inkstitch/lib/stitches/ripple_stitch.py

556 wiersze
21 KiB
Python

from collections import defaultdict
from math import atan2, ceil
import numpy as np
from shapely.affinity import rotate, scale, translate
from shapely.geometry import LineString, Point
from ..elements import SatinColumn
from ..utils import Point as InkstitchPoint
from ..utils import prng
from ..utils.geometry import line_string_to_point_list
from ..utils.threading import check_stop_flag
from .guided_fill import apply_stitches
from .running_stitch import even_running_stitch, running_stitch
def ripple_stitch(stroke):
'''
Ripple stitch is allowed to cross itself and doesn't care about an equal distance of lines
It is meant to be used with light (not dense) stitching
It will ignore holes in a closed shape. Closed shapes will be filled with a spiral
Open shapes will be stitched back and forth.
If there is only one (open) line or a closed shape the target point will be used.
If more sublines are present interpolation will take place between the first two.
'''
if stroke.as_multi_line_string().length < 0.1:
return []
is_linear, helper_lines = _get_helper_lines(stroke)
num_lines = len(helper_lines[0])
skip_start = _adjust_skip(stroke, num_lines, stroke.skip_start)
skip_end = _adjust_skip(stroke, num_lines, stroke.skip_end)
lines = _get_ripple_lines(helper_lines, is_linear, skip_start, skip_end)
stitches = _get_stitches(stroke, is_linear, lines, skip_start)
if stroke.reverse:
stitches.reverse()
if stitches and stroke.grid_size != 0:
stitches.extend(_do_grid(stroke, helper_lines, skip_start, skip_end, is_linear, stitches[-1]))
if stroke.grid_first:
stitches = stitches[::-1]
return _repeat_coords(stitches, stroke.repeats)
def _get_stitches(stroke, is_linear, lines, skip_start):
if stroke.manual_pattern_placement:
if stroke.flip_copies:
stitches = []
for i, line in enumerate(lines):
if i % 2 == 0:
stitches.extend(line[::-1])
else:
stitches.extend(line)
return stitches
return [point for line in lines for point in line]
if is_linear and stroke.flip_copies:
return _get_staggered_stitches(stroke, lines, skip_start)
else:
points = [point for line in lines for point in line]
return running_stitch(points,
stroke.running_stitch_length,
stroke.running_stitch_tolerance,
stroke.enable_random_stitch_length,
stroke.random_stitch_length_jitter,
stroke.random_seed)
def _get_staggered_stitches(stroke, lines, skip_start):
stitches = []
stitch_length = stroke.running_stitch_length
tolerance = stroke.running_stitch_tolerance
enable_random_stitch_length = stroke.enable_random_stitch_length
length_sigma = stroke.random_stitch_length_jitter
random_seed = stroke.random_seed
last_point = None
for i, line in enumerate(lines):
connector = []
if i != 0 and stroke.join_style == 0:
if i % 2 == 0 or not stroke.flip_copies:
first_point = line[0]
else:
first_point = line[-1]
connector = even_running_stitch([last_point, first_point],
stitch_length, tolerance)[1:-1]
if stroke.join_style == 0:
should_reverse = i % 2 == 1
elif stroke.join_style == 1:
should_reverse = (i + skip_start) % 2 == 1
if enable_random_stitch_length or stroke.staggers == 0:
if should_reverse and stroke.flip_copies:
line.reverse()
points = running_stitch(line, stitch_length, tolerance, enable_random_stitch_length, length_sigma, prng.join_args(random_seed, i))
stitched_line = connector + points
else:
# uses the guided fill alforithm to stagger rows of stitches
points = list(apply_stitches(LineString(line), stitch_length, stroke.staggers, 0.5, i, tolerance).coords)
stitched_line = [InkstitchPoint(*point) for point in points]
if should_reverse and stroke.flip_copies:
stitched_line.reverse()
stitched_line = connector + stitched_line
last_point = stitched_line[-1]
stitches.extend(stitched_line)
return stitches
def _adjust_skip(stroke, num_lines, skip):
if stroke.skip_start + stroke.skip_end >= num_lines:
return 0
return skip
def _get_ripple_lines(helper_lines, is_linear, skip_start, skip_end):
lines = []
for point_num in range(skip_start, len(helper_lines[0]) - skip_end):
row = []
for line_num in range(len(helper_lines)):
row.append(helper_lines[line_num][point_num])
lines.append(row)
return lines
def _get_satin_line_count(stroke, pairs):
if not stroke.min_line_dist:
num_lines = stroke.line_count
else:
shortest_line_len = 0
for point0, point1 in pairs:
length = LineString([point0, point1]).length
if shortest_line_len == 0 or length < shortest_line_len:
shortest_line_len = length
num_lines = ceil(shortest_line_len / stroke.min_line_dist)
return _line_count_adjust(stroke, num_lines)
def _get_target_line_count(stroke, target, outline):
return _get_satin_line_count(stroke, zip(outline, [target]*len(outline)))
def _get_guided_line_count(stroke, guide_line):
if not stroke.min_line_dist:
num_lines = stroke.line_count
else:
num_lines = ceil(guide_line.length / stroke.min_line_dist)
return _line_count_adjust(stroke, num_lines)
def _line_count_adjust(stroke, num_lines):
if stroke.min_line_dist and stroke.line_count % 2 != num_lines % 2:
# We want the line count always to be either even or odd - depending on the line count value.
# So that the end point stays the same even if the design is resized. This is necessary to enable
# the user to carefully plan the output and and connect the end point to the following object
num_lines -= 1
# ensure minimum line count
num_lines = max(1, num_lines)
if stroke.is_closed or stroke.join_style == 1:
# for flat join styles we need to add an other line
num_lines += 1
return num_lines
def _get_helper_lines(stroke):
lines = stroke.as_multi_line_string().geoms
if len(lines) > 1:
return True, _get_satin_ripple_helper_lines(stroke)
else:
if stroke.manual_pattern_placement:
path = stroke.parse_path()
path = [stroke.strip_control_points(subpath) for subpath in path][0]
outline = LineString(path)
else:
outline = LineString(even_running_stitch(
line_string_to_point_list(lines[0]),
stroke.grid_size or stroke.running_stitch_length,
stroke.running_stitch_tolerance)
)
if stroke.is_closed:
return False, _get_circular_ripple_helper_lines(stroke, outline)
elif stroke.join_style == 1:
return True, _get_point_style_linear_helper_lines(stroke, outline)
else:
return True, _get_linear_ripple_helper_lines(stroke, outline)
def _get_satin_ripple_helper_lines(stroke):
# if grid_size has a number use this, otherwise use running_stitch_length
length = stroke.grid_size or stroke.running_stitch_length
# use satin column points for satin like build ripple stitches
rail_pairs = SatinColumn(stroke.node).plot_points_on_rails(length)
count = _get_satin_line_count(stroke, rail_pairs)
steps = _get_steps(count, exponent=stroke.exponent, flip=stroke.flip_exponent)
helper_lines = []
for point0, point1 in rail_pairs:
check_stop_flag()
helper_lines.append([])
helper_line = LineString((point0, point1))
for step in steps:
helper_lines[-1].append(InkstitchPoint.from_shapely_point(helper_line.interpolate(step, normalized=True)))
if stroke.join_style == 1 or not stroke.flip_copies:
helper_lines = _converge_helper_line_points(helper_lines, True, stroke.flip_copies)
return helper_lines
def _converge_helper_line_points(helper_lines, point_edge=False, flip_copies=True):
num_lines = len(helper_lines)
steps = _get_steps(num_lines)
for i, line in enumerate(helper_lines):
check_stop_flag()
points = []
for j in range(len(line) - 1):
if point_edge and j % 2 == 1 and flip_copies:
k = num_lines - 1 - i
points.append(line[j] * (1 - steps[k]) + line[j + 1] * steps[k])
else:
points.append(line[j] * (1 - steps[i]) + line[j + 1] * steps[i])
helper_lines[i] = points
return helper_lines
def _get_circular_ripple_helper_lines(stroke, outline):
helper_lines = _get_linear_ripple_helper_lines(stroke, outline)
# Now we want to adjust the helper lines to make a spiral.
return _converge_helper_line_points(helper_lines)
def _get_point_style_linear_helper_lines(stroke, outline):
helper_lines = _get_linear_ripple_helper_lines(stroke, outline)
return _converge_helper_line_points(helper_lines, True)
def _get_linear_ripple_helper_lines(stroke, outline):
guide_line = stroke.get_guide_line()
max_dist = stroke.grid_size or stroke.running_stitch_length
if guide_line:
return _get_guided_helper_lines(stroke, outline, max_dist)
else:
return _target_point_helper_lines(stroke, outline)
def _target_point_helper_lines(stroke, outline):
helper_lines = [[] for i in range(len(outline.coords))]
target = stroke.get_ripple_target()
count = _get_target_line_count(stroke, target, outline.coords)
steps = _get_steps(count, exponent=stroke.exponent, flip=stroke.flip_exponent)
for i, point in enumerate(outline.coords):
check_stop_flag()
line = LineString([point, target])
for step in steps:
helper_lines[i].append(InkstitchPoint.from_shapely_point(line.interpolate(step, normalized=True)))
return helper_lines
def _adjust_helper_lines_for_grid(grid, last_stitch):
# check which end of the grid is nearest to the last stitch
# and adjust grid accordingly
last_stitch = Point(last_stitch)
distances = [
Point(grid[0][0]).distance(last_stitch),
Point(grid[0][-1]).distance(last_stitch),
Point(grid[-1][0]).distance(last_stitch),
Point(grid[-1][-1]).distance(last_stitch)
]
nearest = distances.index(min(distances))
if nearest in [1, 3]:
adjusted_grid = []
for line in grid:
adjusted_grid.append(line[::-1])
grid = adjusted_grid
if nearest in [2, 3]:
grid.reverse()
return grid
def _do_grid(stroke, helper_lines, skip_start, skip_end, is_linear, last_stitch):
grid = []
for i, helper in enumerate(helper_lines):
end = len(helper) - skip_end
points = helper[skip_start:end]
if i % 2 != 0 and is_linear and not stroke.flip_copies and stroke.join_style == 0:
points.reverse()
grid.append(points)
grid = _adjust_helper_lines_for_grid(grid, last_stitch)
grid = _get_staggered_stitches(stroke, grid, 0)
return grid
def _get_guided_helper_lines(stroke, outline, max_distance):
# for each point generate a line going along and pointing to the guide line
guide_line = stroke.get_guide_line()
if isinstance(guide_line, SatinColumn):
# satin type guide line
return generate_satin_guide_helper_lines(stroke, outline, guide_line)
else:
# simple guide line
return _generate_guided_helper_lines(stroke, outline, max_distance, guide_line.geoms[0])
def _generate_guided_helper_lines(stroke, outline, max_distance, guide_line):
# helper lines are generated by making copies of the outline along the guide line
line_point_dict = defaultdict(list)
if not stroke.manual_pattern_placement:
outline = LineString(even_running_stitch(
line_string_to_point_list(outline),
max_distance,
stroke.running_stitch_tolerance
))
center = outline.centroid
center = InkstitchPoint(center.x, center.y)
if stroke.satin_guide_pattern_position == "render_at_rungs":
count = len(guide_line.coords)
else:
count = _get_guided_line_count(stroke, guide_line)
outline_steps = _get_steps(count, exponent=stroke.exponent, flip=stroke.flip_exponent)
scale_steps = _get_steps(count, start=stroke.scale_start / 100.0, end=stroke.scale_end / 100.0)
start_point = InkstitchPoint(*(guide_line.coords[0]))
start_rotation = _get_start_rotation(guide_line)
previous_guide_point = None
for i in range(count):
check_stop_flag()
if stroke.satin_guide_pattern_position == "render_at_rungs":
# Requires the guide line to be defined as manual stitch
guide_point = InkstitchPoint(*guide_line.coords[i])
else:
guide_point = InkstitchPoint.from_shapely_point(guide_line.interpolate(outline_steps[i], normalized=True))
translation = guide_point - start_point
scaling = scale_steps[i]
if stroke.rotate_ripples and previous_guide_point:
rotation = atan2(guide_point.y - previous_guide_point.y, guide_point.x - previous_guide_point.x)
rotation = rotation - start_rotation
else:
rotation = 0
transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(guide_point), stroke.scale_axis)
for j, point in enumerate(transformed_outline.coords):
line_point_dict[j].append(InkstitchPoint(point[0], point[1]))
previous_guide_point = guide_point
return _point_dict_to_helper_lines(len(outline.coords), line_point_dict)
def _get_start_rotation(line):
point0 = line.interpolate(0)
point1 = line.interpolate(0.1)
return atan2(point1.y - point0.y, point1.x - point0.x)
def generate_satin_guide_helper_lines(stroke, outline, guide_line):
anchor_line = stroke.get_anchor_line()
if anchor_line:
# position, rotation and scale defined by anchor line
outline0 = InkstitchPoint(*anchor_line.coords[0])
outline1 = InkstitchPoint(*anchor_line.coords[-1])
else:
# position rotation and scale defined by line end points
outline_coords = outline.coords
outline0 = InkstitchPoint(*outline_coords[0])
outline1 = InkstitchPoint(*outline_coords[-1])
if outline0 == outline1:
return _generate_simple_satin_guide_helper_lines(stroke, outline, guide_line)
outline_width = (outline1 - outline0).length()
outline_rotation = atan2(outline1.y - outline0.y, outline1.x - outline0.x)
if stroke.satin_guide_pattern_position == "adaptive":
return _generate_satin_guide_helper_lines_with_varying_pattern_distance(
stroke, guide_line, outline, outline0, outline_width, outline_rotation
)
else:
return _generate_satin_guide_helper_lines_with_constant_pattern_distance(
stroke, guide_line, outline, outline0, outline_width, outline_rotation
)
def _generate_simple_satin_guide_helper_lines(stroke, outline, guide_line):
count = _get_guided_line_count(stroke, guide_line.center_line)
spacing = guide_line.center_line.length / max(1, count - 1)
if stroke.satin_guide_pattern_position == "render_at_rungs":
sections = guide_line.flattened_sections
pairs = []
for (rail0, rail1) in sections:
pairs.append((rail0[-1], rail1[-1]))
pairs = pairs[:-1]
else:
pairs = guide_line.plot_points_on_rails(spacing)
point0 = pairs[0][0]
point1 = pairs[0][1]
start_rotation = atan2(point1.y - point0.y, point1.x - point0.x)
start_scale = (point1 - point0).length()
outline_center = InkstitchPoint.from_shapely_point(outline.centroid)
line_point_dict = defaultdict(list)
# add scaled and rotated outlines along the satin column guide line
for i, (point0, point1) in enumerate(pairs):
check_stop_flag()
guide_center = (point0 + point1) / 2
translation = guide_center - outline_center
if stroke.rotate_ripples:
rotation = atan2(point1.y - point0.y, point1.x - point0.x)
rotation = rotation - start_rotation
else:
rotation = 0
scaling = (point1 - point0).length() / start_scale
transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(guide_center), stroke.scale_axis)
# outline to helper line points
for j, point in enumerate(transformed_outline.coords):
line_point_dict[j].append(InkstitchPoint(point[0], point[1]))
return _point_dict_to_helper_lines(len(outline.coords), line_point_dict)
def _generate_satin_guide_helper_lines_with_constant_pattern_distance(stroke, guide_line, outline, outline0, outline_width, outline_rotation):
# add scaled and rotated outlines along the satin column guide line
if stroke.satin_guide_pattern_position == "render_at_rungs":
sections = guide_line.flattened_sections
pairs = []
for (rail0, rail1) in sections:
pairs.append((rail0[-1], rail1[-1]))
else:
count = _get_guided_line_count(stroke, guide_line.center_line)
spacing = guide_line.center_line.length / max(1, count - 1)
pairs = guide_line.plot_points_on_rails(spacing)
if pairs[0] == pairs[-1]:
pairs = pairs[:-1]
line_point_dict = defaultdict(list)
for i, (point0, point1) in enumerate(pairs):
check_stop_flag()
# move to point0, rotate and scale so the other point hits point1
scaling = (point1 - point0).length() / outline_width
rotation = atan2(point1.y - point0.y, point1.x - point0.x)
rotation = rotation - outline_rotation
translation = point0 - outline0
transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(point0), 0)
# outline to helper line points
for j, point in enumerate(transformed_outline.coords):
line_point_dict[j].append(InkstitchPoint(point[0], point[1]))
return _point_dict_to_helper_lines(len(outline.coords), line_point_dict)
def _generate_satin_guide_helper_lines_with_varying_pattern_distance(stroke, guide_line, outline, outline0, outline_width, outline_rotation):
# rotate pattern and get the pattern width
minx, miny, maxx, maxy = _transform_outline(Point([0, 0]), outline_rotation, 1, outline, Point(outline0), 0).bounds
pattern_width = maxx - minx
distance = 0
line_point_dict = defaultdict(list)
while True:
if distance > guide_line.center_line.length:
break
check_stop_flag()
cut_point = guide_line.center_line.interpolate(distance)
point0, point1 = guide_line.find_cut_points(*cut_point.coords)
# move to point0, rotate and scale so the other point hits point1
scaling = (point1 - point0).length() / outline_width
rotation = atan2(point1.y - point0.y, point1.x - point0.x)
rotation = rotation - outline_rotation
translation = point0 - outline0
transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(point0), 0)
min_distance = stroke.min_line_dist or 0
distance += max(1, (pattern_width * scaling) + min_distance)
# outline to helper line points
for j, point in enumerate(transformed_outline.coords):
line_point_dict[j].append(InkstitchPoint(point[0], point[1]))
return _point_dict_to_helper_lines(len(outline.coords), line_point_dict)
def _transform_outline(translation, rotation, scaling, outline, origin, scale_axis):
# transform
transformed_outline = translate(outline, translation.x, translation.y)
# rotate
if rotation != 0:
transformed_outline = rotate(transformed_outline, rotation, use_radians=True, origin=origin)
# scale | scale_axis => 0: xy, 1: x, 2: y, 3: none
scale_x = scale_y = scaling
if scale_axis in [2, 3]:
scale_x = 1
if scale_axis in [1, 3]:
scale_y = 1
transformed_outline = scale(transformed_outline, scale_x, scale_y, origin=origin)
return transformed_outline
def _point_dict_to_helper_lines(line_count, point_dict):
lines = []
for i in range(line_count):
points = point_dict[i]
lines.append(points)
return lines
def _get_steps(num_steps, start=0.0, end=1.0, exponent=1, flip=False):
steps = np.linspace(start, end, num_steps)
steps = steps ** exponent
if flip:
steps = 1.0 - np.flip(steps)
return list(steps)
def _repeat_coords(coords, repeats):
if not coords:
return coords
final_coords = []
for i in range(repeats):
if i % 2 == 1:
# reverse every other pass
this_coords = coords[::-1]
else:
this_coords = coords[:]
final_coords.extend(this_coords)
return final_coords