inkstitch/inkstitch/elements/element.py

261 wiersze
7.7 KiB
Python

import sys
from copy import deepcopy
from ..utils import cache
from shapely import geometry as shgeo
from .. import _, PIXELS_PER_MM, get_viewbox_transform, get_stroke_scale, convert_length
# inkscape-provided utilities
import simpletransform
import simplestyle
import cubicsuperpath
from cspsubdiv import cspsubdiv
class Patch:
"""A raw collection of stitches with attached instructions."""
def __init__(self, color=None, stitches=None, trim_after=False, stop_after=False):
self.color = color
self.stitches = stitches or []
self.trim_after = trim_after
self.stop_after = stop_after
def __add__(self, other):
if isinstance(other, Patch):
return Patch(self.color, self.stitches + other.stitches)
else:
raise TypeError("Patch can only be added to another Patch")
def add_stitch(self, stitch):
self.stitches.append(stitch)
def reverse(self):
return Patch(self.color, self.stitches[::-1])
class Param(object):
def __init__(self, name, description, unit=None, values=[], type=None, group=None, inverse=False, default=None, tooltip=None, sort_index=0):
self.name = name
self.description = description
self.unit = unit
self.values = values or [""]
self.type = type
self.group = group
self.inverse = inverse
self.default = default
self.tooltip = tooltip
self.sort_index = sort_index
def __repr__(self):
return "Param(%s)" % vars(self)
# Decorate a member function or property with information about
# the embroidery parameter it corresponds to
def param(*args, **kwargs):
p = Param(*args, **kwargs)
def decorator(func):
func.param = p
return func
return decorator
class EmbroideryElement(object):
def __init__(self, node):
self.node = node
@property
def id(self):
return self.node.get('id')
@classmethod
def get_params(cls):
params = []
for attr in dir(cls):
prop = getattr(cls, attr)
if isinstance(prop, property):
# The 'param' attribute is set by the 'param' decorator defined above.
if hasattr(prop.fget, 'param'):
params.append(prop.fget.param)
return params
@cache
def get_param(self, param, default):
value = self.node.get("embroider_" + param, "").strip()
return value or default
@cache
def get_boolean_param(self, param, default=None):
value = self.get_param(param, default)
if isinstance(value, bool):
return value
else:
return value and (value.lower() in ('yes', 'y', 'true', 't', '1'))
@cache
def get_float_param(self, param, default=None):
try:
value = float(self.get_param(param, default))
except (TypeError, ValueError):
value = default
if value is None:
return value
if param.endswith('_mm'):
value = value * PIXELS_PER_MM
return value
@cache
def get_int_param(self, param, default=None):
try:
value = int(self.get_param(param, default))
except (TypeError, ValueError):
return default
if param.endswith('_mm'):
value = int(value * PIXELS_PER_MM)
return value
def set_param(self, name, value):
self.node.set("embroider_%s" % name, str(value))
@cache
def get_style(self, style_name):
style = simplestyle.parseStyle(self.node.get("style"))
if (style_name not in style):
return None
value = style[style_name]
if value == 'none':
return None
return value
@cache
def has_style(self, style_name):
style = simplestyle.parseStyle(self.node.get("style"))
return style_name in style
@property
@cache
def stroke_width(self):
width = self.get_style("stroke-width")
if width is None:
return 1.0
width = convert_length(width)
return width * get_stroke_scale(self.node.getroottree().getroot())
@property
def path(self):
return cubicsuperpath.parsePath(self.node.get("d"))
@cache
def parse_path(self):
# A CSP is a "cubic superpath".
#
# A "path" is a sequence of strung-together bezier curves.
#
# A "superpath" is a collection of paths that are all in one object.
#
# The "cubic" bit in "cubic superpath" is because the bezier curves
# inkscape uses involve cubic polynomials.
#
# Each path is a collection of tuples, each of the form:
#
# (control_before, point, control_after)
#
# A bezier curve segment is defined by an endpoint, a control point,
# a second control point, and a final endpoint. A path is a bunch of
# bezier curves strung together. One could represent a path as a set
# of four-tuples, but there would be redundancy because the ending
# point of one bezier is the starting point of the next. Instead, a
# path is a set of 3-tuples as shown above, and one must construct
# each bezier curve by taking the appropriate endpoints and control
# points. Bleh. It should be noted that a straight segment is
# represented by having the control point on each end equal to that
# end's point.
#
# In a path, each element in the 3-tuple is itself a tuple of (x, y).
# Tuples all the way down. Hasn't anyone heard of using classes?
path = self.path
# start with the identity transform
transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
# combine this node's transform with all parent groups' transforms
transform = simpletransform.composeParents(self.node, transform)
# add in the transform implied by the viewBox
viewbox_transform = get_viewbox_transform(self.node.getroottree().getroot())
transform = simpletransform.composeTransform(viewbox_transform, transform)
# apply the combined transform to this node's path
simpletransform.applyTransformToPath(transform, path)
return path
def flatten(self, path):
"""approximate a path containing beziers with a series of points"""
path = deepcopy(path)
cspsubdiv(path, 0.1)
flattened = []
for comp in path:
vertices = []
for ctl in comp:
vertices.append((ctl[1][0], ctl[1][1]))
flattened.append(vertices)
return flattened
@property
@param('trim_after',
_('TRIM after'),
tooltip=_('Trim thread after this object (for supported machines and file formats)'),
type='boolean',
default=False,
sort_index=1000)
def trim_after(self):
return self.get_boolean_param('trim_after', False)
@property
@param('stop_after',
_('STOP after'),
tooltip=_('Add STOP instruction after this object (for supported machines and file formats)'),
type='boolean',
default=False,
sort_index=1000)
def stop_after(self):
return self.get_boolean_param('stop_after', False)
def to_patches(self, last_patch):
raise NotImplementedError("%s must implement to_patches()" % self.__class__.__name__)
def embroider(self, last_patch):
patches = self.to_patches(last_patch)
if patches:
patches[-1].trim_after = self.trim_after
patches[-1].stop_after = self.stop_after
return patches
def fatal(self, message):
print >> sys.stderr, "error:", message
sys.exit(1)