hide_layers:
|
|
self.hide_layers()
|
|
|
|
patches = chain.from_iterable(element.to_patches() for element in self.elements)
|
|
stitches = patches_to_stitches(patches, self.options.collapse_length_mm * self.options.pixels_per_mm)
|
|
emb = PyEmb.Embroidery(stitches, self.options.pixels_per_mm)
|
|
emb.export(self.get_output_path(), self.options.output_format)
|
|
|
|
new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {})
|
|
new_layer.set('id', self.uniqueId("embroidery"))
|
|
new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
|
|
new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
|
|
|
|
emit_inkscape(new_layer, stitches)
|
|
|
|
sys.stdout = old_stdout
|
|
|
|
if __name__ == '__main__':
|
|
sys.setrecursionlimit(100000)
|
|
e = Embroider()
|
|
e.affect()
|
|
dbg.flush()
|
|
|
|
dbg.close()
|