#!/usr/bin/python # # documentation: see included index.html # LICENSE: # Copyright 2010 by Jon Howell, # Originally licensed under GPLv3. # Copyright 2015 by Bas Wijnen . # New parts are licensed under AGPL3 or later. # (Note that this means this work is licensed under the common part of those two: AGPL version 3.) # # Important resources: # lxml interface for walking SVG tree: # http://codespeak.net/lxml/tutorial.html#elementpath # Inkscape library for extracting paths from SVG: # http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py # Shapely computational geometry library: # http://gispython.org/shapely/manual.html#multipolygons # Embroidery file format documentation: # http://www.achatina.de/sewing/main/TECHNICL.HTM import sys sys.path.append("/usr/share/inkscape/extensions") import os import subprocess from copy import deepcopy import time from itertools import chain, izip, groupby from collections import deque import inkex import simplepath import simplestyle import simpletransform from bezmisc import bezierlength, beziertatlength, bezierpointatt from cspsubdiv import cspsubdiv import cubicsuperpath import math import lxml.etree as etree import shapely.geometry as shgeo import shapely.affinity as affinity import shapely.ops import networkx from pprint import pformat import PyEmb from PyEmb import cache dbg = open("/tmp/embroider-debug.txt", "w") PyEmb.dbg = dbg SVG_PATH_TAG = inkex.addNS('path', 'svg') SVG_POLYLINE_TAG = inkex.addNS('polyline', 'svg') SVG_DEFS_TAG = inkex.addNS('defs', 'svg') SVG_GROUP_TAG = inkex.addNS('g', 'svg') EMBROIDERABLE_TAGS = (SVG_PATH_TAG, SVG_POLYLINE_TAG) class Param(object): def __init__(self, name, description, unit=None, values=[], type=None, group=None, inverse=False, default=None): self.name = name self.description = description self.unit = unit self.values = values or [""] self.type = type self.group = group self.inverse = inverse self.default = default def __repr__(self): return "Param(%s)" % vars(self) # Decorate a member function or property with information about # the embroidery parameter it corresponds to def param(*args, **kwargs): p = Param(*args, **kwargs) def decorator(func): func.param = p return func return decorator class EmbroideryElement(object): def __init__(self, node, options=None): self.node = node self.options = options @property def id(self): return self.node.get('id') @classmethod def get_params(cls): params = [] for attr in dir(cls): prop = getattr(cls, attr) if isinstance(prop, property): # The 'param' attribute is set by the 'param' decorator defined above. if hasattr(prop.fget, 'param'): params.append(prop.fget.param) return params @cache def get_param(self, param, default): value = self.node.get("embroider_" + param, "").strip() if not value: value = getattr(self.options, param, default) return value @cache def get_boolean_param(self, param, default=None): value = self.get_param(param, default) if isinstance(value, bool): return value else: return value and (value.lower() in ('yes', 'y', 'true', 't', '1')) @cache def get_float_param(self, param, default=None): try: value = float(self.get_param(param, default)) except (TypeError, ValueError): return default if param.endswith('_mm'): # print >> dbg, "get_float_param", param, value, "*", self.options.pixels_per_mm value = value * self.options.pixels_per_mm return value @cache def get_int_param(self, param, default=None): try: value = int(self.get_param(param, default)) except (TypeError, ValueError): return default if param.endswith('_mm'): value = int(value * self.options.pixels_per_mm) return value def set_param(self, name, value): self.node.set("embroider_%s" % name, str(value)) @cache def get_style(self, style_name): style = simplestyle.parseStyle(self.node.get("style")) if (style_name not in style): return None value = style[style_name] if value == 'none': return None return value @cache def has_style(self, style_name): style = simplestyle.parseStyle(self.node.get("style")) return style_name in style @property def path(self): return cubicsuperpath.parsePath(self.node.get("d")) @cache def parse_path(self): # A CSP is a "cubic superpath". # # A "path" is a sequence of strung-together bezier curves. # # A "superpath" is a collection of paths that are all in one object. # # The "cubic" bit in "cubic superpath" is because the bezier curves # inkscape uses involve cubic polynomials. # # Each path is a collection of tuples, each of the form: # # (control_before, point, control_after) # # A bezier curve segment is defined by an endpoint, a control point, # a second control point, and a final endpoint. A path is a bunch of # bezier curves strung together. One could represent a path as a set # of four-tuples, but there would be redundancy because the ending # point of one bezier is the starting point of the next. Instead, a # path is a set of 3-tuples as shown above, and one must construct # each bezier curve by taking the appropriate endpoints and control # points. Bleh. It should be noted that a straight segment is # represented by having the control point on each end equal to that # end's point. # # In a path, each element in the 3-tuple is itself a tuple of (x, y). # Tuples all the way down. Hasn't anyone heard of using classes? path = self.path # start with the identity transform transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]] # combine this node's transform with all parent groups' transforms transform = simpletransform.composeParents(self.node, transform) # apply the combined transform to this node's path simpletransform.applyTransformToPath(transform, path) return path def flatten(self, path): """approximate a path containing beziers with a series of points""" path = deepcopy(path) cspsubdiv(path, self.options.flat) flattened = [] for comp in path: vertices = [] for ctl in comp: vertices.append((ctl[1][0], ctl[1][1])) flattened.append(vertices) return flattened def to_patches(self, last_patch): raise NotImplementedError("%s must implement to_path()" % self.__class__.__name__) def fatal(self, message): print >> sys.stderr, "error:", message sys.exit(1) class Fill(EmbroideryElement): def __init__(self, *args, **kwargs): super(Fill, self).__init__(*args, **kwargs) @property @param('auto_fill', 'Manually routed fill stitching', type='toggle', inverse=True, default=True) def auto_fill(self): return self.get_boolean_param('auto_fill', True) @property @param('angle', 'Angle of lines of stitches', unit='deg', type='float') @cache def angle(self): return math.radians(self.get_float_param('angle', 0)) @property def color(self): return self.get_style("fill") @property @param('flip', 'Flip fill (start right-to-left)', type='boolean') def flip(self): return self.get_boolean_param("flip", False) @property @param('row_spacing_mm', 'Spacing between rows', unit='mm', type='float') def row_spacing(self): return self.get_float_param("row_spacing_mm") @property @param('max_stitch_length_mm', 'Maximum fill stitch length', unit='mm', type='float') def max_stitch_length(self): return self.get_float_param("max_stitch_length_mm") @property @param('staggers', 'Stagger rows this many times before repeating', type='int') def staggers(self): return self.get_int_param("staggers", 4) @property @cache def paths(self): return self.flatten(self.parse_path()) @property @cache def shape(self): poly_ary = [] for sub_path in self.paths: point_ary = [] last_pt = None for pt in sub_path: if (last_pt is not None): vp = (pt[0] - last_pt[0], pt[1] - last_pt[1]) dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0)) # dbg.write("dp %s\n" % dp) if (dp > 0.01): # I think too-close points confuse shapely. point_ary.append(pt) last_pt = pt else: last_pt = pt if point_ary: poly_ary.append(point_ary) # shapely's idea of "holes" are to subtract everything in the second set # from the first. So let's at least make sure the "first" thing is the # biggest path. # TODO: actually figure out which things are holes and which are shells poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True) polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])]) # print >> sys.stderr, "polygon valid:", polygon.is_valid return polygon @cache def east(self, angle): # "east" is the name of the direction that is to the right along a row return PyEmb.Point(1, 0).rotate(-angle) @cache def north(self, angle): return self.east(angle).rotate(math.pi / 2) def row_num(self, point, angle, row_spacing): return round((point * self.north(angle)) / row_spacing) def adjust_stagger(self, stitch, angle, row_spacing, max_stitch_length): row_num = self.row_num(stitch, angle, row_spacing) row_stagger = row_num % self.staggers stagger_offset = (float(row_stagger) / self.staggers) * max_stitch_length offset = ((stitch * self.east(angle)) - stagger_offset) % max_stitch_length return stitch - offset * self.east(angle) def intersect_region_with_grating(self, angle=None, row_spacing=None): if angle is None: angle = self.angle if row_spacing is None: row_spacing = self.row_spacing # the max line length I'll need to intersect the whole shape is the diagonal (minx, miny, maxx, maxy) = self.shape.bounds upper_left = PyEmb.Point(minx, miny) lower_right = PyEmb.Point(maxx, maxy) length = (upper_left - lower_right).length() half_length = length / 2.0 # Now get a unit vector rotated to the requested angle. I use -angle # because shapely rotates clockwise, but my geometry textbooks taught # me to consider angles as counter-clockwise from the X axis. direction = PyEmb.Point(1, 0).rotate(-angle) # and get a normal vector normal = direction.rotate(math.pi / 2) # I'll start from the center, move in the normal direction some amount, # and then walk left and right half_length in each direction to create # a line segment in the grating. center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0) # I need to figure out how far I need to go along the normal to get to # the edge of the shape. To do that, I'll rotate the bounding box # angle degrees clockwise and ask for the new bounding box. The max # and min y tell me how far to go. _, start, _, end = affinity.rotate(self.shape, angle, origin='center', use_radians=True).bounds # convert start and end to be relative to center (simplifies things later) start -= center.y end -= center.y # offset start slightly so that rows are always an even multiple of # row_spacing_px from the origin. This makes it so that abutting # fill regions at the same angle and spacing always line up nicely. start -= (start + normal * center) % row_spacing rows = [] while start < end: p0 = center + normal * start + direction * half_length p1 = center + normal * start - direction * half_length endpoints = [p0.as_tuple(), p1.as_tuple()] grating_line = shgeo.LineString(endpoints) res = grating_line.intersection(self.shape) if (isinstance(res, shgeo.MultiLineString)): runs = map(lambda line_string: line_string.coords, res.geoms) else: if res.is_empty or len(res.coords) == 1: # ignore if we intersected at a single point or no points start += row_spacing continue runs = [res.coords] runs.sort(key=lambda seg: (PyEmb.Point(*seg[0]) - upper_left).length()) if self.flip: runs.reverse() runs = map(lambda run: tuple(reversed(run)), runs) rows.append(runs) start += row_spacing return rows def make_quadrilateral(self, segment1, segment2): return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0])) def is_same_run(self, segment1, segment2): if shgeo.LineString(segment1).distance(shgeo.LineString(segment2)) > self.row_spacing * 1.1: return False quad = self.make_quadrilateral(segment1, segment2) quad_area = quad.area intersection_area = self.shape.intersection(quad).area return (intersection_area / quad_area) >= 0.9 def pull_runs(self, rows): # Given a list of rows, each containing a set of line segments, # break the area up into contiguous patches of line segments. # # This is done by repeatedly pulling off the first line segment in # each row and calling that a shape. We have to be careful to make # sure that the line segments are part of the same shape. Consider # the letter "H", with an embroidery angle of 45 degrees. When # we get to the bottom of the lower left leg, the next row will jump # over to midway up the lower right leg. We want to stop there and # start a new patch. # for row in rows: # print >> sys.stderr, len(row) # print >>sys.stderr, "\n".join(str(len(row)) for row in rows) runs = [] count = 0 while (len(rows) > 0): run = [] prev = None for row_num in xrange(len(rows)): row = rows[row_num] first, rest = row[0], row[1:] # TODO: only accept actually adjacent rows here if prev is not None and not self.is_same_run(prev, first): break run.append(first) prev = first rows[row_num] = rest # print >> sys.stderr, len(run) runs.append(run) rows = [row for row in rows if len(row) > 0] count += 1 return runs def stitch_row(self, patch, beg, end, angle, row_spacing, max_stitch_length): # We want our stitches to look like this: # # ---*-----------*----------- # ------*-----------*-------- # ---------*-----------*----- # ------------*-----------*-- # ---*-----------*----------- # # Each successive row of stitches will be staggered, with # num_staggers rows before the pattern repeats. A value of # 4 gives a nice fill while hiding the needle holes. The # first row is offset 0%, the second 25%, the third 50%, and # the fourth 75%. # # Actually, instead of just starting at an offset of 0, we # can calculate a row's offset relative to the origin. This # way if we have two abutting fill regions, they'll perfectly # tile with each other. That's important because we often get # abutting fill regions from pull_runs(). beg = PyEmb.Point(*beg) end = PyEmb.Point(*end) row_direction = (end - beg).unit() segment_length = (end - beg).length() # only stitch the first point if it's a reasonable distance away from the # last stitch if not patch.stitches or (beg - patch.stitches[-1]).length() > 0.5 * self.options.pixels_per_mm: patch.add_stitch(beg) first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length) # we might have chosen our first stitch just outside this row, so move back in if (first_stitch - beg) * row_direction < 0: first_stitch += row_direction * max_stitch_length offset = (first_stitch - beg).length() while offset < segment_length: patch.add_stitch(beg + offset * row_direction) offset += max_stitch_length if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm: patch.add_stitch(end) def section_to_patch(self, group_of_segments, angle=None, row_spacing=None, max_stitch_length=None): if max_stitch_length is None: max_stitch_length = self.max_stitch_length if row_spacing is None: row_spacing = self.row_spacing if angle is None: angle = self.angle # print >> sys.stderr, len(groups_of_segments) patch = Patch(color=self.color) first_segment = True swap = False last_end = None for segment in group_of_segments: (beg, end) = segment if (swap): (beg, end) = (end, beg) self.stitch_row(patch, beg, end, angle, row_spacing, max_stitch_length) swap = not swap return patch def to_patches(self, last_patch): rows_of_segments = self.intersect_region_with_grating() groups_of_segments = self.pull_runs(rows_of_segments) return [self.section_to_patch(group) for group in groups_of_segments] class MaxQueueLengthExceeded(Exception): pass class AutoFill(Fill): @property @param('auto_fill', 'Automatically routed fill stitching', type='toggle', default=True) def auto_fill(self): return self.get_boolean_param('auto_fill', True) @property @cache def outline(self): return self.shape.boundary[0] @property @cache def outline_length(self): return self.outline.length @property def flip(self): return False @property @param('running_stitch_length_mm', 'Running stitch length (traversal between sections)', unit='mm', type='float') def running_stitch_length(self): return self.get_float_param("running_stitch_length_mm") @property @param('fill_underlay', 'Underlay', type='toggle', group='AutoFill Underlay') def fill_underlay(self): return self.get_boolean_param("fill_underlay") @property @param('fill_underlay_angle', 'Fill angle (default: fill angle + 90 deg)', unit='deg', group='AutoFill Underlay', type='float') @cache def fill_underlay_angle(self): underlay_angle = self.get_float_param("fill_underlay_angle") if underlay_angle: return math.radians(underlay_angle) else: return self.angle + math.pi / 2.0 @property @param('fill_underlay_row_spacing_mm', 'Row spacing (default: 3x fill row spacing)', unit='mm', group='AutoFill Underlay', type='float') @cache def fill_underlay_row_spacing(self): return self.get_float_param("fill_underlay_row_spacing_mm") or self.row_spacing * 3 @property @param('fill_underlay_max_stitch_length_mm', 'Max stitch length', unit='mm', group='AutoFill Underlay', type='float') @cache def fill_underlay_max_stitch_length(self): return self.get_float_param("fill_underlay_max_stitch_length_mm") or self.max_stitch_length def which_outline(self, coords): """return the index of the outline on which the point resides Index 0 is the outer boundary of the fill region. 1+ are the outlines of the holes. """ # I'd use an intersection check, but floating point errors make it # fail sometimes. point = shgeo.Point(*coords) outlines = list(enumerate(self.shape.boundary)) closest = min(outlines, key=lambda (index, outline): outline.distance(point)) return closest[0] def project(self, coords, outline_index): """project the point onto the specified outline This returns the distance along the outline at which the point resides. """ return self.shape.boundary.project(shgeo.Point(*coords)) def build_graph(self, segments, angle, row_spacing): """build a graph representation of the grating segments This function builds a specialized graph (as in graph theory) that will help us determine a stitching path. The idea comes from this paper: http://www.sciencedirect.com/science/article/pii/S0925772100000158 The goal is to build a graph that we know must have an Eulerian Path. An Eulerian Path is a path from edge to edge in the graph that visits every edge exactly once and ends at the node it started at. Algorithms exist to build such a path, and we'll use Hierholzer's algorithm. A graph must have an Eulerian Path if every node in the graph has an even number of edges touching it. Our goal here is to build a graph that will have this property. Based on the paper linked above, we'll build the graph as follows: * nodes are the endpoints of the grating segments, where they meet with the outer outline of the region the outlines of the interior holes in the region. * edges are: * each section of the outer and inner outlines of the region, between nodes * double every other edge in the outer and inner hole outlines Doubling up on some of the edges seems as if it will just mean we have to stitch those spots twice. This may be true, but it also ensures that every node has 4 edges touching it, ensuring that a valid stitch path must exist. """ graph = networkx.MultiGraph() # First, add the grating segments as edges. We'll use the coordinates # of the endpoints as nodes, which networkx will add automatically. for segment in segments: # networkx allows us to label nodes with arbitrary data. We'll # mark this one as a grating segment. graph.add_edge(*segment, key="segment") for node in graph.nodes(): outline_index = self.which_outline(node) outline_projection = self.project(node, outline_index) # Tag each node with its index and projection. graph.add_node(node, index=outline_index, projection=outline_projection) nodes = graph.nodes(data=True) nodes.sort(key=lambda node: (node[1]['index'], node[1]['projection'])) for outline_index, nodes in groupby(nodes, key=lambda node: node[1]['index']): nodes = [ node for node, data in nodes ] # heuristic: change the order I visit the nodes in the outline if necessary. # If the start and endpoints are in the same row, I can't tell which row # I should treat it as being in. while True: row0 = self.row_num(PyEmb.Point(*nodes[0]), angle, row_spacing) row1 = self.row_num(PyEmb.Point(*nodes[1]), angle, row_spacing) if row0 == row1: nodes = nodes[1:] + [nodes[0]] else: break # heuristic: it's useful to try to keep the duplicated edges in the same rows. # this prevents the BFS from having to search a ton of edges. row_num = min(row0, row1) if row_num % 2 == 0: edge_set = 0 else: edge_set = 1 #print >> sys.stderr, outline_index, "es", edge_set, "rn", row_num, PyEmb.Point(*nodes[0]) * self.north(angle), PyEmb.Point(*nodes[1]) * self.north(angle) # add an edge between each successive node for i, (node1, node2) in enumerate(zip(nodes, nodes[1:] + [nodes[0]])): graph.add_edge(node1, node2, key="outline") # duplicate edges contained in every other row (exactly half # will be duplicated) row_num = min(self.row_num(PyEmb.Point(*node1), angle, row_spacing), self.row_num(PyEmb.Point(*node2), angle, row_spacing)) # duplicate every other edge around this outline if i % 2 == edge_set: graph.add_edge(node1, node2, key="extra") if not networkx.is_eulerian(graph): raise Exception("something went wrong: graph is not eulerian") return graph def node_list_to_edge_list(self, node_list): return zip(node_list[:-1], node_list[1:]) def bfs_for_loop(self, graph, starting_node, max_queue_length=2000): to_search = deque() to_search.appendleft(([starting_node], set(), 0)) while to_search: if len(to_search) > max_queue_length: raise MaxQueueLengthExceeded() path, visited_edges, visited_segments = to_search.pop() ending_node = path[-1] # get a list of neighbors paired with the key of the edge I can follow to get there neighbors = [ (node, key) for node, adj in graph.adj[ending_node].iteritems() for key in adj ] # heuristic: try grating segments first neighbors.sort(key=lambda (dest, key): key == "segment", reverse=True) for next_node, key in neighbors: # skip if I've already followed this edge edge = (tuple(sorted((ending_node, next_node))), key) if edge in visited_edges: continue new_path = path + [next_node] if key == "segment": new_visited_segments = visited_segments + 1 else: new_visited_segments = visited_segments if next_node == starting_node: # ignore trivial loops (down and back a doubled edge) if len(new_path) > 3: return self.node_list_to_edge_list(new_path), new_visited_segments new_visited_edges = visited_edges.copy() new_visited_edges.add(edge) to_search.appendleft((new_path, new_visited_edges, new_visited_segments)) def find_loop(self, graph, starting_nodes): """find a loop in the graph that is connected to the existing path Start at a candidate node and search through edges to find a path back to that node. We'll use a breadth-first search (BFS) in order to find the shortest available loop. In most cases, the BFS should not need to search far to find a loop. The queue should stay relatively short. An added heuristic will be used: if the BFS queue's length becomes too long, we'll abort and try a different starting point. Due to the way we've set up the graph, there's bound to be a better choice somewhere else. """ #loop = self.simple_loop(graph, starting_nodes[-2]) #if loop: # print >> sys.stderr, "simple_loop success" # starting_nodes.pop() # starting_nodes.pop() # return loop loop = None retry = [] max_queue_length = 2000 while not loop: while not loop and starting_nodes: starting_node = starting_nodes.pop() #print >> sys.stderr, "find loop from", starting_node try: # Note: if bfs_for_loop() returns None, no loop can be # constructed from the starting_node (because the # necessary edges have already been consumed). In that # case we discard that node and try the next. loop = self.bfs_for_loop(graph, starting_node, max_queue_length) if not loop: print >> dbg, "failed on", starting_node dbg.flush() except MaxQueueLengthExceeded: print >> dbg, "gave up on", starting_node dbg.flush() # We're giving up on this node for now. We could try # this node again later, so add it to the bottm of the # stack. retry.append(starting_node) # Darn, couldn't find a loop. Try harder. starting_nodes.extendleft(retry) max_queue_length *= 2 starting_nodes.extendleft(retry) return loop def insert_loop(self, path, loop): """insert a sub-loop into an existing path The path will be a series of edges describing a path through the graph that ends where it starts. The loop will be similar, and its starting point will be somewhere along the path. Insert the loop into the path, resulting in a longer path. Both the path and the loop will be a list of edges specified as a start and end point. The points will be specified in order, such that they will look like this: ((p1, p2), (p2, p3), (p3, p4) ... (pn, p1)) path will be modified in place. """ loop_start = loop[0][0] for i, (start, end) in enumerate(path): if start == loop_start: break path[i:i] = loop def find_stitch_path(self, graph, segments): """find a path that visits every grating segment exactly once Theoretically, we just need to find an Eulerian Path in the graph. However, we don't actually care whether every single edge is visited. The edges on the outline of the region are only there to help us get from one grating segment to the next. We'll build a "cycle" (a path that ends where it starts) using Hierholzer's algorithm. We'll stop once we've visited every grating segment. Hierholzer's algorithm says to select an arbitrary starting node at each step. In order to produce a reasonable stitch path, we'll select the vertex carefully such that we get back-and-forth traversal like mowing a lawn. To do this, we'll use a simple heuristic: try to start from nodes in the order of most-recently-visited first. """ original_graph = graph graph = graph.copy() num_segments = len(segments) segments_visited = 0 nodes_visited = deque() # start with a simple loop: down one segment and then back along the # outer border to the starting point. path = [segments[0], list(reversed(segments[0]))] graph.remove_edges_from(path) segments_visited += 1 nodes_visited.extend(segments[0]) while segments_visited < num_segments: result = self.find_loop(graph, nodes_visited) if not result: print >> sys.stderr, "Unexpected error filling region. Please send your SVG to lexelby@github." break loop, segments = result print >> dbg, "found loop:", loop dbg.flush() segments_visited += segments nodes_visited += [edge[0] for edge in loop] graph.remove_edges_from(loop) self.insert_loop(path, loop) #if segments_visited >= 12: # break # Now we have a loop that covers every grating segment. It returns to # where it started, which is unnecessary, so we'll snip the last bit off. #while original_graph.has_edge(*path[-1], key="outline"): # path.pop() return path def collapse_sequential_outline_edges(self, graph, path): """collapse sequential edges that fall on the same outline When the path follows multiple edges along the outline of the region, replace those edges with the starting and ending points. We'll use these to stitch along the outline later on. """ start_of_run = None new_path = [] for edge in path: if graph.has_edge(*edge, key="segment"): if start_of_run: # close off the last run new_path.append((start_of_run, edge[0])) start_of_run = None new_path.append(edge) else: if not start_of_run: start_of_run = edge[0] if start_of_run: # if we were still in a run, close it off new_path.append((start_of_run, edge[1])) return new_path def outline_distance(self, outline, p1, p2): # how far around the outline (and in what direction) do I need to go # to get from p1 to p2? p1_projection = outline.project(shgeo.Point(p1)) p2_projection = outline.project(shgeo.Point(p2)) distance = p2_projection - p1_projection if abs(distance) > self.outline_length / 2.0: # if we'd have to go more than halfway around, it's faster to go # the other way if distance < 0: return distance + self.outline_length elif distance > 0: return distance - self.outline_length else: # this ought not happen, but just for completeness, return 0 if # p1 and p0 are the same point return 0 else: return distance def connect_points(self, patch, start, end): outline_index = self.which_outline(start) outline = self.shape.boundary[outline_index] pos = outline.project(shgeo.Point(start)) distance = self.outline_distance(outline, start, end) stitches = abs(int(distance / self.running_stitch_length)) direction = math.copysign(1.0, distance) one_stitch = self.running_stitch_length * direction print >> dbg, "connect_points:", start, end, distance, stitches, direction patch.add_stitch(PyEmb.Point(*start)) for i in xrange(stitches): pos = (pos + one_stitch) % self.outline_length patch.add_stitch(PyEmb.Point(*outline.interpolate(pos).coords[0])) end = PyEmb.Point(*end) if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm: patch.add_stitch(end) def path_to_patch(self, graph, path, angle, row_spacing, max_stitch_length): path = self.collapse_sequential_outline_edges(graph, path) patch = Patch(color=self.color) #patch.add_stitch(PyEmb.Point(*path[0][0])) #for edge in path: # patch.add_stitch(PyEmb.Point(*edge[1])) for edge in path: if graph.has_edge(*edge, key="segment"): self.stitch_row(patch, edge[0], edge[1], angle, row_spacing, max_stitch_length) else: self.connect_points(patch, *edge) return patch def visualize_graph(self, graph): patches = [] graph = graph.copy() for start, end, key in graph.edges_iter(keys=True): if key == "extra": patch = Patch(color="#FF0000") patch.add_stitch(PyEmb.Point(*start)) patch.add_stitch(PyEmb.Point(*end)) patches.append(patch) return patches def do_auto_fill(self, angle, row_spacing, max_stitch_length, starting_point=None): patches = [] rows_of_segments = self.intersect_region_with_grating(angle, row_spacing) segments = [segment for row in rows_of_segments for segment in row] graph = self.build_graph(segments, angle, row_spacing) path = self.find_stitch_path(graph, segments) if starting_point: patch = Patch(self.color) self.connect_points(patch, starting_point, path[0][0]) patches.append(patch) patches.append(self.path_to_patch(graph, path, angle, row_spacing, max_stitch_length)) return patches def to_patches(self, last_patch): patches = [] if last_patch is None: starting_point = None else: nearest_point = self.outline.interpolate(self.outline.project(shgeo.Point(last_patch.stitches[-1]))) starting_point = PyEmb.Point(*nearest_point.coords[0]) if self.fill_underlay: patches.extend(self.do_auto_fill(self.fill_underlay_angle, self.fill_underlay_row_spacing, self.fill_underlay_max_stitch_length, starting_point)) starting_point = patches[-1].stitches[-1] patches.extend(self.do_auto_fill(self.angle, self.row_spacing, self.max_stitch_length, starting_point)) return patches class Stroke(EmbroideryElement): @property @param('satin_column', 'Satin along paths', type='toggle', inverse=True) def satin_column(self): return self.get_boolean_param("satin_column") @property def color(self): return self.get_style("stroke") @property @cache def width(self): stroke_width = self.get_style("stroke-width") if stroke_width.endswith("px"): stroke_width = stroke_width[:-2] return float(stroke_width) @property def dashed(self): return self.get_style("stroke-dasharray") is not None @property @param('running_stitch_length_mm', 'Running stitch length', unit='mm', type='float') def running_stitch_length(self): return self.get_float_param("running_stitch_length_mm") @property @param('zigzag_spacing_mm', 'Zig-zag spacing (peak-to-peak)', unit='mm', type='float') @cache def zigzag_spacing(self): return self.get_float_param("zigzag_spacing_mm") @property @param('repeats', 'Repeats', type='int') def repeats(self): return self.get_int_param("repeats", 1) @property def paths(self): return self.flatten(self.parse_path()) def is_running_stitch(self): # stroke width <= 0.5 pixels is deprecated in favor of dashed lines return self.dashed or self.width <= 0.5 def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width): patch = Patch(color=self.color) p0 = emb_point_list[0] rho = 0.0 side = 1 last_segment_direction = None for repeat in xrange(self.repeats): if repeat % 2 == 0: order = range(1, len(emb_point_list)) else: order = range(-2, -len(emb_point_list) - 1, -1) for segi in order: p1 = emb_point_list[segi] # how far we have to go along segment seg_len = (p1 - p0).length() if (seg_len == 0): continue # vector pointing along segment along = (p1 - p0).unit() # vector pointing to edge of stroke width perp = along.rotate_left() * (stroke_width * 0.5) if stroke_width == 0.0 and last_segment_direction is not None: if abs(1.0 - along * last_segment_direction) > 0.5: # if greater than 45 degree angle, stitch the corner rho = zigzag_spacing patch.add_stitch(p0) # iteration variable: how far we are along segment while (rho <= seg_len): left_pt = p0 + along * rho + perp * side patch.add_stitch(left_pt) rho += zigzag_spacing side = -side p0 = p1 last_segment_direction = along rho -= seg_len if (p0 - patch.stitches[-1]).length() > 0.1: patch.add_stitch(p0) return patch def to_patches(self, last_patch): patches = [] for path in self.paths: path = [PyEmb.Point(x, y) for x, y in path] if self.is_running_stitch(): patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0) else: patch = self.stroke_points(path, self.zigzag_spacing / 2.0, stroke_width=self.width) patches.append(patch) return patches class SatinColumn(EmbroideryElement): def __init__(self, *args, **kwargs): super(SatinColumn, self).__init__(*args, **kwargs) @property @param('satin_column', 'Custom satin column', type='toggle') def satin_column(self): return self.get_boolean_param("satin_column") @property def color(self): return self.get_style("stroke") @property @param('zigzag_spacing_mm', 'Zig-zag spacing (peak-to-peak)', unit='mm', type='float') def zigzag_spacing(self): # peak-to-peak distance between zigzags return self.get_float_param("zigzag_spacing_mm") @property @param('pull_compensation_mm', 'Pull compensation', unit='mm', type='float') def pull_compensation(self): # In satin stitch, the stitches have a tendency to pull together and # narrow the entire column. We can compensate for this by stitching # wider than we desire the column to end up. return self.get_float_param("pull_compensation_mm", 0) @property @param('contour_underlay', 'Contour underlay', type='toggle', group='Contour Underlay') def contour_underlay(self): # "Contour underlay" is stitching just inside the rectangular shape # of the satin column; that is, up one side and down the other. return self.get_boolean_param("contour_underlay") @property @param('contour_underlay_stitch_length_mm', 'Stitch length', unit='mm', group='Contour Underlay', type='float') def contour_underlay_stitch_length(self): # use "contour_underlay_stitch_length", or, if not set, default to "stitch_length" return self.get_float_param("contour_underlay_stitch_length_mm") or self.get_float_param("running_stitch_length_mm") @property @param('contour_underlay_inset_mm', 'Contour underlay inset amount', unit='mm', group='Contour Underlay', type='float') def contour_underlay_inset(self): # how far inside the edge of the column to stitch the underlay return self.get_float_param("contour_underlay_inset_mm", 0.4) @property @param('center_walk_underlay', 'Center-walk underlay', type='toggle', group='Center-Walk Underlay') def center_walk_underlay(self): # "Center walk underlay" is stitching down and back in the centerline # between the two sides of the satin column. return self.get_boolean_param("center_walk_underlay") @property @param('center_walk_underlay_stitch_length_mm', 'Stitch length', unit='mm', group='Center-Walk Underlay', type='float') def center_walk_underlay_stitch_length(self): # use "center_walk_underlay_stitch_length", or, if not set, default to "stitch_length" return self.get_float_param("center_walk_underlay_stitch_length_mm") or self.get_float_param("running_stitch_length_mm") @property @param('zigzag_underlay', 'Zig-zag underlay', type='toggle', group='Zig-zag Underlay') def zigzag_underlay(self): return self.get_boolean_param("zigzag_underlay") @property @param('zigzag_underlay_spacing_mm', 'Zig-Zag spacing (peak-to-peak)', unit='mm', group='Zig-zag Underlay', type='float') def zigzag_underlay_spacing(self): # peak-to-peak distance between zigzags in zigzag underlay return self.get_float_param("zigzag_underlay_spacing_mm", 1) @property @param('zigzag_underlay_inset', 'Inset amount (default: half of contour underlay inset)', unit='mm', group='Zig-zag Underlay', type='float') def zigzag_underlay_inset(self): # how far in from the edge of the satin the points in the zigzags # should be # Default to half of the contour underlay inset. That is, if we're # doing both contour underlay and zigzag underlay, make sure the # points of the zigzag fall outside the contour underlay but inside # the edges of the satin column. return self.get_float_param("zigzag_underlay_inset_mm") or self.contour_underlay_inset / 2.0 @property @cache def csp(self): return self.parse_path() @property @cache def flattened_beziers(self): if len(self.csp) == 2: return self.simple_flatten_beziers() else: return self.flatten_beziers_with_rungs() def flatten_beziers_with_rungs(self): input_paths = [self.flatten([path]) for path in self.csp] input_paths = [shgeo.LineString(path[0]) for path in input_paths] paths = input_paths[:] paths.sort(key=lambda path: path.length, reverse=True) # Imagine a satin column as a curvy ladder. # The two long paths are the "rails" of the ladder. The remainder are # the "rungs". rails = input_paths[:2] rungs = shgeo.MultiLineString(input_paths[2:]) # The rails should stay in the order they were in the original CSP. # (this lets the user control where the satin starts and ends) rails.sort(key=lambda rail: input_paths.index(rail)) result = [] for rail in rails: if not rail.is_simple: self.fatal("One or more rails crosses itself, and this is not allowed. Please split into multiple satin columns.") # handle null intersections here? linestrings = shapely.ops.split(rail, rungs) if len(linestrings.geoms) < len(rungs.geoms) + 1: print >> dbg, [str(rail) for rail in rails], [str(rung) for rung in rungs] self.fatal("Expected %d linestrings, got %d" % (len(rungs.geoms) + 1, len(linestrings.geoms))) paths = [[PyEmb.Point(*coord) for coord in ls.coords] for ls in linestrings.geoms] result.append(paths) return zip(*result) def simple_flatten_beziers(self): # Given a pair of paths made up of bezier segments, flatten # each individual bezier segment into line segments that approximate # the curves. Retain the divisions between beziers -- we'll use those # later. paths = [] for path in self.csp: # See the documentation in the parent class for parse_path() for a # description of the format of the CSP. Each bezier is constructed # using two neighboring 3-tuples in the list. flattened_path = [] # iterate over pairs of 3-tuples for prev, current in zip(path[:-1], path[1:]): flattened_segment = self.flatten([[prev, current]]) flattened_segment = [PyEmb.Point(x, y) for x, y in flattened_segment[0]] flattened_path.append(flattened_segment) paths.append(flattened_path) return zip(*paths) def validate_satin_column(self): # The node should have exactly two paths with no fill. Each # path should have the same number of points, meaning that they # will both be made up of the same number of bezier curves. node_id = self.node.get("id") if self.get_style("fill") is not None: self.fatal("satin column: object %s has a fill (but should not)" % node_id) if len(self.csp) == 2: if len(self.csp[0]) != len(self.csp[1]): self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(self.csp[0]), len(self.csp[1]))) def offset_points(self, pos1, pos2, offset_px): # Expand or contract two points about their midpoint. This is # useful for pull compensation and insetting underlay. distance = (pos1 - pos2).length() if distance < 0.0001: # if they're the same point, we don't know which direction # to offset in, so we have to just return the points return pos1, pos2 # don't contract beyond the midpoint, or we'll start expanding if offset_px < -distance / 2.0: offset_px = -distance / 2.0 pos1 = pos1 + (pos1 - pos2).unit() * offset_px pos2 = pos2 + (pos2 - pos1).unit() * offset_px return pos1, pos2 def walk(self, path, start_pos, start_index, distance): # Move pixels along , which is a sequence of line # segments defined by points. # is the index of the line segment in that # we're currently on. is where along that line # segment we are. Return a new position and index. # print >> dbg, "walk", start_pos, start_index, distance pos = start_pos index = start_index last_index = len(path) - 1 distance_remaining = distance while True: if index >= last_index: return pos, index segment_end = path[index + 1] segment = segment_end - pos segment_length = segment.length() if segment_length > distance_remaining: # our walk ends partway along this segment return pos + segment.unit() * distance_remaining, index else: # our walk goes past the end of this segment, so advance # one point index += 1 distance_remaining -= segment_length pos = segment_end def walk_paths(self, spacing, offset): # Take a bezier segment from each path in turn, and plot out an # equal number of points on each bezier. Return the points plotted. # The points will be contracted or expanded by offset using # offset_points(). points = [[], []] def add_pair(pos1, pos2): pos1, pos2 = self.offset_points(pos1, pos2, offset) points[0].append(pos1) points[1].append(pos2) # We may not be able to fit an even number of zigzags in each pair of # beziers. We'll store the remaining bit of the beziers after handling # each section. remainder_path1 = [] remainder_path2 = [] for segment1, segment2 in self.flattened_beziers: subpath1 = remainder_path1 + segment1 subpath2 = remainder_path2 + segment2 len1 = shgeo.LineString(subpath1).length len2 = shgeo.LineString(subpath2).length # Base the number of stitches in each section on the _longest_ of # the two beziers. Otherwise, things could get too sparse when one # side is significantly longer (e.g. when going around a corner). # The risk here is that we poke a hole in the fabric if we try to # cram too many stitches on the short bezier. The user will need # to avoid this through careful construction of paths. # # TODO: some commercial machine embroidery software compensates by # pulling in some of the "inner" stitches toward the center a bit. # note, this rounds down using integer-division num_points = max(len1, len2) / spacing spacing1 = len1 / num_points spacing2 = len2 / num_points pos1 = subpath1[0] index1 = 0 pos2 = subpath2[0] index2 = 0 for i in xrange(int(num_points)): add_pair(pos1, pos2) pos1, index1 = self.walk(subpath1, pos1, index1, spacing1) pos2, index2 = self.walk(subpath2, pos2, index2, spacing2) if index1 < len(subpath1) - 1: remainder_path1 = [pos1] + subpath1[index1 + 1:] else: remainder_path1 = [] if index2 < len(subpath2) - 1: remainder_path2 = [pos2] + subpath2[index2 + 1:] else: remainder_path2 = [] # We're off by one in the algorithm above, so we need one more # pair of points. We also want to add points at the very end to # make sure we match the vectors on screen as best as possible. # Try to avoid doing both if they're going to stack up too # closely. end1 = remainder_path1[-1] end2 = remainder_path2[-1] if (end1 - pos1).length() > 0.3 * spacing: add_pair(pos1, pos2) add_pair(end1, end2) return points def do_contour_underlay(self): # "contour walk" underlay: do stitches up one side and down the # other. forward, back = self.walk_paths(self.contour_underlay_stitch_length, -self.contour_underlay_inset) return Patch(color=self.color, stitches=(forward + list(reversed(back)))) def do_center_walk(self): # Center walk underlay is just a running stitch down and back on the # center line between the bezier curves. # Do it like contour underlay, but inset all the way to the center. forward, back = self.walk_paths(self.center_walk_underlay_stitch_length, -100000) return Patch(color=self.color, stitches=(forward + list(reversed(back)))) def do_zigzag_underlay(self): # zigzag underlay, usually done at a much lower density than the # satin itself. It looks like this: # # \/\/\/\/\/\/\/\/\/\/| # /\/\/\/\/\/\/\/\/\/\| # # In combination with the "contour walk" underlay, this is the # "German underlay" described here: # http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/ patch = Patch(color=self.color) sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0, -self.zigzag_underlay_inset) # This organizes the points in each side in the order that they'll be # visited. sides = [sides[0][::2] + list(reversed(sides[0][1::2])), sides[1][1::2] + list(reversed(sides[1][::2]))] # This fancy bit of iterable magic just repeatedly takes a point # from each side in turn. for point in chain.from_iterable(izip(*sides)): patch.add_stitch(point) return patch def do_satin(self): # satin: do a zigzag pattern, alternating between the paths. The # zigzag looks like this to make the satin stitches look perpendicular # to the column: # # /|/|/|/|/|/|/|/| # print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation patch = Patch(color=self.color) sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation) # Like in zigzag_underlay(): take a point from each side in turn. for point in chain.from_iterable(izip(*sides)): patch.add_stitch(point) return patch def to_patches(self, last_patch): # Stitch a variable-width satin column, zig-zagging between two paths. # The algorithm will draw zigzags between each consecutive pair of # beziers. The boundary points between beziers serve as "checkpoints", # allowing the user to control how the zigzags flow around corners. # First, verify that we have valid paths. self.validate_satin_column() patches = [] if self.center_walk_underlay: patches.append(self.do_center_walk()) if self.contour_underlay: patches.append(self.do_contour_underlay()) if self.zigzag_underlay: # zigzag underlay comes after contour walk underlay, so that the # zigzags sit on the contour walk underlay like rail ties on rails. patches.append(self.do_zigzag_underlay()) patches.append(self.do_satin()) return patches class Polyline(EmbroideryElement): # Handle a element, which is treated as a set of points to # stitch exactly. # # elements are pretty rare in SVG, from what I can tell. # Anything you can do with a can also be done with a

, and # much more. # # Notably, EmbroiderModder2 uses elements when converting from # common machine embroidery file formats to SVG. Handling those here lets # users use File -> Import to pull in existing designs they may have # obtained, for example purchased fonts. @property def points(self): # example: "1,2 0,0 1.5,3 4,2" points = self.node.get('points') points = points.split(" ") points = [[float(coord) for coord in point.split(",")] for point in points] return points @property def path(self): # A polyline is a series of connected line segments described by their # points. In order to make use of the existing logic for incorporating # svg transforms that is in our superclass, we'll convert the polyline # to a degenerate cubic superpath in which the bezier handles are on # the segment endpoints. path = [[[point[:], point[:], point[:]] for point in self.points]] return path @property @cache def csp(self): csp = self.parse_path() return csp @property def color(self): # EmbroiderModder2 likes to use the `stroke` property directly instead # of CSS. return self.get_style("stroke") or self.node.get("stroke") @property def stitches(self): # For a , we'll stitch the points exactly as they exist in # the SVG, with no stitch spacing interpolation, flattening, etc. # See the comments in the parent class's parse_path method for a # description of the CSP data structure. stitches = [point for handle_before, point, handle_after in self.csp[0]] return stitches def to_patches(self, last_patch): patch = Patch(color=self.color) for stitch in self.stitches: patch.add_stitch(PyEmb.Point(*stitch)) return [patch] def detect_classes(node): if node.tag == SVG_POLYLINE_TAG: return [Polyline] else: element = EmbroideryElement(node) if element.get_boolean_param("satin_column"): return [SatinColumn] else: classes = [] if element.get_style("fill"): if element.get_boolean_param("auto_fill", True): classes.append(AutoFill) else: classes.append(Fill) if element.get_style("stroke"): classes.append(Stroke) if element.get_boolean_param("stroke_first", False): classes.reverse() return classes def descendants(node): nodes = [] element = EmbroideryElement(node) if element.has_style('display') and element.get_style('display') is None: return [] if node.tag == SVG_DEFS_TAG: return [] for child in node: nodes.extend(descendants(child)) if node.tag in EMBROIDERABLE_TAGS: nodes.append(node) return nodes class Patch: def __init__(self, color=None, stitches=None): self.color = color self.stitches = stitches or [] def __add__(self, other): if isinstance(other, Patch): return Patch(self.color, self.stitches + other.stitches) else: raise TypeError("Patch can only be added to another Patch") def add_stitch(self, stitch): self.stitches.append(stitch) def reverse(self): return Patch(self.color, self.stitches[::-1]) def patches_to_stitches(patch_list, collapse_len_px=0): stitches = [] last_stitch = None last_color = None for patch in patch_list: jump_stitch = True for stitch in patch.stitches: if last_stitch and last_color == patch.color: l = (stitch - last_stitch).length() if l <= 0.1: # filter out duplicate successive stitches jump_stitch = False continue if jump_stitch: # consider collapsing jump stitch, if it is pretty short if l < collapse_len_px: # dbg.write("... collapsed\n") jump_stitch = False # dbg.write("stitch color %s\n" % patch.color) newStitch = PyEmb.Stitch(stitch.x, stitch.y, patch.color, jump_stitch) stitches.append(newStitch) jump_stitch = False last_stitch = stitch last_color = patch.color return stitches def stitches_to_paths(stitches): paths = [] last_color = None last_stitch = None for stitch in stitches: if stitch.jump_stitch: if last_color == stitch.color: paths.append([None, []]) if last_stitch is not None: paths[-1][1].append(['M', last_stitch.as_tuple()]) paths[-1][1].append(['L', stitch.as_tuple()]) last_color = None if stitch.color != last_color: paths.append([stitch.color, []]) paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()]) last_color = stitch.color last_stitch = stitch return paths def emit_inkscape(parent, stitches): for color, path in stitches_to_paths(stitches): # dbg.write('path: %s %s\n' % (color, repr(path))) inkex.etree.SubElement(parent, inkex.addNS('path', 'svg'), {'style': simplestyle.formatStyle( {'stroke': color if color is not None else '#000000', 'stroke-width': "0.4", 'fill': 'none'}), 'd': simplepath.formatPath(path), }) class Embroider(inkex.Effect): def __init__(self, *args, **kwargs): inkex.Effect.__init__(self) self.OptionParser.add_option("-r", "--row_spacing_mm", action="store", type="float", dest="row_spacing_mm", default=0.4, help="row spacing (mm)") self.OptionParser.add_option("-z", "--zigzag_spacing_mm", action="store", type="float", dest="zigzag_spacing_mm", default=1.0, help="zigzag spacing (mm)") self.OptionParser.add_option("-l", "--max_stitch_len_mm", action="store", type="float", dest="max_stitch_length_mm", default=3.0, help="max stitch length (mm)") self.OptionParser.add_option("--running_stitch_len_mm", action="store", type="float", dest="running_stitch_length_mm", default=3.0, help="running stitch length (mm)") self.OptionParser.add_option("-c", "--collapse_len_mm", action="store", type="float", dest="collapse_length_mm", default=0.0, help="max collapse length (mm)") self.OptionParser.add_option("-f", "--flatness", action="store", type="float", dest="flat", default=0.1, help="Minimum flatness of the subdivided curves") self.OptionParser.add_option("--hide_layers", action="store", type="choice", choices=["true", "false"], dest="hide_layers", default="true", help="Hide all other layers when the embroidery layer is generated") self.OptionParser.add_option("-O", "--output_format", action="store", type="choice", choices=["melco", "csv", "gcode"], dest="output_format", default="melco", help="File output format") self.OptionParser.add_option("-P", "--path", action="store", type="string", dest="path", default=".", help="Directory in which to store output file") self.OptionParser.add_option("-F", "--output-file", action="store", type="string", dest="output_file", default=".", help="Output filename.") self.OptionParser.add_option("-b", "--max-backups", action="store", type="int", dest="max_backups", default=5, help="Max number of backups of output files to keep.") self.OptionParser.add_option("-p", "--pixels_per_mm", action="store", type="float", dest="pixels_per_mm", default=10, help="Number of on-screen pixels per millimeter.") self.patches = [] def handle_node(self, node): print >> dbg, "handling node", node.get('id'), node.tag nodes = descendants(node) for node in nodes: classes = detect_classes(node) print >> dbg, "classes:", classes self.elements.extend(cls(node, self.options) for cls in classes) def get_output_path(self): if self.options.output_file: output_path = os.path.join(self.options.path, self.options.output_file) else: svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'), "embroidery.svg") csv_filename = svg_filename.replace('.svg', '.csv') output_path = os.path.join(self.options.path, csv_filename) def add_suffix(path, suffix): if suffix > 0: path = "%s.%s" % (path, suffix) return path def move_if_exists(path, suffix=0): source = add_suffix(path, suffix) if suffix >= self.options.max_backups: return dest = add_suffix(path, suffix + 1) if os.path.exists(source): move_if_exists(path, suffix + 1) os.rename(source, dest) move_if_exists(output_path) return output_path def hide_layers(self): for g in self.document.getroot().findall(SVG_GROUP_TAG): if g.get(inkex.addNS("groupmode", "inkscape")) == "layer": g.set("style", "display:none") def effect(self): # Printing anything other than a valid SVG on stdout blows inkscape up. old_stdout = sys.stdout sys.stdout = sys.stderr self.patch_list = [] print >> dbg, "starting nodes: %s\n" % time.time() dbg.flush() self.elements = [] if self.selected: # be sure to visit selected nodes in the order they're stacked in # the document for node in self.document.getroot().iter(): if node.get("id") in self.selected: self.handle_node(node) else: self.handle_node(self.document.getroot()) print >> dbg, "finished nodes: %s" % time.time() dbg.flush() if not self.elements: if self.selected: inkex.errormsg("No embroiderable paths selected.") else: inkex.errormsg("No embroiderable paths found in document.") inkex.errormsg("Tip: use Path -> Object to Path to convert non-paths before embroidering.") return if self.options.hide_layers: self.hide_layers() patches = [] for element in self.elements: if patches: last_patch = patches[-1] else: last_patch = None patches.extend(element.to_patches(last_patch)) stitches = patches_to_stitches(patches, self.options.collapse_length_mm * self.options.pixels_per_mm) emb = PyEmb.Embroidery(stitches, self.options.pixels_per_mm) emb.export(self.get_output_path(), self.options.output_format) new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {}) new_layer.set('id', self.uniqueId("embroidery")) new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery') new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer') emit_inkscape(new_layer, stitches) sys.stdout = old_stdout if __name__ == '__main__': sys.setrecursionlimit(100000) e = Embroider() e.affect() dbg.flush() dbg.close()