kopia lustrzana https://github.com/inkstitch/inkstitch
rewrite of autofill to handle arbitrary holes!
rodzic
a13745e39b
commit
1e86acdc58
590
embroider.py
590
embroider.py
|
@ -24,7 +24,8 @@ import os
|
|||
import subprocess
|
||||
from copy import deepcopy
|
||||
import time
|
||||
from itertools import chain, izip
|
||||
from itertools import chain, izip, groupby
|
||||
from collections import deque
|
||||
import inkex
|
||||
import simplepath
|
||||
import simplestyle
|
||||
|
@ -37,6 +38,7 @@ import lxml.etree as etree
|
|||
import shapely.geometry as shgeo
|
||||
import shapely.affinity as affinity
|
||||
import shapely.ops
|
||||
import networkx
|
||||
from pprint import pformat
|
||||
|
||||
import PyEmb
|
||||
|
@ -49,7 +51,6 @@ SVG_PATH_TAG = inkex.addNS('path', 'svg')
|
|||
SVG_DEFS_TAG = inkex.addNS('defs', 'svg')
|
||||
SVG_GROUP_TAG = inkex.addNS('g', 'svg')
|
||||
|
||||
|
||||
class Param(object):
|
||||
def __init__(self, name, description, unit=None, values=[], type=None, group=None, inverse=False, default=None):
|
||||
self.name = name
|
||||
|
@ -309,8 +310,11 @@ class Fill(EmbroideryElement):
|
|||
def north(self, angle):
|
||||
return self.east(angle).rotate(math.pi / 2)
|
||||
|
||||
def row_num(self, point, angle, row_spacing):
|
||||
return round((point * self.north(angle)) / row_spacing)
|
||||
|
||||
def adjust_stagger(self, stitch, angle, row_spacing, max_stitch_length):
|
||||
row_num = round((stitch * self.north(angle)) / row_spacing)
|
||||
row_num = self.row_num(stitch, angle, row_spacing)
|
||||
row_stagger = row_num % self.staggers
|
||||
stagger_offset = (float(row_stagger) / self.staggers) * max_stitch_length
|
||||
offset = ((stitch * self.east(angle)) - stagger_offset) % max_stitch_length
|
||||
|
@ -448,6 +452,55 @@ class Fill(EmbroideryElement):
|
|||
|
||||
return runs
|
||||
|
||||
def stitch_row(self, patch, beg, end, angle, row_spacing, max_stitch_length):
|
||||
# We want our stitches to look like this:
|
||||
#
|
||||
# ---*-----------*-----------
|
||||
# ------*-----------*--------
|
||||
# ---------*-----------*-----
|
||||
# ------------*-----------*--
|
||||
# ---*-----------*-----------
|
||||
#
|
||||
# Each successive row of stitches will be staggered, with
|
||||
# num_staggers rows before the pattern repeats. A value of
|
||||
# 4 gives a nice fill while hiding the needle holes. The
|
||||
# first row is offset 0%, the second 25%, the third 50%, and
|
||||
# the fourth 75%.
|
||||
#
|
||||
# Actually, instead of just starting at an offset of 0, we
|
||||
# can calculate a row's offset relative to the origin. This
|
||||
# way if we have two abutting fill regions, they'll perfectly
|
||||
# tile with each other. That's important because we often get
|
||||
# abutting fill regions from pull_runs().
|
||||
|
||||
|
||||
beg = PyEmb.Point(*beg)
|
||||
end = PyEmb.Point(*end)
|
||||
|
||||
row_direction = (end - beg).unit()
|
||||
segment_length = (end - beg).length()
|
||||
|
||||
# only stitch the first point if it's a reasonable distance away from the
|
||||
# last stitch
|
||||
if not patch.stitches or (beg - patch.stitches[-1]).length() > 0.5 * self.options.pixels_per_mm:
|
||||
patch.add_stitch(beg)
|
||||
|
||||
first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length)
|
||||
|
||||
# we might have chosen our first stitch just outside this row, so move back in
|
||||
if (first_stitch - beg) * row_direction < 0:
|
||||
first_stitch += row_direction * max_stitch_length
|
||||
|
||||
offset = (first_stitch - beg).length()
|
||||
|
||||
while offset < segment_length:
|
||||
patch.add_stitch(beg + offset * row_direction)
|
||||
offset += max_stitch_length
|
||||
|
||||
if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
|
||||
patch.add_stitch(end)
|
||||
|
||||
|
||||
def section_to_patch(self, group_of_segments, angle=None, row_spacing=None, max_stitch_length=None):
|
||||
if max_stitch_length is None:
|
||||
max_stitch_length = self.max_stitch_length
|
||||
|
@ -466,58 +519,13 @@ class Fill(EmbroideryElement):
|
|||
last_end = None
|
||||
|
||||
for segment in group_of_segments:
|
||||
# We want our stitches to look like this:
|
||||
#
|
||||
# ---*-----------*-----------
|
||||
# ------*-----------*--------
|
||||
# ---------*-----------*-----
|
||||
# ------------*-----------*--
|
||||
# ---*-----------*-----------
|
||||
#
|
||||
# Each successive row of stitches will be staggered, with
|
||||
# num_staggers rows before the pattern repeats. A value of
|
||||
# 4 gives a nice fill while hiding the needle holes. The
|
||||
# first row is offset 0%, the second 25%, the third 50%, and
|
||||
# the fourth 75%.
|
||||
#
|
||||
# Actually, instead of just starting at an offset of 0, we
|
||||
# can calculate a row's offset relative to the origin. This
|
||||
# way if we have two abutting fill regions, they'll perfectly
|
||||
# tile with each other. That's important because we often get
|
||||
# abutting fill regions from pull_runs().
|
||||
|
||||
(beg, end) = segment
|
||||
|
||||
if (swap):
|
||||
(beg, end) = (end, beg)
|
||||
|
||||
beg = PyEmb.Point(*beg)
|
||||
end = PyEmb.Point(*end)
|
||||
self.stitch_row(patch, beg, end, angle, row_spacing, max_stitch_length)
|
||||
|
||||
row_direction = (end - beg).unit()
|
||||
segment_length = (end - beg).length()
|
||||
|
||||
# only stitch the first point if it's a reasonable distance away from the
|
||||
# last stitch
|
||||
if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_mm:
|
||||
patch.add_stitch(beg)
|
||||
|
||||
first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length)
|
||||
|
||||
# we might have chosen our first stitch just outside this row, so move back in
|
||||
if (first_stitch - beg) * row_direction < 0:
|
||||
first_stitch += row_direction * max_stitch_length
|
||||
|
||||
offset = (first_stitch - beg).length()
|
||||
|
||||
while offset < segment_length:
|
||||
patch.add_stitch(beg + offset * row_direction)
|
||||
offset += max_stitch_length
|
||||
|
||||
if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
|
||||
patch.add_stitch(end)
|
||||
|
||||
last_end = end
|
||||
swap = not swap
|
||||
|
||||
return patch
|
||||
|
@ -529,6 +537,9 @@ class Fill(EmbroideryElement):
|
|||
return [self.section_to_patch(group) for group in groups_of_segments]
|
||||
|
||||
|
||||
class MaxQueueLengthExceeded(Exception):
|
||||
pass
|
||||
|
||||
class AutoFill(Fill):
|
||||
@property
|
||||
@param('auto_fill', 'Automatically routed fill stitching', type='toggle', default=True)
|
||||
|
@ -580,116 +591,421 @@ class AutoFill(Fill):
|
|||
@param('fill_underlay_max_stitch_length_mm', 'Max stitch length', unit='mm', group='AutoFill Underlay', type='float')
|
||||
@cache
|
||||
def fill_underlay_max_stitch_length(self):
|
||||
return self.get_float_param("fill_underlay_max_stitch_length_mm" or self.max_stitch_length)
|
||||
return self.get_float_param("fill_underlay_max_stitch_length_mm") or self.max_stitch_length
|
||||
|
||||
def validate(self):
|
||||
if len(self.shape.boundary) > 1:
|
||||
self.fatal("auto-fill: object %s cannot be auto-filled because it has one or more holes. Please disable auto-fill for this object or break it into separate objects without holes." % self.node.get('id'))
|
||||
def which_outline(self, coords):
|
||||
"""return the index of the outline on which the point resides
|
||||
|
||||
def is_same_run(self, segment1, segment2):
|
||||
if shgeo.Point(segment1[0]).distance(shgeo.Point(segment2[0])) > self.max_stitch_length:
|
||||
return False
|
||||
Index 0 is the outer boundary of the fill region. 1+ are the
|
||||
outlines of the holes.
|
||||
"""
|
||||
|
||||
if shgeo.Point(segment1[1]).distance(shgeo.Point(segment2[1])) > self.max_stitch_length:
|
||||
return False
|
||||
point = shgeo.Point(*coords)
|
||||
|
||||
return True
|
||||
for i, outline in enumerate(self.shape.boundary):
|
||||
# I'd use an intersection check, but floating point errors make it
|
||||
# fail sometimes.
|
||||
if outline.distance(point) < 0.00001:
|
||||
return i
|
||||
|
||||
def perimeter_distance(self, p1, p2):
|
||||
# how far around the perimeter (and in what direction) do I need to go
|
||||
# to get from p1 to p2?
|
||||
def project(self, coords, outline_index):
|
||||
"""project the point onto the specified outline
|
||||
|
||||
p1_projection = self.outline.project(shgeo.Point(p1))
|
||||
p2_projection = self.outline.project(shgeo.Point(p2))
|
||||
This returns the distance along the outline at which the point resides.
|
||||
"""
|
||||
|
||||
distance = p2_projection - p1_projection
|
||||
return self.shape.boundary.project(shgeo.Point(*coords))
|
||||
|
||||
if abs(distance) > self.outline_length / 2.0:
|
||||
# if we'd have to go more than halfway around, it's faster to go
|
||||
# the other way
|
||||
if distance < 0:
|
||||
return distance + self.outline_length
|
||||
elif distance > 0:
|
||||
return distance - self.outline_length
|
||||
def build_graph(self, segments, angle, row_spacing):
|
||||
"""build a graph representation of the grating segments
|
||||
|
||||
This function builds a specialized graph (as in graph theory) that will
|
||||
help us determine a stitching path. The idea comes from this paper:
|
||||
|
||||
http://www.sciencedirect.com/science/article/pii/S0925772100000158
|
||||
|
||||
The goal is to build a graph that we know must have an Eulerian Path.
|
||||
An Eulerian Path is a path from edge to edge in the graph that visits
|
||||
every edge exactly once and ends at the node it started at. Algorithms
|
||||
exist to build such a path, and we'll use Hierholzer's algorithm.
|
||||
|
||||
A graph must have an Eulerian Path if every node in the graph has an
|
||||
even number of edges touching it. Our goal here is to build a graph
|
||||
that will have this property.
|
||||
|
||||
Based on the paper linked above, we'll build the graph as follows:
|
||||
|
||||
* nodes are the endpoints of the grating segments, where they meet
|
||||
with the outer outline of the region the outlines of the interior
|
||||
holes in the region.
|
||||
* edges are:
|
||||
* each section of the outer and inner outlines of the region,
|
||||
between nodes
|
||||
* double every other edge in the outer and inner hole outlines
|
||||
|
||||
Doubling up on some of the edges seems as if it will just mean we have
|
||||
to stitch those spots twice. This may be true, but it also ensures
|
||||
that every node has 4 edges touching it, ensuring that a valid stitch
|
||||
path must exist.
|
||||
"""
|
||||
|
||||
graph = networkx.MultiGraph()
|
||||
|
||||
# First, add the grating segments as edges. We'll use the coordinates
|
||||
# of the endpoints as nodes, which networkx will add automatically.
|
||||
for segment in segments:
|
||||
# networkx allows us to label nodes with arbitrary data. We'll
|
||||
# mark this one as a grating segment.
|
||||
graph.add_edge(*segment, key="segment")
|
||||
|
||||
for node in graph.nodes():
|
||||
outline_index = self.which_outline(node)
|
||||
outline_projection = self.project(node, outline_index)
|
||||
|
||||
# Tag each node with its index and projection.
|
||||
graph.add_node(node, index=outline_index, projection=outline_projection)
|
||||
|
||||
nodes = graph.nodes(data=True)
|
||||
nodes.sort(key=lambda node: (node[1]['index'], node[1]['projection']))
|
||||
|
||||
for outline_index, nodes in groupby(nodes, key=lambda node: node[1]['index']):
|
||||
nodes = [ node for node, data in nodes ]
|
||||
|
||||
# heuristic: change the order I visit the nodes in the outline if necessary.
|
||||
# If the start and endpoints are in the same row, I can't tell which row
|
||||
# I should treat it as being in.
|
||||
while True:
|
||||
row0 = self.row_num(PyEmb.Point(*nodes[0]), angle, row_spacing)
|
||||
row1 = self.row_num(PyEmb.Point(*nodes[1]), angle, row_spacing)
|
||||
|
||||
if row0 == row1:
|
||||
nodes = nodes[1:] + [nodes[0]]
|
||||
else:
|
||||
break
|
||||
|
||||
# heuristic: it's useful to try to keep the duplicated edges in the same rows.
|
||||
# this prevents the BFS from having to search a ton of edges.
|
||||
row_num = min(row0, row1)
|
||||
if row_num % 2 == 0:
|
||||
edge_set = 0
|
||||
else:
|
||||
# this ought not happen, but just for completeness, return 0 if
|
||||
# p1 and p0 are the same point
|
||||
return 0
|
||||
else:
|
||||
return distance
|
||||
edge_set = 1
|
||||
|
||||
#print >> sys.stderr, outline_index, "es", edge_set, "rn", row_num, PyEmb.Point(*nodes[0]) * self.north(angle), PyEmb.Point(*nodes[1]) * self.north(angle)
|
||||
|
||||
# add an edge between each successive node
|
||||
for i, (node1, node2) in enumerate(zip(nodes, nodes[1:] + [nodes[0]])):
|
||||
graph.add_edge(node1, node2, key="outline")
|
||||
|
||||
# duplicate edges contained in every other row (exactly half
|
||||
# will be duplicated)
|
||||
row_num = min(self.row_num(PyEmb.Point(*node1), angle, row_spacing),
|
||||
self.row_num(PyEmb.Point(*node2), angle, row_spacing))
|
||||
|
||||
# duplicate every other edge around this outline
|
||||
if i % 2 == edge_set:
|
||||
graph.add_edge(node1, node2, key="extra")
|
||||
|
||||
|
||||
if not networkx.is_eulerian(graph):
|
||||
raise Exception("something went wrong: graph is not eulerian")
|
||||
|
||||
return graph
|
||||
|
||||
def node_list_to_edge_list(self, node_list):
|
||||
return zip(node_list[:-1], node_list[1:])
|
||||
|
||||
def bfs_for_loop(self, graph, starting_node, max_queue_length=2000):
|
||||
to_search = deque()
|
||||
to_search.appendleft(([starting_node], set(), 0))
|
||||
|
||||
while to_search:
|
||||
if len(to_search) > max_queue_length:
|
||||
raise MaxQueueLengthExceeded()
|
||||
|
||||
path, visited_edges, visited_segments = to_search.pop()
|
||||
ending_node = path[-1]
|
||||
|
||||
# get a list of neighbors paired with the key of the edge I can follow to get there
|
||||
neighbors = [
|
||||
(node, key)
|
||||
for node, adj in graph.adj[ending_node].iteritems()
|
||||
for key in adj
|
||||
]
|
||||
|
||||
# heuristic: try grating segments first
|
||||
neighbors.sort(key=lambda (dest, key): key == "segment", reverse=True)
|
||||
|
||||
for next_node, key in neighbors:
|
||||
# skip if I've already followed this edge
|
||||
edge = (tuple(sorted((ending_node, next_node))), key)
|
||||
if edge in visited_edges:
|
||||
continue
|
||||
|
||||
new_path = path + [next_node]
|
||||
|
||||
if key == "segment":
|
||||
new_visited_segments = visited_segments + 1
|
||||
else:
|
||||
new_visited_segments = visited_segments
|
||||
|
||||
if next_node == starting_node:
|
||||
# ignore trivial loops (down and back a doubled edge)
|
||||
if len(new_path) > 3:
|
||||
return self.node_list_to_edge_list(new_path), new_visited_segments
|
||||
|
||||
new_visited_edges = visited_edges.copy()
|
||||
new_visited_edges.add(edge)
|
||||
|
||||
to_search.appendleft((new_path, new_visited_edges, new_visited_segments))
|
||||
|
||||
def find_loop(self, graph, starting_nodes):
|
||||
"""find a loop in the graph that is connected to the existing path
|
||||
|
||||
Start at a candidate node and search through edges to find a path
|
||||
back to that node. We'll use a breadth-first search (BFS) in order to
|
||||
find the shortest available loop.
|
||||
|
||||
In most cases, the BFS should not need to search far to find a loop.
|
||||
The queue should stay relatively short.
|
||||
|
||||
An added heuristic will be used: if the BFS queue's length becomes
|
||||
too long, we'll abort and try a different starting point. Due to
|
||||
the way we've set up the graph, there's bound to be a better choice
|
||||
somewhere else.
|
||||
"""
|
||||
|
||||
#loop = self.simple_loop(graph, starting_nodes[-2])
|
||||
|
||||
#if loop:
|
||||
# print >> sys.stderr, "simple_loop success"
|
||||
# starting_nodes.pop()
|
||||
# starting_nodes.pop()
|
||||
# return loop
|
||||
|
||||
loop = None
|
||||
retry = []
|
||||
max_queue_length = 2000
|
||||
|
||||
while not loop:
|
||||
while not loop and starting_nodes:
|
||||
starting_node = starting_nodes.pop()
|
||||
#print >> sys.stderr, "find loop from", starting_node
|
||||
|
||||
try:
|
||||
# Note: if bfs_for_loop() returns None, no loop can be
|
||||
# constructed from the starting_node (because the
|
||||
# necessary edges have already been consumed). In that
|
||||
# case we discard that node and try the next.
|
||||
loop = self.bfs_for_loop(graph, starting_node, max_queue_length)
|
||||
|
||||
if not loop:
|
||||
print >> dbg, "failed on", starting_node
|
||||
dbg.flush()
|
||||
except MaxQueueLengthExceeded:
|
||||
print >> dbg, "gave up on", starting_node
|
||||
dbg.flush()
|
||||
# We're giving up on this node for now. We could try
|
||||
# this node again later, so add it to the bottm of the
|
||||
# stack.
|
||||
retry.append(starting_node)
|
||||
|
||||
# Darn, couldn't find a loop. Try harder.
|
||||
starting_nodes.extendleft(retry)
|
||||
max_queue_length *= 2
|
||||
|
||||
starting_nodes.extendleft(retry)
|
||||
return loop
|
||||
|
||||
def insert_loop(self, path, loop):
|
||||
"""insert a sub-loop into an existing path
|
||||
|
||||
The path will be a series of edges describing a path through the graph
|
||||
that ends where it starts. The loop will be similar, and its starting
|
||||
point will be somewhere along the path.
|
||||
|
||||
Insert the loop into the path, resulting in a longer path.
|
||||
|
||||
Both the path and the loop will be a list of edges specified as a
|
||||
start and end point. The points will be specified in order, such
|
||||
that they will look like this:
|
||||
|
||||
((p1, p2), (p2, p3), (p3, p4) ... (pn, p1))
|
||||
|
||||
path will be modified in place.
|
||||
"""
|
||||
|
||||
loop_start = loop[0][0]
|
||||
|
||||
for i, (start, end) in enumerate(path):
|
||||
if start == loop_start:
|
||||
break
|
||||
|
||||
path[i:i] = loop
|
||||
|
||||
def find_stitch_path(self, graph, segments):
|
||||
"""find a path that visits every grating segment exactly once
|
||||
|
||||
Theoretically, we just need to find an Eulerian Path in the graph.
|
||||
However, we don't actually care whether every single edge is visited.
|
||||
The edges on the outline of the region are only there to help us get
|
||||
from one grating segment to the next.
|
||||
|
||||
We'll build a "cycle" (a path that ends where it starts) using
|
||||
Hierholzer's algorithm. We'll stop once we've visited every grating
|
||||
segment.
|
||||
|
||||
Hierholzer's algorithm says to select an arbitrary starting node at
|
||||
each step. In order to produce a reasonable stitch path, we'll select
|
||||
the vertex carefully such that we get back-and-forth traversal like
|
||||
mowing a lawn.
|
||||
|
||||
To do this, we'll use a simple heuristic: try to start from nodes in
|
||||
the order of most-recently-visited first.
|
||||
"""
|
||||
|
||||
graph = graph.copy()
|
||||
num_segments = len(segments)
|
||||
segments_visited = 0
|
||||
nodes_visited = deque()
|
||||
|
||||
# start with a simple loop: down one segment and then back along the
|
||||
# outer border to the starting point.
|
||||
path = [segments[0], list(reversed(segments[0]))]
|
||||
|
||||
graph.remove_edges_from(path)
|
||||
|
||||
segments_visited += 1
|
||||
nodes_visited.extend(segments[0])
|
||||
|
||||
while segments_visited < num_segments:
|
||||
result = self.find_loop(graph, nodes_visited)
|
||||
|
||||
if not result:
|
||||
print >> sys.stderr, "Unexpected error filling region. Please send your SVG to lexelby@github."
|
||||
break
|
||||
|
||||
loop, segments = result
|
||||
|
||||
print >> dbg, "found loop:", loop
|
||||
dbg.flush()
|
||||
|
||||
segments_visited += segments
|
||||
nodes_visited += [edge[0] for edge in loop]
|
||||
graph.remove_edges_from(loop)
|
||||
|
||||
self.insert_loop(path, loop)
|
||||
|
||||
#if segments_visited >= 12:
|
||||
# break
|
||||
|
||||
return path
|
||||
|
||||
def collapse_sequential_outline_edges(self, graph, path):
|
||||
"""collapse sequential edges that fall on the same outline
|
||||
|
||||
When the path follows multiple edges along the outline of the region,
|
||||
replace those edges with the starting and ending points. We'll use
|
||||
these to stitch along the outline later on.
|
||||
"""
|
||||
|
||||
start_of_run = None
|
||||
new_path = []
|
||||
|
||||
for edge in path:
|
||||
if graph.has_edge(*edge, key="segment"):
|
||||
if start_of_run:
|
||||
# close off the last run
|
||||
new_path.append((start_of_run, edge[0]))
|
||||
start_of_run = None
|
||||
|
||||
new_path.append(edge)
|
||||
else:
|
||||
if not start_of_run:
|
||||
start_of_run = edge[0]
|
||||
|
||||
if start_of_run:
|
||||
# if we were still in a run, close it off
|
||||
new_path.append((start_of_run, edge[1]))
|
||||
|
||||
return new_path
|
||||
|
||||
def connect_points(self, patch, start, end):
|
||||
outline_index = self.which_outline(start)
|
||||
outline = self.shape.boundary[outline_index]
|
||||
|
||||
start = outline.project(shgeo.Point(*start))
|
||||
end = outline.project(shgeo.Point(*end))
|
||||
|
||||
direction = math.copysign(1.0, end - start)
|
||||
|
||||
while (end - start) * direction > 0:
|
||||
stitch = outline.interpolate(start)
|
||||
patch.add_stitch(PyEmb.Point(stitch.x, stitch.y))
|
||||
|
||||
start += self.running_stitch_length * direction
|
||||
|
||||
stitch = outline.interpolate(end)
|
||||
end = PyEmb.Point(stitch.x, stitch.y)
|
||||
if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
|
||||
patch.add_stitch(end)
|
||||
|
||||
def path_to_patch(self, graph, path, angle, row_spacing, max_stitch_length):
|
||||
path = self.collapse_sequential_outline_edges(graph, path)
|
||||
|
||||
def connect_points(self, p1, p2):
|
||||
patch = Patch(color=self.color)
|
||||
#patch.add_stitch(PyEmb.Point(*path[0][0]))
|
||||
|
||||
pos = self.outline.project(shgeo.Point(p1))
|
||||
distance = self.perimeter_distance(p1, p2)
|
||||
stitches = abs(int(distance / self.running_stitch_length))
|
||||
#for edge in path:
|
||||
# patch.add_stitch(PyEmb.Point(*edge[1]))
|
||||
|
||||
direction = math.copysign(1.0, distance)
|
||||
one_stitch = self.running_stitch_length * direction
|
||||
|
||||
for i in xrange(stitches):
|
||||
pos = (pos + one_stitch) % self.outline_length
|
||||
|
||||
stitch = PyEmb.Point(*self.outline.interpolate(pos).coords[0])
|
||||
|
||||
# if we're moving along the fill direction, adjust the stitch to
|
||||
# match the fill so it blends in
|
||||
if patch.stitches:
|
||||
if abs((stitch - patch.stitches[-1]) * self.north(self.angle)) < 0.01:
|
||||
new_stitch = self.adjust_stagger(stitch, self.angle, self.row_spacing, self.max_stitch_length)
|
||||
|
||||
# don't push the point past the end of this section of the outline
|
||||
if self.outline.distance(shgeo.Point(new_stitch)) <= 0.01:
|
||||
stitch = new_stitch
|
||||
|
||||
patch.add_stitch(stitch)
|
||||
for edge in path:
|
||||
if graph.has_edge(*edge, key="segment"):
|
||||
self.stitch_row(patch, edge[0], edge[1], angle, row_spacing, max_stitch_length)
|
||||
else:
|
||||
self.connect_points(patch, *edge)
|
||||
|
||||
return patch
|
||||
|
||||
def get_corner_points(self, section):
|
||||
return section[0][0], section[0][-1], section[-1][0], section[-1][-1]
|
||||
|
||||
def nearest_corner(self, section, point):
|
||||
return min(self.get_corner_points(section),
|
||||
key=lambda corner: abs(self.perimeter_distance(point, corner)))
|
||||
|
||||
def find_nearest_section(self, sections, point):
|
||||
sections_with_nearest_corner = [(i, self.nearest_corner(section, point))
|
||||
for i, section in enumerate(sections)]
|
||||
return min(sections_with_nearest_corner,
|
||||
key=lambda(section, corner): abs(self.perimeter_distance(point, corner)))
|
||||
|
||||
def section_from_corner(self, section, start_corner, angle, row_spacing, max_stitch_length):
|
||||
if start_corner not in section[0]:
|
||||
section = list(reversed(section))
|
||||
|
||||
if section[0][0] != start_corner:
|
||||
section = [list(reversed(row)) for row in section]
|
||||
|
||||
return self.section_to_patch(section, angle, row_spacing, max_stitch_length)
|
||||
|
||||
def do_auto_fill(self, angle, row_spacing, max_stitch_length, starting_point=None):
|
||||
rows_of_segments = self.intersect_region_with_grating(angle, row_spacing)
|
||||
sections = self.pull_runs(rows_of_segments)
|
||||
|
||||
def visualize_graph(self, graph):
|
||||
patches = []
|
||||
last_stitch = starting_point
|
||||
while sections:
|
||||
if last_stitch:
|
||||
section_index, start_corner = self.find_nearest_section(sections, last_stitch)
|
||||
patches.append(self.connect_points(last_stitch, start_corner))
|
||||
patches.append(self.section_from_corner(sections.pop(section_index), start_corner, angle, row_spacing, max_stitch_length))
|
||||
else:
|
||||
patches.append(self.section_to_patch(sections.pop(0), angle, row_spacing, max_stitch_length))
|
||||
|
||||
last_stitch = patches[-1].stitches[-1]
|
||||
graph = graph.copy()
|
||||
|
||||
for start, end, key in graph.edges_iter(keys=True):
|
||||
if key == "extra":
|
||||
patch = Patch(color="#FF0000")
|
||||
patch.add_stitch(PyEmb.Point(*start))
|
||||
patch.add_stitch(PyEmb.Point(*end))
|
||||
patches.append(patch)
|
||||
|
||||
return patches
|
||||
|
||||
|
||||
def do_auto_fill(self, angle, row_spacing, max_stitch_length, starting_point=None):
|
||||
patches = []
|
||||
|
||||
rows_of_segments = self.intersect_region_with_grating(angle, row_spacing)
|
||||
segments = [segment for row in rows_of_segments for segment in row]
|
||||
|
||||
graph = self.build_graph(segments, angle, row_spacing)
|
||||
path = self.find_stitch_path(graph, segments)
|
||||
|
||||
# snip off the last one because it just unnecessarily returns to the start
|
||||
path.pop()
|
||||
|
||||
if starting_point:
|
||||
patch = Patch(self.color)
|
||||
self.connect_points(patch, starting_point, path[0][0])
|
||||
patches.append(patch)
|
||||
|
||||
patches.append(self.path_to_patch(graph, path, angle, row_spacing, max_stitch_length))
|
||||
|
||||
return patches
|
||||
|
||||
|
||||
def to_patches(self, last_patch):
|
||||
print >> dbg, "autofill"
|
||||
self.validate()
|
||||
print >> dbg, "autofill", self.max_stitch_length, self.fill_underlay_max_stitch_length
|
||||
|
||||
patches = []
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue