inkstitch/embroider.py.save

1148 wiersze
42 KiB
Python

#!/usr/bin/python
#
# documentation: see included index.html
# LICENSE:
# Copyright 2010 by Jon Howell,
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
# New parts are licensed under AGPL3 or later.
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM
import sys
sys.path.append("/usr/share/inkscape/extensions")
import os
import subprocess
from copy import deepcopy
import time
from itertools import chain, izip
import inkex
import simplepath
import simplestyle
import simpletransform
from bezmisc import bezierlength, beziertatlength, bezierpointatt
from cspsubdiv import cspsubdiv
import cubicsuperpath
import math
import lxml.etree as etree
import shapely.geometry as shgeo
import shapely.affinity as affinity
from pprint import pformat
import PyEmb
dbg = open("/tmp/embroider-debug.txt", "w")
PyEmb.dbg = dbg
SVG_PATH_TAG = inkex.addNS('path', 'svg')
SVG_DEFS_TAG = inkex.addNS('defs', 'svg')
SVG_GROUP_TAG = inkex.addNS('g', 'svg')
class EmbroideryElement(object):
def __init__(self, node, options):
self.node = node
self.options = options
def get_param(self, param, default):
value = self.node.get("embroider_" + param)
if value is None or not value.strip():
if default is None:
try:
default = getattr(self.options, "%s_mm" % param) * self.options.pixels_per_mm
except AttributeError:
default = getattr(self.options, param, None)
return default
return value.strip()
def get_boolean_param(self, param, default=None):
value = self.get_param(param, default)
if isinstance(value, bool):
return value
else:
return value and (value.lower() in ('yes', 'y', 'true', 't', '1'))
def get_float_param(self, param, default=None):
value = self.get_param(param, default)
try:
return float(value)
except TypeError:
return default
def get_int_param(self, param, default=None):
value = self.get_param(param, default)
try:
return int(value)
except ValueError:
return default
def get_style(self, style_name):
style = simplestyle.parseStyle(self.node.get("style"))
if (style_name not in style):
return None
value = style[style_name]
if value == 'none':
return None
return value
def has_style(self, style_name):
style = simplestyle.parseStyle(self.node.get("style"))
return style_name in style
def parse_path(self):
# A CSP is a "cubic superpath".
#
# A "path" is a sequence of strung-together bezier curves.
#
# A "superpath" is a collection of paths that are all in one object.
#
# The "cubic" bit in "cubic superpath" is because the bezier curves
# inkscape uses involve cubic polynomials.
#
# Each path is a collection of tuples, each of the form:
#
# (control_before, point, control_after)
#
# A bezier curve segment is defined by an endpoint, a control point,
# a second control point, and a final endpoint. A path is a bunch of
# bezier curves strung together. One could represent a path as a set
# of four-tuples, but there would be redundancy because the ending
# point of one bezier is the starting point of the next. Instead, a
# path is a set of 3-tuples as shown above, and one must construct
# each bezier curve by taking the appropriate endpoints and control
# points. Bleh. It should be noted that a straight segment is
# represented by having the control point on each end equal to that
# end's point.
#
# In a path, each element in the 3-tuple is itself a tuple of (x, y).
# Tuples all the way down. Hasn't anyone heard of using classes?
path = cubicsuperpath.parsePath(self.node.get("d"))
# print >> sys.stderr, pformat(path)
# start with the identity transform
transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
# combine this node's transform with all parent groups' transforms
transform = simpletransform.composeParents(self.node, transform)
# apply the combined transform to this node's path
simpletransform.applyTransformToPath(transform, path)
return path
def flatten(self, path):
"""approximate a path containing beziers with a series of points"""
path = deepcopy(path)
cspsubdiv(path, self.options.flat)
flattened = []
for comp in path:
vertices = []
for ctl in comp:
vertices.append((ctl[1][0], ctl[1][1]))
flattened.append(vertices)
return flattened
def to_patches(self):
raise NotImplementedError("%s must implement to_path()" % self.__class__.__name__)
def fatal(self, message):
print >> sys.stderr, "error:", message
sys.exit(1)
class Fill(EmbroideryElement):
def __init__(self, *args, **kwargs):
super(Fill, self).__init__(*args, **kwargs)
self.shape = self.get_shape()
@property
def angle(self):
return math.radians(self.get_float_param('angle', 0))
@property
def color(self):
return self.get_style("fill")
@property
def flip(self):
return self.get_boolean_param("flip", False)
@property
def row_spacing(self):
return self.get_float_param("row_spacing")
@property
def max_stitch_length(self):
return self.get_float_param("max_stitch_length")
@property
def staggers(self):
return self.get_int_param("staggers", 4)
@property
def paths(self):
return self.flatten(self.parse_path())
def get_shape(self):
poly_ary = []
for sub_path in self.paths:
point_ary = []
last_pt = None
for pt in sub_path:
if (last_pt is not None):
vp = (pt[0] - last_pt[0], pt[1] - last_pt[1])
dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0))
# dbg.write("dp %s\n" % dp)
if (dp > 0.01):
# I think too-close points confuse shapely.
point_ary.append(pt)
last_pt = pt
else:
last_pt = pt
poly_ary.append(point_ary)
print >> dbg, poly_ary
# shapely's idea of "holes" are to subtract everything in the second set
# from the first. So let's at least make sure the "first" thing is the
# biggest path.
# TODO: actually figure out which things are holes and which are shells
poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True)
polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
# print >> sys.stderr, "polygon valid:", polygon.is_valid
return polygon
def intersect_region_with_grating(self):
# the max line length I'll need to intersect the whole shape is the diagonal
(minx, miny, maxx, maxy) = self.shape.bounds
upper_left = PyEmb.Point(minx, miny)
lower_right = PyEmb.Point(maxx, maxy)
length = (upper_left - lower_right).length()
half_length = length / 2.0
# Now get a unit vector rotated to the requested angle. I use -angle
# because shapely rotates clockwise, but my geometry textbooks taught
# me to consider angles as counter-clockwise from the X axis.
direction = PyEmb.Point(1, 0).rotate(-self.angle)
# and get a normal vector
normal = direction.rotate(math.pi / 2)
# I'll start from the center, move in the normal direction some amount,
# and then walk left and right half_length in each direction to create
# a line segment in the grating.
center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)
# I need to figure out how far I need to go along the normal to get to
# the edge of the shape. To do that, I'll rotate the bounding box
# angle degrees clockwise and ask for the new bounding box. The max
# and min y tell me how far to go.
_, start, _, end = affinity.rotate(self.shape, self.angle, origin='center', use_radians=True).bounds
# convert start and end to be relative to center (simplifies things later)
start -= center.y
end -= center.y
# offset start slightly so that rows are always an even multiple of
# row_spacing_px from the origin. This makes it so that abutting
# fill regions at the same angle and spacing always line up nicely.
start -= (start + normal * center) % self.row_spacing
rows = []
while start < end:
p0 = center + normal.mul(start) + direction.mul(half_length)
p1 = center + normal.mul(start) - direction.mul(half_length)
endpoints = [p0.as_tuple(), p1.as_tuple()]
grating_line = shgeo.LineString(endpoints)
res = grating_line.intersection(self.shape)
if (isinstance(res, shgeo.MultiLineString)):
runs = map(lambda line_string: line_string.coords, res.geoms)
else:
if res.is_empty or len(res.coords) == 1:
# ignore if we intersected at a single point or no points
start += self.row_spacing
continue
runs = [res.coords]
runs.sort(key=lambda seg: (PyEmb.Point(*seg[0]) - upper_left).length())
if self.flip:
runs.reverse()
runs = map(lambda run: tuple(reversed(run)), runs)
rows.append(runs)
start += self.row_spacing
return rows
def pull_runs(self, rows):
# Given a list of rows, each containing a set of line segments,
# break the area up into contiguous patches of line segments.
#
# This is done by repeatedly pulling off the first line segment in
# each row and calling that a shape. We have to be careful to make
# sure that the line segments are part of the same shape. Consider
# the letter "H", with an embroidery angle of 45 degrees. When
# we get to the bottom of the lower left leg, the next row will jump
# over to midway up the lower right leg. We want to stop there and
# start a new patch.
# Segments more than this far apart are considered not to be part of
# the same run.
row_distance_cutoff = self.row_spacing * 1.1
def make_quadrilateral(segment1, segment2):
return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))
def is_same_run(segment1, segment2):
if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > row_distance_cutoff:
return False
quad = make_quadrilateral(segment1, segment2)
quad_area = quad.area
intersection_area = self.shape.intersection(quad).area
return (intersection_area / quad_area) >= 0.9
# for row in rows:
# print >> sys.stderr, len(row)
# print >>sys.stderr, "\n".join(str(len(row)) for row in rows)
runs = []
count = 0
while (len(rows) > 0):
run = []
prev = None
for row_num in xrange(len(rows)):
row = rows[row_num]
first, rest = row[0], row[1:]
# TODO: only accept actually adjacent rows here
if prev is not None and not is_same_run(prev, first):
break
run.append(first)
prev = first
rows[row_num] = rest
# print >> sys.stderr, len(run)
runs.append(run)
rows = [row for row in rows if len(row) > 0]
count += 1
return runs
def to_patches(self):
rows_of_segments = self.intersect_region_with_grating()
groups_of_segments = self.pull_runs(rows_of_segments)
# "east" is the name of the direction that is to the right along a row
east = PyEmb.Point(1, 0).rotate(-self.angle)
# print >> sys.stderr, len(groups_of_segments)
patches = []
for group_of_segments in groups_of_segments:
patch = Patch(color=self.color)
first_segment = True
swap = False
last_end = None
for segment in group_of_segments:
# We want our stitches to look like this:
#
# ---*-----------*-----------
# ------*-----------*--------
# ---------*-----------*-----
# ------------*-----------*--
# ---*-----------*-----------
#
# Each successive row of stitches will be staggered, with
# num_staggers rows before the pattern repeats. A value of
# 4 gives a nice fill while hiding the needle holes. The
# first row is offset 0%, the second 25%, the third 50%, and
# the fourth 75%.
#
# Actually, instead of just starting at an offset of 0, we
# can calculate a row's offset relative to the origin. This
# way if we have two abutting fill regions, they'll perfectly
# tile with each other. That's important because we often get
# abutting fill regions from pull_runs().
(beg, end) = segment
if (swap):
(beg, end) = (end, beg)
beg = PyEmb.Point(*beg)
end = PyEmb.Point(*end)
row_direction = (end - beg).unit()
segment_length = (end - beg).length()
# only stitch the first point if it's a reasonable distance away from the
# last stitch
if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_mm:
patch.add_stitch(beg)
# Now, imagine the coordinate axes rotated by 'angle' degrees, such that
# the rows are parallel to the X axis. We can find the coordinates in these
# axes of the beginning point in this way:
relative_beg = beg.rotate(self.angle)
absolute_row_num = round(relative_beg.y / self.row_spacing)
row_stagger = absolute_row_num % self.staggers
row_stagger_offset = (float(row_stagger) / self.staggers) * self.max_stitch_length
first_stitch_offset = (relative_beg.x - row_stagger_offset) % self.max_stitch_length
first_stitch = beg - east * first_stitch_offset
# we might have chosen our first stitch just outside this row, so move back in
if (first_stitch - beg) * row_direction < 0:
first_stitch += row_direction * self.max_stitch_length
offset = (first_stitch - beg).length()
while offset < segment_length:
patch.add_stitch(beg + offset * row_direction)
offset += self.max_stitch_length
if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
patch.add_stitch(end)
last_end = end
swap = not swap
patches.append(patch)
return patches
class Stroke(EmbroideryElement):
@property
def color(self):
return self.get_style("stroke")
@property
def width(self):
stroke_width = self.get_style("stroke-width")
if stroke_width.endswith("px"):
stroke_width = stroke_width[:-2]
return float(stroke_width)
@property
def dashed(self):
return self.get_style("stroke-dasharray") is not None
@property
def running_stitch_length(self):
return self.get_float_param("running_stitch_length")
@property
def zigzag_spacing(self):
return self.get_float_param("zigzag_spacing")
@property
def repeats(self):
return self.get_int_param("repeats", 1)
@property
def paths(self):
return self.flatten(self.parse_path())
def is_running_stitch(self):
# stroke width <= 0.5 pixels is deprecated in favor of dashed lines
return self.dashed or self.width <= 0.5
def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width):
patch = Patch(color=self.color)
p0 = emb_point_list[0]
rho = 0.0
side = 1
last_segment_direction = None
for repeat in xrange(self.repeats):
if repeat % 2 == 0:
order = range(1, len(emb_point_list))
else:
order = range(-2, -len(emb_point_list) - 1, -1)
for segi in order:
p1 = emb_point_list[segi]
# how far we have to go along segment
seg_len = (p1 - p0).length()
if (seg_len == 0):
continue
# vector pointing along segment
along = (p1 - p0).unit()
# vector pointing to edge of stroke width
perp = along.rotate_left().mul(stroke_width * 0.5)
if stroke_width == 0.0 and last_segment_direction is not None:
if abs(1.0 - along * last_segment_direction) > 0.5:
# if greater than 45 degree angle, stitch the corner
rho = self.zigzag_spacing
patch.add_stitch(p0)
# iteration variable: how far we are along segment
while (rho <= seg_len):
left_pt = p0 + along * rho + perp * side
patch.add_stitch(left_pt)
rho += self.zigzag_spacing
side = -side
p0 = p1
last_segment_direction = along
rho -= seg_len
if (p0 - patch.stitches[-1]).length() > 0.1:
patch.add_stitch(p0)
return patch
def to_patches(self):
patches = []
for path in self.paths:
path = [PyEmb.Point(x, y) for x, y in path]
if self.is_running_stitch():
patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0)
else:
patch = self.stroke_points(path, self.zigzag_spacing/2.0, stroke_width=self.width)
patches.append(patch)
return patches
class SatinColumn(EmbroideryElement):
def __init__(self, *args, **kwargs):
super(SatinColumn, self).__init__(*args, **kwargs)
self.csp = self.parse_path()
self.flattened_beziers = self.get_flattened_paths()
@property
def color(self):
return self.get_style("stroke")
@property
def zigzag_spacing(self):
# peak-to-peak distance between zigzags
return self.get_float_param("zigzag_spacing")
@property
def pull_compensation(self):
# In satin stitch, the stitches have a tendency to pull together and
# narrow the entire column. We can compensate for this by stitching
# wider than we desire the column to end up.
return self.get_float_param("pull_compensation", 0)
@property
def contour_underlay(self):
# "Contour underlay" is stitching just inside the rectangular shape
# of the satin column; that is, up one side and down the other.
return self.get_boolean_param("contour_underlay")
@property
def contour_underlay_stitch_length(self):
# use "contour_underlay_stitch_length", or, if not set, default to "stitch_length"
return self.get_float_param("contour_underlay_stitch_length", self.get_float_param("stitch_length"))
@property
def contour_underlay_inset(self):
# how far inside the edge of the column to stitch the underlay
return self.get_float_param("contour_underlay_inset", 0.4)
@property
def center_walk_underlay(self):
# "Center walk underlay" is stitching down and back in the centerline
# between the two sides of the satin column.
return self.get_boolean_param("center_walk_underlay")
@property
def center_walk_underlay_stitch_length(self):
# use "center_walk_underlay_stitch_length", or, if not set, default to "stitch_length"
return self.get_float_param("center_walk_underlay_stitch_length", self.get_float_param("stitch_length"))
@property
def zigzag_underlay(self):
return self.get_boolean_param("zigzag_underlay")
@property
def zigzag_underlay_spacing(self):
# peak-to-peak distance between zigzags in zigzag underlay
return self.get_float_param("zigzag_underlay_spacing", 1)
@property
def zigzag_underlay_inset(self):
# how far in from the edge of the satin the points in the zigzags
# should be
# Default to half of the contour underlay inset. That is, if we're
# doing both contour underlay and zigzag underlay, make sure the
# points of the zigzag fall outside the contour underlay but inside
# the edges of the satin column.
return self.get_float_param("zigzag_underlay_inset", self.contour_underlay_inset / 2.0)
def get_flattened_paths(self):
# Given a pair of paths made up of bezier segments, flatten
# each individual bezier segment into line segments that approximate
# the curves. Retain the divisions between beziers -- we'll use those
# later.
paths = []
for path in self.csp:
# See the documentation in the parent class for parse_path() for a
# description of the format of the CSP. Each bezier is constructed
# using two neighboring 3-tuples in the list.
path = []
# iterate over pairs of 3-tuples
for prev, current in zip(path[:-1], path[1:]):
flattened = self.flatten([prev, current])
flattened = [PyEmb.point(x, y) for x, y in flattened]
path.append(flattened)
paths.append(path)
return zip(*paths)
def validate_satin_column(self):
# The node should have exactly two paths with no fill. Each
# path should have the same number of points, meaning that they
# will both be made up of the same number of bezier curves.
node_id = self.node.get("id")
if len(self.csp) != 2:
self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp)))
if self.get_style("fill") is not None:
self.fatal("satin column: object %s has a fill (but should not)" % node_id)
if len(self.csp[0]) != len(self.csp[1]):
self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(self.csp[0]), len(self.csp[1])))
def offset_points(pos1, pos2, offset_px):
# Expand or contract two points about their midpoint. This is
# useful for pull compensation and insetting underlay.
distance = (pos1 - pos2).length()
if distance < 0.0001:
# if they're the same point, we don't know which direction
# to offset in, so we have to just return the points
return pos1, pos2
# don't contract beyond the midpoint, or we'll start expanding
if offset_px < -distance / 2.0:
offset_px = -distance / 2.0
pos1 = pos1 + (pos1 - pos2).unit() * offset_px
pos2 = pos2 + (pos2 - pos1).unit() * offset_px
return pos1, pos2
def walk(path, start_pos, start_index, distance):
# Move <distance> pixels along <path>, which is a sequence of line
# segments defined by points.
# <start_index> is the index of the line segment in <path> that
# we're currently on. <start_pos> is where along that line
# segment we are. Return a new position and index.
pos = start_pos
index = start_index
last_index = len(path) - 1
distance_remaining = distance
while True:
if index >= last_index:
return pos, last_index
segment_end = path[index + 1]
segment = segment_end - pos
segment_length = segment.length()
if segment_length > distance_remaining:
# our walk ends partway along this segment
return pos + segment.unit() * distance, index
else:
# our walk goes past the end of this segment, so advance
# one point
index += 1
distance_remaining -= segment_length
pos = segment_end
def walk_paths(self, spacing, offset):
# Take a bezier segment from each path in turn, and plot out an
# equal number of points on each bezier. Return the points plotted.
# The points will be contracted or expanded by offset using
# offset_points().
points = [[], []]
def add_pair(pos1, pos2):
pos1, pos2 = offset_points(pos1, pos2, offset)
points[0].append(pos1)
points[1].append(pos2)
# We may not be able to fit an even number of zigzags in each pair of
# beziers. We'll store the remaining bit of the beziers after handling
# each section.
remainder_path1 = []
remainder_path2 = []
for segment1, segment2 in self.flattened_beziers:
subpath1 = remainder_path1 + segment1
subpath2 = remainder_path2 + segment2
len1 = shgeo.LineString(subpath1).length
len2 = shgeo.LineString(subpath2).length
# Base the number of stitches in each section on the _longest_ of
# the two beziers. Otherwise, things could get too sparse when one
# side is significantly longer (e.g. when going around a corner).
# The risk here is that we poke a hole in the fabric if we try to
# cram too many stitches on the short bezier. The user will need
# to avoid this through careful construction of paths.
#
# TODO: some commercial machine embroidery software compensates by
# pulling in some of the "inner" stitches toward the center a bit.
# note, this rounds down using integer-division
num_points = max(len1, len2) / spacing
spacing1 = len1 / num_points
spacing2 = len2 / num_points
pos1 = subpath1[0]
index1 = 0
pos2 = subpath2[0]
index2 = 0
for i in xrange(int(num_points)):
add_pair(pos1, pos2)
pos1, index1 = walk(subpath1, pos1, index1, spacing1)
pos2, index2 = walk(subpath2, pos2, index2, spacing2)
if index1 < len(subpath1) - 1:
remainder_path1 = [pos1] + subpath1[index1 + 1:]
else:
remainder_path1 = []
if index2 < len(subpath2) - 1:
remainder_path2 = [pos2] + subpath2[index2 + 1:]
else:
remainder_path2 = []
# We're off by one in the algorithm above, so we need one more
# pair of points. We also want to add points at the very end to
# make sure we match the vectors on screen as best as possible.
# Try to avoid doing both if they're going to stack up too
# closely.
if remainder_path1:
end1 = remainder_path1[-1]
end2 = remainder_path2[-1]
if (end1 - pos1).length() > 0.3 * spacing:
add_pair(pos1, pos2)
add_pair(end1, end2)
return points
def contour_underlay(self):
# "contour walk" underlay: do stitches up one side and down the
# other.
forward, back = self.walk_paths(self.contour_underlay_stitch_length,
-self.contour_underlay_inset)
return Patch(color=self.color, stitches=(forward + list(reversed(back))))
def center_walk(self):
# Center walk underlay is just a running stitch down and back on the
# center line between the bezier curves.
# Do it like contour underlay, but inset all the way to the center.
forward, back = self.walk_paths(self.center_walk_underlay_stitch_len_px,
-100000)
return Patch(color=self.color, stitches=(forward + list(reversed(back))))
def zigzag_underlay(self):
# zigzag underlay, usually done at a much lower density than the
# satin itself. It looks like this:
#
# \/\/\/\/\/\/\/\/\/\/|
# /\/\/\/\/\/\/\/\/\/\|
#
# In combination with the "contour walk" underlay, this is the
# "German underlay" described here:
# http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/
patch = Patch(color=self.color)
sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0,
-self.zigzag_underlay_inset)
# This organizes the points in each side in the order that they'll be
# visited.
sides = [sides[0][::2] + list(reversed(sides[0][1::2])),
sides[1][1::2] + list(reversed(sides[1][::2]))]
# This fancy bit of iterable magic just repeatedly takes a point
# from each side in turn.
for point in chain.from_iterable(izip(*sides)):
patch.add_stitch(point)
return patch
def satin(self):
# satin: do a zigzag pattern, alternating between the paths. The
# zigzag looks like this to make the satin stitches look perpendicular
# to the column:
#
# /|/|/|/|/|/|/|/|
print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation
patch = Patch()
sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation)
# Like in zigzag_underlay(): take a point from each side in turn.
for point in chain.from_iterable(izip(*sides)):
patch.add_stitch(point)
return patch
def to_patches(self):
# Stitch a variable-width satin column, zig-zagging between two paths.
# The algorithm will draw zigzags between each consecutive pair of
# beziers. The boundary points between beziers serve as "checkpoints",
# allowing the user to control how the zigzags flow around corners.
# First, verify that we have valid paths.
self.validate_satin_column()
patches = []
if self.center_walk_underlay:
patches.append(self.center_walk_underlay)
if self.contour_underlay:
patches.append(self.contour_underlay())
if self.zigzag_underlay:
# zigzag underlay comes after contour walk underlay, so that the
# zigzags sit on the contour walk underlay like rail ties on rails.
patches.append(self.zigzag_underlay())
patches.append(self.satin())
return patches
class Patch:
def __init__(self, color=None, stitches=None):
self.color = color
self.stitches = stitches or []
def __add__(self, other):
if isinstance(other, Patch):
return Patch(self.color, self.stitches + other.stitches)
else:
raise TypeError("Patch can only be added to another Patch")
def add_stitch(self, stitch):
self.stitches.append(stitch)
def reverse(self):
return Patch(self.color, self.stitches[::-1])
def patches_to_stitches(patch_list, collapse_len_px=0):
stitches = []
last_stitch = None
last_color = None
for patch in patch_list:
jump_stitch = True
for stitch in patch.stitches:
if last_stitch and last_color == patch.color:
l = (stitch - last_stitch).length()
if l <= 0.1:
# filter out duplicate successive stitches
jump_stitch = False
continue
if jump_stitch:
# consider collapsing jump stitch, if it is pretty short
if l < collapse_len_px:
# dbg.write("... collapsed\n")
jump_stitch = False
# dbg.write("stitch color %s\n" % patch.color)
newStitch = PyEmb.Stitch(stitch.x, stitch.y, patch.color, jump_stitch)
stitches.append(newStitch)
jump_stitch = False
last_stitch = stitch
last_color = patch.color
return stitches
def stitches_to_paths(stitches):
paths = []
last_color = None
last_stitch = None
for stitch in stitches:
if stitch.jump_stitch:
if last_color == stitch.color:
paths.append([None, []])
if last_stitch is not None:
paths[-1][1].append(['M', last_stitch.as_tuple()])
paths[-1][1].append(['L', stitch.as_tuple()])
last_color = None
if stitch.color != last_color:
paths.append([stitch.color, []])
paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()])
last_color = stitch.color
last_stitch = stitch
return paths
def emit_inkscape(parent, stitches):
for color, path in stitches_to_paths(stitches):
# dbg.write('path: %s %s\n' % (color, repr(path)))
inkex.etree.SubElement(parent,
inkex.addNS('path', 'svg'),
{'style': simplestyle.formatStyle(
{'stroke': color if color is not None else '#000000',
'stroke-width': "0.4",
'fill': 'none'}),
'd': simplepath.formatPath(path),
})
class Embroider(inkex.Effect):
def __init__(self, *args, **kwargs):
inkex.Effect.__init__(self)
self.OptionParser.add_option("-r", "--row_spacing_mm",
action="store", type="float",
dest="row_spacing_mm", default=0.4,
help="row spacing (mm)")
self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
action="store", type="float",
dest="zigzag_spacing_mm", default=1.0,
help="zigzag spacing (mm)")
self.OptionParser.add_option("-l", "--max_stitch_len_mm",
action="store", type="float",
dest="max_stitch_length_mm", default=3.0,
help="max stitch length (mm)")
self.OptionParser.add_option("--running_stitch_len_mm",
action="store", type="float",
dest="running_stitch_length_mm", default=3.0,
help="running stitch length (mm)")
self.OptionParser.add_option("-c", "--collapse_len_mm",
action="store", type="float",
dest="collapse_length_mm", default=0.0,
help="max collapse length (mm)")
self.OptionParser.add_option("-f", "--flatness",
action="store", type="float",
dest="flat", default=0.1,
help="Minimum flatness of the subdivided curves")
self.OptionParser.add_option("--hide_layers",
action="store", type="choice",
choices=["true", "false"],
dest="hide_layers", default="true",
help="Hide all other layers when the embroidery layer is generated")
self.OptionParser.add_option("-O", "--output_format",
action="store", type="choice",
choices=["melco", "csv", "gcode"],
dest="output_format", default="melco",
help="File output format")
self.OptionParser.add_option("-P", "--path",
action="store", type="string",
dest="path", default=".",
help="Directory in which to store output file")
self.OptionParser.add_option("-b", "--max-backups",
action="store", type="int",
dest="max_backups", default=5,
help="Max number of backups of output files to keep.")
self.OptionParser.add_option("-p", "--pixels_per_mm",
action="store", type="int",
dest="pixels_per_mm", default=10,
help="Number of on-screen pixels per millimeter.")
self.patches = []
def handle_node(self, node):
print >> dbg, "handling node", node.get('id'), node.get('tag')
element = EmbroideryElement(node, self.options)
if element.has_style('display') and element.get_style('display') is None:
return
if node.tag == SVG_DEFS_TAG:
return
for child in node:
self.handle_node(child)
if node.tag != SVG_PATH_TAG:
return
# dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))
if element.get_boolean_param("satin_column"):
self.elements.append(SatinColumn(node, self.options))
else:
elements = []
if element.get_style("fill"):
elements.append(Fill(node, self.options))
if element.get_style("stroke"):
elements.append(Stroke(node, self.options))
if element.get_boolean_param("stroke_first", False):
elements.reverse()
self.elements.extend(elements)
def get_output_path(self):
svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'))
csv_filename = svg_filename.replace('.svg', '.csv')
output_path = os.path.join(self.options.path, csv_filename)
def add_suffix(path, suffix):
if suffix > 0:
path = "%s.%s" % (path, suffix)
return path
def move_if_exists(path, suffix=0):
source = add_suffix(path, suffix)
if suffix >= self.options.max_backups:
return
dest = add_suffix(path, suffix + 1)
if os.path.exists(source):
move_if_exists(path, suffix + 1)
os.rename(source, dest)
move_if_exists(output_path)
return output_path
def hide_layers(self):
for g in self.document.getroot().findall(SVG_GROUP_TAG):
if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
g.set("style", "display:none")
def effect(self):
# Printing anything other than a valid SVG on stdout blows inkscape up.
old_stdout = sys.stdout
sys.stdout = sys.stderr
self.patch_list = []
print >> dbg, "starting nodes: %s\n" % time.time()
dbg.flush()
self.elements = []
if self.selected:
# be sure to visit selected nodes in the order they're stacked in
# the document
for node in self.document.getroot().iter():
if node.get("id") in self.selected:
self.handle_node(node)
else:
self.handle_node(self.document.getroot())
print >> dbg, "finished nodes: %s" % time.time()
dbg.flush()
if not self.elements:
if self.selected:
inkex.errormsg("No embroiderable paths selected.")
else:
inkex.errormsg("No embroiderable paths found in document.")
inkex.errormsg("Tip: use Path -> Object to Path to convert non-paths before embroidering.")
return
if self.options.hide_layers:
self.hide_layers()
patches = chain.from_iterable(element.to_patches() for element in self.elements)
stitches = patches_to_stitches(patches, self.options.collapse_length_mm * self.options.pixels_per_mm)
emb = PyEmb.Embroidery(stitches, self.options.pixels_per_mm)
emb.export(self.get_output_path(), self.options.output_format)
new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {})
new_layer.set('id', self.uniqueId("embroidery"))
new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
emit_inkscape(new_layer, stitches)
sys.stdout = old_stdout
if __name__ == '__main__':
sys.setrecursionlimit(100000)
e = Embroider()
e.affect()
dbg.flush()
dbg.close()