inkstitch/embroider.py

1248 wiersze
46 KiB
Python

#!/usr/bin/python
#
# documentation: see included index.html
# LICENSE:
# Copyright 2010 by Jon Howell,
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
# New parts are licensed under AGPL3 or later.
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM
import sys
sys.path.append("/usr/share/inkscape/extensions")
import os
import subprocess
from copy import deepcopy
import time
import inkex
import simplepath
import simplestyle
import simpletransform
from bezmisc import bezierlength, beziertatlength, bezierpointatt
from cspsubdiv import cspsubdiv
import cubicsuperpath
import PyEmb
import math
import random
import operator
import lxml.etree as etree
from lxml.builder import E
import shapely.geometry as shgeo
import shapely.affinity as affinity
from pprint import pformat
dbg = open("/tmp/embroider-debug.txt", "w")
PyEmb.dbg = dbg
#pixels_per_millimeter = 90.0 / 25.4
#this actually makes each pixel worth one tenth of a millimeter
pixels_per_millimeter = 10
# a 0.5pt stroke becomes a straight line.
STROKE_MIN = 0.5
def parse_boolean(s):
if isinstance(s, bool):
return s
else:
return s and (s.lower() in ('yes', 'y', 'true', 't', '1'))
def get_param(node, param, default):
value = node.get("embroider_" + param)
if value is None or not value.strip():
return default
return value.strip()
def get_boolean_param(node, param, default=False):
value = get_param(node, param, default)
return parse_boolean(value)
def get_float_param(node, param, default=None):
value = get_param(node, param, default)
try:
return float(value)
except ValueError:
return default
def get_int_param(node, param, default=None):
value = get_param(node, param, default)
try:
return int(value)
except ValueError:
return default
def parse_path(node):
path = cubicsuperpath.parsePath(node.get("d"))
# print >> sys.stderr, pformat(path)
# start with the identity transform
transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
# combine this node's transform with all parent groups' transforms
transform = simpletransform.composeParents(node, transform)
# apply the combined transform to this node's path
simpletransform.applyTransformToPath(transform, path)
return path
def flatten(path, flatness):
"""approximate a path containing beziers with a series of points"""
cspsubdiv(path, flatness)
flattened = []
for comp in path:
vertices = []
for ctl in comp:
vertices.append((ctl[1][0], ctl[1][1]))
flattened.append(vertices)
return flattened
def bboxarea(poly):
x0=None
x1=None
y0=None
y1=None
for pt in poly:
if (x0==None or pt[0]<x0): x0 = pt[0]
if (x1==None or pt[0]>x1): x1 = pt[0]
if (y0==None or pt[1]<y0): y0 = pt[1]
if (y1==None or pt[1]>y1): y1 = pt[1]
return (x1-x0)*(y1-y0)
def area(poly):
return bboxarea(poly)
def byarea(a,b):
return -cmp(area(a), area(b))
def cspToShapelyPolygon(path):
poly_ary = []
for sub_path in path:
point_ary = []
last_pt = None
for pt in sub_path:
if (last_pt!=None):
vp = (pt[0]-last_pt[0],pt[1]-last_pt[1])
dp = math.sqrt(math.pow(vp[0],2.0)+math.pow(vp[1],2.0))
#dbg.write("dp %s\n" % dp)
if (dp > 0.01):
# I think too-close points confuse shapely.
point_ary.append(pt)
last_pt = pt
else:
last_pt = pt
poly_ary.append(point_ary)
# shapely's idea of "holes" are to subtract everything in the second set
# from the first. So let's at least make sure the "first" thing is the
# biggest path.
poly_ary.sort(byarea)
polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
return polygon
def shapelyCoordsToSvgD(geo):
coords = list(geo.coords)
new_path = []
new_path.append(['M', coords[0]])
for c in coords[1:]:
new_path.append(['L', c])
return simplepath.formatPath(new_path)
def shapelyLineSegmentToPyTuple(shline):
tuple = ((shline.coords[0][0],shline.coords[0][1]),
(shline.coords[1][0],shline.coords[1][1]))
return tuple
def dupNodeAttrs(node):
n2 = E.node()
for k in node.attrib.keys():
n2.attrib[k] = node.attrib[k]
del n2.attrib["id"]
del n2.attrib["d"]
return n2
class Patch:
def __init__(self, color, sortorder, stitches=None):
self.color = color
self.sortorder = sortorder
if (stitches!=None):
self.stitches = stitches
else:
self.stitches = []
def addStitch(self, stitch):
self.stitches.append(stitch)
def reverse(self):
return Patch(self.color, self.sortorder, self.stitches[::-1])
class DebugHole:
pass
class PatchList:
def __init__(self, patches):
self.patches = patches
def __len__(self):
return len(self.patches)
def sort_by_sortorder(self):
def by_sort_order(a,b):
return cmp(a.sortorder, b.sortorder)
self.patches.sort(by_sort_order)
def partition_by_color(self):
self.sort_by_sortorder()
#dbg.write("Sorted by sortorder:\n");
#dbg.write(" %s\n" % ("\n".join(map(lambda p: str(p.sortorder), self.patches))))
out = []
lastPatch = None
for patch in self.patches:
if (lastPatch!=None and patch.sortorder==lastPatch.sortorder):
out[-1].patches.append(patch)
else:
out.append(PatchList([patch]))
lastPatch = patch
#dbg.write("Emitted %s partitions\n" % len(out))
return out
def tsp_by_color(self):
list_of_patchLists = self.partition_by_color()
for patchList in list_of_patchLists:
patchList.traveling_salesman()
return PatchList(reduce(operator.add,
map(lambda pl: pl.patches, list_of_patchLists)))
# # TODO apparently dead code; replaced by partition_by_color above
# def clump_like_colors_together(self):
# out = PatchList([])
# lastPatch = None
# for patch in self.patches:
# if (lastPatch!=None and patch.color==lastPatch.color):
# out.patches[-1] = Patch(
# out.patches[-1].color,
# out.patches[-1].sortorder,
# out.patches[-1].stitches+patch.stitches)
# else:
# out.patches.append(patch)
# lastPatch = patch
# return out
def get(self, i):
if (i<0 or i>=len(self.patches)):
return None
return self.patches[i]
def cost(self, a, b):
if (a is None or b is None):
rc = 0.0
else:
rc = (a.stitches[-1] - b.stitches[0]).length()
#dbg.write("cost(%s, %s) = %5.1f\n" % (a, b, rc))
return rc
def total_cost(self):
total = 0
for i in xrange(1, len(self.patches)):
total += self.cost(self.get(i-1), self.get(i))
return total
def try_swap(self, i, j):
# i,j are indices;
#dbg.write("swap(%d, %d)\n" % (i,j))
i, j = sorted((i, j))
neighbors = abs(i - j) == 1
if neighbors:
oldCost = sum((self.cost(self.get(i-1), self.get(i)),
self.cost(self.get(i), self.get(j)),
self.cost(self.get(j), self.get(j+1))))
else:
oldCost = sum((self.cost(self.get(i-1), self.get(i)),
self.cost(self.get(i), self.get(i+1)),
self.cost(self.get(j-1), self.get(j)),
self.cost(self.get(j), self.get(j+1))))
npi = self.get(j)
npj = self.get(i)
rpi = npi.reverse()
rpj = npj.reverse()
options = [
(npi,npj),
(rpi,npj),
(npi,rpj),
(rpi,rpj),
]
def costOf(np):
(npi,npj) = np
if abs(i - j) == 1:
return sum((self.cost(self.get(i-1), npi),
self.cost(npi, npj),
self.cost(npj, self.get(j+1))))
else:
return sum((self.cost(self.get(i-1), npi),
self.cost(npi, self.get(i+1)),
self.cost(self.get(j-1), npj),
self.cost(npj, self.get(j+1))))
costs = map(lambda o: (costOf(o), o), options)
costs.sort()
(cost,option) = costs[0]
savings = oldCost - cost
if (savings > 0):
self.patches[i] = option[0]
self.patches[j] = option[1]
success = "!"
else:
success = "."
#dbg.write("old %5.1f new %5.1f savings: %5.1f\n" % (oldCost, cost, savings))
return success
def try_reverse(self, i):
#dbg.write("reverse(%d)\n" % i)
oldCost = (self.cost(self.get(i-1), self.get(i))
+self.cost(self.get(i), self.get(i+1)))
reversed = self.get(i).reverse()
newCost = (self.cost(self.get(i-1), reversed)
+self.cost(reversed, self.get(i+1)))
savings = oldCost - newCost
if (savings > 0.0):
self.patches[i] = reversed
success = "#"
else:
success = "_"
return success
def traveling_salesman(self):
# shockingly, this is non-optimal and pretty much non-efficient. Sorry.
self.pointList = []
for patch in self.patches:
def visit(idx):
ep = deepcopy(patch.stitches[idx])
ep.patch = patch
self.pointList.append(ep)
visit(0)
visit(-1)
def linear_min(list, func):
min_item = None
min_value = None
for item in list:
value = func(item)
#dbg.write('linear_min %s: value %s => %s (%s)\n' % (func, item, value, value<min_value))
if (min_value==None or value<min_value):
min_item = item
min_value = value
#dbg.write('linear_min final item %s value %s\n' % (min_item, min_value))
return min_item
sortedPatchList = PatchList([])
def takePatchStartingAtPoint(point):
patch = point.patch
#dbg.write("takePatchStartingAtPoint angling for patch %s--%s\n" % (patch.stitches[0],patch.stitches[-1]))
self.pointList = filter(lambda pt: pt.patch!=patch, self.pointList)
reversed = ""
if (point!=patch.stitches[0]):
reversed = " (reversed)"
#dbg.write('patch.stitches[0] %s point %s match %s\n' % (patch.stitches[0], point, point==patch.stitches[0]))
patch = patch.reverse()
sortedPatchList.patches.append(patch)
#dbg.write('took patch %s--%s %s\n' % (patch.stitches[0], patch.stitches[-1], reversed))
# Try a greedy algorithm starting from each point in turn, and pick
# the best result. O(n^2).
min_cost = None
min_path = []
def mate(point):
for p in self.pointList:
if p is not point and p.patch == point.patch:
return p
start_time = time.time()
for starting_point in random.sample(self.pointList, len(self.pointList)):
point_list = self.pointList[:]
last_point = mate(starting_point)
point_list.remove(starting_point)
point_list.remove(last_point)
path = [starting_point]
cost = 0
while point_list:
next_point = min(point_list, key=lambda p: (p - last_point).length())
cost += (next_point - last_point).length()
path.append(next_point)
last_point = mate(next_point)
point_list.remove(next_point)
point_list.remove(last_point)
if min_cost is None or cost < min_cost:
min_cost = cost
min_path = path
# timebox this bit to avoid spinning our wheels forever
if time.time() - start_time > 1.0:
break
for point in min_path:
takePatchStartingAtPoint(point)
# install the initial result
self.patches = sortedPatchList.patches
if 1:
# Then hill-climb.
#dbg.write("len(self.patches) = %d\n" % len(self.patches))
count = 0
successStr = ""
while (count < 100):
i = random.randint(0, len(self.patches)-1)
j = random.randint(0, len(self.patches)-1)
successStr += self.try_swap(i,j)
count += 1
# tidy up at end as best we can
for i in range(len(self.patches)):
successStr += self.try_reverse(i)
#dbg.write("success: %s\n" % successStr)
class EmbroideryObject:
def __init__(self, patchList, row_spacing_px):
self.patchList = patchList
self.row_spacing_px = row_spacing_px
def make_preamble_stitch(self, lastp, nextp):
def fromPolar(r, phi):
x = r * math.cos(phi)
y = r * math.sin(phi)
return (x, y)
def toPolar(x, y):
r = math.sqrt(x ** 2 + y ** 2)
if r == 0:
phi = 0
elif y == 0:
phi = 0 if x > 0 else math.pi
else:
phi = cmp(y, 0) * math.acos(x / r)
return (r, phi)
v = nextp - lastp
(r, phi) = toPolar(v.x, v.y)
PREAMBLE_MAX_DIST = 0.5 * pixels_per_millimeter # 1/2mm
if r < PREAMBLE_MAX_DIST:
# nextp is close enough to lastp, so we don't generate
# extra points in between, but just use nextp
return nextp
r = PREAMBLE_MAX_DIST
(x, y) = fromPolar(r, phi)
return PyEmb.Point(x, y) + lastp
def emit_file(self, filename, output_format, collapse_len_px, add_preamble):
emb = PyEmb.Embroidery()
lastStitch = None
lastColor = None
for patch in self.patchList.patches:
jumpStitch = True
for stitch in patch.stitches:
if lastStitch and lastColor == patch.color:
c = math.sqrt((stitch.x - lastStitch.x) ** 2 + (stitch.y - lastStitch.y) ** 2)
#dbg.write("stitch length: %f (%d/%d -> %d/%d)\n" % (c, lastStitch.x, lastStitch.y, stitch.x, stitch.y))
if c == 0:
# filter out duplicate successive stitches
jumpStitch = False
continue
if jumpStitch:
# consider collapsing jump stich, if it is pretty short
if c < collapse_len_px:
#dbg.write("... collapsed\n")
jumpStitch = False
#dbg.write("stitch color %s\n" % patch.color)
newStitch = PyEmb.Point(stitch.x, -stitch.y)
newStitch.color = patch.color
newStitch.jumpStitch = jumpStitch
emb.addStitch(newStitch)
if jumpStitch and add_preamble != "0":
locs = [ newStitch ]
i = 0
nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y)
try:
for j in xrange(1, 4):
if locs[-1] == nextp:
i += 1
nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y)
locs.append(self.make_preamble_stitch(locs[-1], nextp))
except IndexError:
# happens when the patch is very short and we increment i beyond the number of stitches
pass
#dbg.write("preamble locations: %s\n" % locs)
for j in add_preamble[1:]:
try:
stitch = deepcopy(locs[int(j)])
stitch.color = patch.color
stitch.jumpStitch = False
emb.addStitch(stitch)
except IndexError:
pass
jumpStitch = False
lastStitch = newStitch
lastColor = patch.color
dx, dy = emb.translate_to_origin()
emb.scale(1.0/pixels_per_millimeter)
fp = open(filename, "wb")
if output_format == "melco":
fp.write(emb.export_melco(dbg))
elif output_format == "csv":
fp.write(emb.export_csv(dbg))
elif output_format == "gcode":
fp.write(emb.export_gcode(dbg))
fp.close()
emb.scale(pixels_per_millimeter)
emb.translate(dx, dy)
return emb
def emit_inkscape(self, parent, emb):
emb.scale((1, -1));
for color, path in emb.export_paths(dbg):
dbg.write('path: %s %s\n' % (color, repr(path)))
inkex.etree.SubElement(parent,
inkex.addNS('path', 'svg'),
{ 'style':simplestyle.formatStyle(
{ 'stroke': color if color is not None else '#000000',
'stroke-width':"0.25",
'fill': 'none' }),
'd':simplepath.formatPath(path),
})
def bbox(self):
x = []
y = []
for patch in self.patchList.patches:
for stitch in patch.stitches:
x.append(stitch.x)
y.append(stitch.y)
return (min(x), min(y), max(x), max(y))
class SortOrder:
def __init__(self, threadcolor, layer, preserve_layers):
self.threadcolor = threadcolor
if (preserve_layers):
#dbg.write("preserve_layers is true: %s %s\n" % (layer, threadcolor));
self.sorttuple = (layer, threadcolor)
else:
#dbg.write("preserve_layers is false:\n");
self.sorttuple = (threadcolor,)
def append(self, criterion):
self.sorttuple += (criterion,)
def __cmp__(self, other):
return cmp(self.sorttuple, other.sorttuple)
def __repr__(self):
return "sort %s color %s" % (self.sorttuple, self.threadcolor)
class Embroider(inkex.Effect):
def __init__(self, *args, **kwargs):
#dbg.write("args: %s\n" % repr(sys.argv))
inkex.Effect.__init__(self)
self.stacking_order_counter = 0
self.OptionParser.add_option("-r", "--row_spacing_mm",
action="store", type="float",
dest="row_spacing_mm", default=0.4,
help="row spacing (mm)")
self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
action="store", type="float",
dest="zigzag_spacing_mm", default=1.0,
help="zigzag spacing (mm)")
self.OptionParser.add_option("-l", "--max_stitch_len_mm",
action="store", type="float",
dest="max_stitch_len_mm", default=3.0,
help="max stitch length (mm)")
self.OptionParser.add_option("--running_stitch_len_mm",
action="store", type="float",
dest="running_stitch_len_mm", default=3.0,
help="running stitch length (mm)")
self.OptionParser.add_option("-c", "--collapse_len_mm",
action="store", type="float",
dest="collapse_len_mm", default=0.0,
help="max collapse length (mm)")
self.OptionParser.add_option("-f", "--flatness",
action="store", type="float",
dest="flat", default=0.1,
help="Minimum flatness of the subdivided curves")
self.OptionParser.add_option("-o", "--preserve_layers",
action="store", type="choice",
choices=["true","false"],
dest="preserve_layers", default="false",
help="Sort by stacking order instead of color")
self.OptionParser.add_option("-H", "--hatch_filled_paths",
action="store", type="choice",
choices=["true","false"],
dest="hatch_filled_paths", default="false",
help="Use hatching lines instead of equally-spaced lines to fill paths")
self.OptionParser.add_option("--hide_layers",
action="store", type="choice",
choices=["true","false"],
dest="hide_layers", default="true",
help="Hide all other layers when the embroidery layer is generated")
self.OptionParser.add_option("-p", "--add_preamble",
action="store", type="choice",
choices=["0","010","01010","01210","012101210"],
dest="add_preamble", default="0",
help="Add preamble")
self.OptionParser.add_option("-O", "--output_format",
action="store", type="choice",
choices=["melco", "csv", "gcode"],
dest="output_format", default="melco",
help="File output format")
self.OptionParser.add_option("-F", "--filename",
action="store", type="string",
dest="filename", default="embroider-output.exp",
help="Name (and possibly path) of output file")
self.patches = []
self.layer_cache = {}
def get_sort_order(self, threadcolor, node):
#print >> sys.stderr, "node", node.get("id"), self.layer_cache.get(node.get("id"))
return SortOrder(threadcolor, self.layer_cache.get(node.get("id")), self.options.preserve_layers=="true")
def process_one_path(self, node, shpath, threadcolor, sortorder, angle):
#self.add_shapely_geo_to_svg(shpath.boundary, color="#c0c000")
hatching = get_boolean_param(node, "hatching", self.hatching)
row_spacing_px = get_float_param(node, "row_spacing", self.row_spacing_px)
max_stitch_len_px = get_float_param(node, "max_stitch_length", self.max_stitch_len_px)
num_staggers = get_int_param(node, "staggers", 4)
rows_of_segments = self.intersect_region_with_grating(shpath, row_spacing_px, angle)
groups_of_segments = self.pull_runs(rows_of_segments, shpath, row_spacing_px)
# "east" is the name of the direction that is to the right along a row
east = PyEmb.Point(1, 0).rotate(-angle)
#print >> sys.stderr, len(groups_of_segments)
patches = []
for group_of_segments in groups_of_segments:
patch = Patch(color=threadcolor,sortorder=sortorder)
first_segment = True
swap = False
last_end = None
for segment in group_of_segments:
# We want our stitches to look like this:
#
# ---*-----------*-----------
# ------*-----------*--------
# ---------*-----------*-----
# ------------*-----------*--
# ---*-----------*-----------
#
# Each successive row of stitches will be staggered, with
# num_staggers rows before the pattern repeats. A value of
# 4 gives a nice fill while hiding the needle holes. The
# first row is offset 0%, the second 25%, the third 50%, and
# the fourth 75%.
#
# Actually, instead of just starting at an offset of 0, we
# can calculate a row's offset relative to the origin. This
# way if we have two abutting fill regions, they'll perfectly
# tile with each other. That's important because we often get
# abutting fill regions from pull_runs().
(beg, end) = segment
if (swap):
(beg,end)=(end,beg)
beg = PyEmb.Point(*beg)
end = PyEmb.Point(*end)
row_direction = (end - beg).unit()
segment_length = (end - beg).length()
# only stitch the first point if it's a reasonable distance away from the
# last stitch
if last_end is None or (beg - last_end).length() > 0.5 * pixels_per_millimeter:
patch.addStitch(beg)
# Now, imagine the coordinate axes rotated by 'angle' degrees, such that
# the rows are parallel to the X axis. We can find the coordinates in these
# axes of the beginning point in this way:
relative_beg = beg.rotate(angle)
absolute_row_num = math.floor(relative_beg.y / row_spacing_px)
row_stagger = absolute_row_num % num_staggers
row_stagger_offset = (float(row_stagger) / num_staggers) * max_stitch_len_px
first_stitch_offset = (relative_beg.x - row_stagger_offset) % max_stitch_len_px
first_stitch = beg - east * first_stitch_offset
# we might have chosen our first stitch just outside this row, so move back in
if (first_stitch - beg) * row_direction < 0:
first_stitch += row_direction * max_stitch_len_px
offset = (first_stitch - beg).length()
while True:
patch.addStitch(beg + offset * row_direction)
offset += max_stitch_len_px
if offset > segment_length:
break
if (end - patch.stitches[-1]).length() > 0.1 * pixels_per_millimeter:
patch.addStitch(end)
last_end = end
if not hatching:
swap = not swap
patches.append(patch)
return patches
def intersect_region_with_grating(self, shpath, row_spacing_px, angle):
# the max line length I'll need to intersect the whole shape is the diagonal
(minx, miny, maxx, maxy) = shpath.bounds
length = (PyEmb.Point(maxx, maxy) - PyEmb.Point(minx, miny)).length()
half_length = length / 2.0
# Now get a unit vector rotated to the requested angle. I use -angle
# because shapely rotates clockwise, but my geometry textbooks taught
# me to consider angles as counter-clockwise from the X axis.
direction = PyEmb.Point(1, 0).rotate(-angle)
# and get a normal vector
normal = direction.rotate(math.pi/2)
# I'll start from the center, move in the normal direction some amount,
# and then walk left and right half_length in each direction to create
# a line segment in the grating.
center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)
# I need to figure out how far I need to go along the normal to get to
# the edge of the shape. To do that, I'll rotate the bounding box
# angle degrees clockwise and ask for the new bounding box. The max
# and min y tell me how far to go.
_, start, _, end = affinity.rotate(shpath, angle, origin='center', use_radians = True).bounds
start -= center.y
end -= center.y
# don't start right at the edge or we'll make a ridiculous single
# stitch
start += row_spacing_px / 2.0
rows = []
while start < end:
p0 = center + normal.mul(start) + direction.mul(half_length)
p1 = center + normal.mul(start) - direction.mul(half_length)
endpoints = [p0.as_tuple(), p1.as_tuple()]
shline = shgeo.LineString(endpoints)
res = shline.intersection(shpath)
if (isinstance(res, shgeo.MultiLineString)):
runs = map(shapelyLineSegmentToPyTuple, res.geoms)
else:
runs = [shapelyLineSegmentToPyTuple(res)]
if self.hatching and len(rows) > 0:
rows.append([(rows[-1][0][1], runs[0][0])])
rows.append(runs)
start += row_spacing_px
return rows
def pull_runs(self, rows, shpath, row_spacing_px):
# Given a list of rows, each containing a set of line segments,
# break the area up into contiguous patches of line segments.
#
# This is done by repeatedly pulling off the first line segment in
# each row and calling that a shape. We have to be careful to make
# sure that the line segments are part of the same shape. Consider
# the letter "H", with an embroidery angle of 45 degrees. When
# we get to the bottom of the lower left leg, the next row will jump
# over to midway up the lower right leg. We want to stop there and
# start a new patch.
# Segments more than this far apart are considered not to be part of
# the same run.
row_distance_cutoff = row_spacing_px * 1.1
def make_quadrilateral(segment1, segment2):
return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))
def is_same_run(segment1, segment2):
if self.options.hatch_filled_paths:
return True
if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > row_spacing_px * 1.1:
return False
quad = make_quadrilateral(segment1, segment2)
quad_area = quad.area
intersection_area = shpath.intersection(quad).area
return (intersection_area / quad_area) >= 0.9
#for row in rows:
# print >> sys.stderr, len(row)
#print >>sys.stderr, "\n".join(str(len(row)) for row in rows)
runs = []
count = 0
while (len(rows) > 0):
run = []
prev = None
for row_num in xrange(len(rows)):
row = rows[row_num]
first, rest = row[0], row[1:]
# TODO: only accept actually adjacent rows here
if prev is not None and not is_same_run(prev, first):
break
run.append(first)
prev = first
rows[row_num] = rest
#print >> sys.stderr, len(run)
runs.append(run)
rows = [row for row in rows if len(row) > 0]
count += 1
return runs
def handle_node(self, node):
if (node.tag == inkex.addNS('g', 'svg')):
#dbg.write("%s\n"%str((id, etree.tostring(node, pretty_print=True))))
#dbg.write("not a path; recursing:\n")
for child in node.iter(self.svgpath):
self.handle_node(child)
return
#dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))
if get_boolean_param(node, "satin_column"):
self.patchList.patches.extend(self.satin_column(node))
else:
stroke = []
fill = []
if (self.get_style(node, "stroke")!=None):
stroke = self.path_to_patch_list(node)
if (self.get_style(node, "fill")!=None):
fill = self.filled_region_to_patchlist(node)
if get_boolean_param(node, "stroke_first", False):
for patch in stroke:
patch.sortorder.append(0)
for patch in fill:
patch.sortorder.append(1)
self.patchList.patches.extend(stroke)
self.patchList.patches.extend(fill)
def get_style(self, node, style_name):
style = simplestyle.parseStyle(node.get("style"))
if (style_name not in style):
return None
value = style[style_name]
if (value==None or value=="none"):
return None
return value
def cache_layers(self):
self.layer_cache = {}
layer_tag = inkex.addNS("g", "svg")
group_attr = inkex.addNS('groupmode', 'inkscape')
def is_layer(node):
return node.tag == layer_tag and node.get(group_attr) == "layer"
def process(node, layer=0):
if is_layer(node):
layer += 1
else:
self.layer_cache[node.get("id")] = layer
for child in node:
layer = process(child, layer)
return layer
process(self.document.getroot())
def effect(self):
if self.options.preserve_layers == "true":
self.cache_layers()
#print >> sys.stderr, "cached stacking order:", self.stacking_order
self.row_spacing_px = self.options.row_spacing_mm * pixels_per_millimeter
self.zigzag_spacing_px = self.options.zigzag_spacing_mm * pixels_per_millimeter
self.max_stitch_len_px = self.options.max_stitch_len_mm*pixels_per_millimeter
self.running_stitch_len_px = self.options.running_stitch_len_mm*pixels_per_millimeter
self.collapse_len_px = self.options.collapse_len_mm*pixels_per_millimeter
self.hatching = self.options.hatch_filled_paths == "true"
self.svgpath = inkex.addNS('path', 'svg')
self.patchList = PatchList([])
dbg.write("starting nodes: %s" % time.time())
dbg.flush()
for node in self.selected.itervalues():
self.handle_node(node)
dbg.write("finished nodes: %s" % time.time())
dbg.flush()
if not self.patchList:
inkex.errormsg("No paths selected.")
return
dbg.write("starting tsp: %s" % time.time())
self.patchList = self.patchList.tsp_by_color()
dbg.write("finished tsp: %s" % time.time())
#dbg.write("patch count: %d\n" % len(self.patchList.patches))
if self.options.hide_layers:
self.hide_layers()
eo = EmbroideryObject(self.patchList, self.row_spacing_px)
emb = eo.emit_file(self.options.filename, self.options.output_format,
self.collapse_len_px, self.options.add_preamble)
new_layer = inkex.etree.SubElement(self.document.getroot(),
inkex.addNS('g', 'svg'), {})
new_layer.set('id', self.uniqueId("embroidery"))
new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
eo.emit_inkscape(new_layer, emb)
def emit_inkscape_bbox(self, parent, eo):
(x0, y0, x1, y1) = eo.bbox()
new_path = []
new_path.append(['M', (x0,y0)])
new_path.append(['L', (x1,y0)])
new_path.append(['L', (x1,y1)])
new_path.append(['L', (x0,y1)])
new_path.append(['L', (x0,y0)])
inkex.etree.SubElement(parent,
inkex.addNS('path', 'svg'),
{ 'style':simplestyle.formatStyle(
{ 'stroke': '#ff00ff',
'stroke-width':str(1),
'fill': 'none' }),
'd':simplepath.formatPath(new_path),
})
def hide_layers(self):
for g in self.document.getroot().findall(inkex.addNS("g","svg")):
if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
g.set("style", "display:none")
def path_to_patch_list(self, node):
threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"]
stroke_width_str = simplestyle.parseStyle(node.get("style"))["stroke-width"]
if (stroke_width_str.endswith("px")):
# don't really know how we should be doing unit conversions.
# but let's hope px are kind of like pts?
stroke_width_str = stroke_width_str[:-2]
stroke_width = float(stroke_width_str)
#dbg.write("stroke_width is <%s>\n" % repr(stroke_width))
#dbg.flush()
running_stitch_len_px = get_float_param(node, "stitch_length", self.running_stitch_len_px)
zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.zigzag_spacing_px)
repeats = get_int_param(node, "repeats", 1)
sortorder = self.get_sort_order(threadcolor, node)
paths = flatten(parse_path(node), self.options.flat)
# regularize the points lists.
# (If we're parsing beziers, there will be a list of multi-point
# subarrays.)
patches = []
for path in paths:
path = [PyEmb.Point(x, y) for x, y in path]
if (stroke_width <= STROKE_MIN):
#dbg.write("self.max_stitch_len_px = %s\n" % self.max_stitch_len_px)
patch = self.stroke_points(path, running_stitch_len_px, 0.0, repeats, threadcolor, sortorder)
else:
patch = self.stroke_points(path, zigzag_spacing_px*0.5, stroke_width, repeats, threadcolor, sortorder)
patches.extend(patch)
return patches
def stroke_points(self, emb_point_list, zigzag_spacing_px, stroke_width, repeats, threadcolor, sortorder):
patch = Patch(color=threadcolor, sortorder=sortorder)
p0 = emb_point_list[0]
rho = 0.0
fact = 1
for repeat in xrange(repeats):
if repeat % 2 == 0:
order = range(1, len(emb_point_list))
else:
order = range(-2, -len(emb_point_list) - 1, -1)
for segi in order:
p1 = emb_point_list[segi]
# how far we have to go along segment
seg_len = (p1 - p0).length()
if (seg_len == 0):
continue
# vector pointing along segment
along = (p1 - p0).unit()
# vector pointing to edge of stroke width
perp = along.rotate_left().mul(stroke_width*0.5)
# iteration variable: how far we are along segment
while (rho <= seg_len):
left_pt = p0+along.mul(rho)+perp.mul(fact)
patch.addStitch(left_pt)
rho += zigzag_spacing_px
fact = -fact
p0 = p1
rho -= seg_len
return [patch]
def filled_region_to_patchlist(self, node):
angle = math.radians(float(get_float_param(node,'angle',0)))
paths = flatten(parse_path(node), self.options.flat)
shapelyPolygon = cspToShapelyPolygon(paths)
threadcolor = simplestyle.parseStyle(node.get("style"))["fill"]
sortorder = self.get_sort_order(threadcolor, node)
return self.process_one_path(
node,
shapelyPolygon,
threadcolor,
sortorder,
angle)
def fatal(self, message):
print >> sys.stderr, "error:", message
sys.exit(1)
def validate_satin_column(self, node, csp):
node_id = node.get("id")
if len(csp) != 2:
self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp)))
if self.get_style(node, "fill")!=None:
self.fatal("satin column: object %s has a fill (but should not)" % node_id)
if len(csp[0]) != len(csp[1]):
self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(csp[0]), len(csp[1])))
def satin_column(self, node):
# Stitch a variable-width satin column, zig-zagging between two paths.
# The node should have exactly two paths with no fill. Each
# path should have the same number of points. The two paths will be
# split into segments, and each segment will have a number of zigzags
# defined by the length of the longer of the two segments, divided
# by the zigzag spacing parameter.
id = node.get("id")
# First, verify that we have a valid node.
csp = parse_path(node)
self.validate_satin_column(node, csp)
# fetch parameters
zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.zigzag_spacing_px)
# A path is a collection of tuples, each of the form:
#
# (control_before, point, control_after)
#
# A bezier curve segment is defined by an endpoint, a control point,
# a second control point, and a final endpoint. A path is a bunch of
# bezier curves strung together. One could represent a path as a set
# of four-tuples, but there would be redundancy because the ending
# point of one bezier is the starting point of the next. Instead, a
# path is a set of 3-tuples as shown above, and one must construct
# each bezier curve by taking the appropriate endpoints and control
# points. Bleh. It should be noted that a straight segment is
# represented by having the control point on each end equal to that
# end's point.
#
# A "superpath" is a collection of paths that are all in one object.
# The "cubic" bit in "cubic superpath" is because the bezier curves
# inkscape uses involve cubic polynomials.
#
# In a path, each element in the 3-tuple is itself a tuple of (x, y).
# Tuples all the way down. Hasn't anyone heard of using classes?
path1 = csp[0]
path2 = csp[1]
threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"]
sortorder = self.get_sort_order(threadcolor, node)
patch = Patch(color=threadcolor, sortorder=sortorder)
# Take each bezier segment in turn, drawing zigzags between the two
# paths in that segment.
for segment in xrange(1, len(path1)):
# construct the current bezier segments
bezier1 = (path1[segment - 1][1], # point from previous 3-tuple
path1[segment - 1][2], # "after" control point from previous 3-tuple
path1[segment][0], # "before" control point from this 3-tuple
path1[segment][1], # point from this 3-tuple
)
bezier2 = (path2[segment - 1][1],
path2[segment - 1][2],
path2[segment][0],
path2[segment][1],
)
# Find their lengths. The math is actually fairly involved.
len1 = bezierlength(bezier1)
len2 = bezierlength(bezier2)
# Base the number of stitches in each section on the _longest_ of
# the two beziers. Otherwise, things could get too sparse when one
# side is significantly longer (e.g. when going around a corner).
# The risk here is that we poke a hole in the fabric if we try to
# cram too many stitches on the short bezier. The user will need
# to avoid this through careful construction of paths.
num_zigzags = int(max(len1, len2) / zigzag_spacing_px)
stitch_len1 = len1 / num_zigzags
stitch_len2 = len2 / num_zigzags
# Now do the stitches. Each "zigzag" has a "zig" and a "zag", that
# is, go from path1 to path2 and then back to path1.
# Here's what I want to be able to do. However, beziertatlength is so incredibly slow that it's unusable.
#for stitch in xrange(num_zigzags):
# patch.addStitch(bezierpointatt(bezier1, beziertatlength(bezier1, stitch_len1 * stitch)))
# patch.addStitch(bezierpointatt(bezier2, beziertatlength(bezier2, stitch_len2 * (stitch + 0.5))))
# Instead, flatten the beziers down to a set of line segments.
subpath1 = flatten([[path1[segment - 1], path1[segment]]], self.options.flat)
subpath2 = flatten([[path2[segment - 1], path2[segment]]], self.options.flat)
subpath1 = [PyEmb.Point(*p) for p in subpath1[0]]
subpath2 = [PyEmb.Point(*p) for p in subpath2[0]]
def walk(path, start_pos, start_index, distance):
# Move <distance> pixels along <path>'s line segments.
# <start_index> is the index of the line segment in <path> that
# we're currently on. <start_pos> is where along that line
# segment we are. Return a new position and index.
pos = start_pos
index = start_index
if index >= len(path) - 1:
# it's possible we'll go too far due to inaccuracy in the
# bezier length calculation
return start_pos, start_index
while True:
segment_end = path[index + 1]
segment_remaining = (segment_end - pos)
distance_remaining = segment_remaining.length()
if distance_remaining > distance:
return pos + segment_remaining.unit().mul(distance), index
else:
index += 1
if index >= len(path) - 1:
return segment_end, index
distance -= distance_remaining
pos = segment_end
pos1 = subpath1[0]
i1 = 0
pos2, i2 = walk(subpath2, subpath2[0], 0, stitch_len2 * 0.5)
i2 = 0
for stitch in xrange(num_zigzags):
# In each iteration, do a "zig" and a "zag".
patch.addStitch(pos1)
pos1, i1 = walk(subpath1, pos1, i1, stitch_len1)
patch.addStitch(pos2)
pos2, i2 = walk(subpath2, pos2, i2, stitch_len2)
return [patch]
if __name__ == '__main__':
sys.setrecursionlimit(100000);
e = Embroider()
e.affect()
#dbg.write("aaaand, I'm done. seeeya!\n")
dbg.flush()
dbg.close()