inkstitch/lib/stitches/auto_run.py

309 wiersze
11 KiB
Python

# Authors: see git history
#
# Copyright (c) 2022 Authors
# Licensed under the GNU GPL version 3.0 or later. See the file LICENSE for details.
from collections import defaultdict
import inkex
import networkx as nx
from shapely.geometry import LineString, MultiLineString, MultiPoint, Point
from shapely.ops import nearest_points, substring, unary_union
from ..commands import add_commands
from ..elements import Stroke
from ..i18n import _
from ..svg import PIXELS_PER_MM, generate_unique_id
from ..svg.tags import INKSCAPE_LABEL, INKSTITCH_ATTRIBS
from ..utils.threading import check_stop_flag
from .utils.autoroute import (add_elements_to_group, add_jumps,
create_new_group, find_path,
get_starting_and_ending_nodes,
preserve_original_groups,
remove_original_elements)
class LineSegments:
'''
Takes elements and splits them into segments.
Attributes:
_lines -- a list of LineStrings from the subpaths of the Stroke elements
_elements -- a list of Stroke elements for each corresponding line in _lines
_intersection_points -- a dictionary with intersection points {line_index: [intersection_points]}
segments -- (public) a list of segments and corresponding elements [[segment, element], ...]
'''
def __init__(self, elements):
self._lines = []
self._elements = []
self._intersection_points = defaultdict(list)
self.segments = []
self._process_elements(elements)
self._get_intersection_points()
self._get_segments()
def _process_elements(self, elements):
for element in elements:
lines = element.as_multi_line_string().geoms
for line in lines:
# split at self-intersections if necessary
unary_lines = unary_union(line)
if isinstance(unary_lines, MultiLineString):
for unary_line in unary_lines.geoms:
self._lines.append(unary_line)
self._elements.append(element)
else:
self._lines.append(line)
self._elements.append(element)
check_stop_flag()
def _get_intersection_points(self):
for i, line1 in enumerate(self._lines):
for j in range(i + 1, len(self._lines)):
check_stop_flag()
line2 = self._lines[j]
distance = line1.distance(line2)
if distance > 50:
continue
if not distance == 0:
# add nearest points
near = nearest_points(line1, line2)
self._add_point(i, near[0])
self._add_point(j, near[1])
# add intersections
intersections = line1.intersection(line2)
if isinstance(intersections, Point):
self._add_point(i, intersections)
self._add_point(j, intersections)
elif isinstance(intersections, MultiPoint):
for point in intersections.geoms:
self._add_point(i, point)
self._add_point(j, point)
elif isinstance(intersections, LineString):
for point in intersections.coords:
self._add_point(i, Point(*point))
self._add_point(j, Point(*point))
def _add_point(self, element, point):
self._intersection_points[element].append(point)
def _get_segments(self):
'''
Splits elements into segments at intersection and "almost intersecions".
The split method would make this very easy (it can split a MultiString with
MultiPoints) but sadly it fails too often, while snap moves the points away
from where we want them. So we need to calculate the distance along the line
and finally split it into segments with shapelys substring method.
'''
self.segments = []
for i, line in enumerate(self._lines):
length = line.length
points = self._intersection_points[i]
distances = [0, length]
for point in points:
distances.append(line.project(point))
distances = sorted(set(distances))
for j in range(len(distances) - 1):
start = distances[j]
end = distances[j + 1]
if end - start > 0.1:
seg = substring(line, start, end)
self.segments.append([seg, self._elements[i]])
def autorun(elements, preserve_order=False, break_up=None, starting_point=None, ending_point=None, trim=False):
graph = build_graph(elements, preserve_order, break_up)
graph = add_jumps(graph, elements, preserve_order)
starting_point, ending_point = get_starting_and_ending_nodes(
graph, elements, preserve_order, starting_point, ending_point)
path = find_path(graph, starting_point, ending_point)
path = add_path_attribs(path)
new_elements, trims, original_parents = path_to_elements(graph, path, trim)
if preserve_order:
preserve_original_groups(new_elements, original_parents)
else:
parent = elements[0].node.getparent()
insert_index = parent.index(elements[0].node)
group = create_new_group(parent, insert_index, _("Auto-Route"))
add_elements_to_group(new_elements, group)
if trim:
add_trims(new_elements, trims)
remove_original_elements(elements)
def build_graph(elements, preserve_order, break_up):
if preserve_order:
graph = nx.DiGraph()
else:
graph = nx.Graph()
if not break_up:
segments = []
for element in elements:
line_strings = [[line, element] for line in element.as_multi_line_string().geoms]
segments.extend(line_strings)
else:
segments = LineSegments(elements).segments
for segment, element in segments:
for c1, c2 in zip(segment.coords[:-1], segment.coords[1:]):
start = Point(*c1)
end = Point(*c2)
graph.add_node(str(start), point=start)
graph.add_node(str(end), point=end)
graph.add_edge(str(start), str(end), element=element)
if preserve_order:
# The graph is a directed graph, but we want to allow travel in
# any direction, so we add the edge in the opposite direction too.
graph.add_edge(str(end), str(start), element=element)
check_stop_flag()
return graph
def add_path_attribs(path):
# find_path() will have duplicated some of the edges in the graph. We don't
# want to sew the same running stitch twice. If a running stitch section appears
# twice in the path, we'll sew the first occurrence as a simple running stitch without
# the original running stitch repetitions and bean stitch settings.
seen = set()
for i, point in reversed(list(enumerate(path))):
if point in seen:
path[i] = (*point, "underpath")
else:
path[i] = (*point, "autorun")
seen.add(point)
seen.add((point[1], point[0]))
return path
def path_to_elements(graph, path, trim): # noqa: C901
element_list = []
original_parents = []
trims = []
d = ""
position = 0
path_direction = "autorun"
just_trimmed = False
el = None
for start, end, direction in path:
check_stop_flag()
try:
element = graph[start][end].get('element')
except KeyError:
# runs with the preserve order option may need this
element = graph[end][start].get('element')
start_coord = graph.nodes[start]['point']
end_coord = graph.nodes[end]['point']
# create a new element if we hit an other original element to keep it's properties
if el and element and el != element and d and not direction == 'underpath':
element_list.append(create_element(d, position, path_direction, el))
original_parents.append(el.node.getparent())
d = ""
position += 1
if element:
el = element
if just_trimmed:
if direction == "underpath":
# no sense in doing underpath after we trim
continue
else:
just_trimmed = False
# create a new element if direction (purpose) changes
if direction != path_direction:
if d:
element_list.append(create_element(d, position, path_direction, el))
original_parents.append(el.node.getparent())
d = ""
position += 1
path_direction = direction
if d == "":
d = "M %s %s, %s %s" % (start_coord.x, start_coord.y, end_coord.x, end_coord.y)
else:
d += ", %s %s" % (end_coord.x, end_coord.y)
elif el and d:
# this is a jump, so complete the element whose path we've been building
element_list.append(create_element(d, position, path_direction, el))
original_parents.append(el.node.getparent())
d = ""
if trim and start_coord.distance(end_coord) > 0.75 * PIXELS_PER_MM:
trims.append(position)
just_trimmed = True
position += 1
if d:
element_list.append(create_element(d, position, path_direction, el))
original_parents.append(el.node.getparent())
return element_list, trims, original_parents
def create_element(path, position, direction, element):
if not path:
return
el_id = "%s_%s_" % (direction, position)
index = position + 1
if direction == "autorun":
label = _("AutoRun %d") % index
else:
label = _("AutoRun Underpath %d") % index
node = inkex.PathElement()
node.set("id", generate_unique_id(element.node, el_id))
node.set(INKSCAPE_LABEL, label)
node.set("d", path)
node.set("style", element.node.style)
# Set Ink/Stitch attributes
stitch_length = element.node.get(INKSTITCH_ATTRIBS['running_stitch_length_mm'], '')
tolerance = element.node.get(INKSTITCH_ATTRIBS['running_stitch_tolerance_mm'], '')
repeats = int(element.node.get(INKSTITCH_ATTRIBS['repeats'], 1))
if repeats % 2 == 0:
repeats -= 1
if direction == "autorun":
for attrib in element.node.attrib:
if attrib.startswith(inkex.NSS['inkstitch'], 1):
if attrib == INKSTITCH_ATTRIBS['repeats']:
node.set(INKSTITCH_ATTRIBS['repeats'], str(repeats))
else:
node.set(attrib, element.node.get(attrib))
else:
if stitch_length:
node.set(INKSTITCH_ATTRIBS['running_stitch_length_mm'], stitch_length)
if tolerance:
node.set(INKSTITCH_ATTRIBS['running_stitch_tolerance_mm'], tolerance)
node.set("style", element.node.style + inkex.Style("stroke-dasharray:0.5,0.5;fill:none;"))
return Stroke(node)
def add_trims(elements, trim_indices):
for i in trim_indices:
add_commands(elements[i], ["trim"])