kopia lustrzana https://github.com/gnea/grbl
615 wiersze
27 KiB
C
615 wiersze
27 KiB
C
/*
|
|
gcode.c - rs274/ngc parser.
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2011-2014 Sungeun K. Jeon
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* This code is inspired by the Arduino GCode Interpreter by Mike Ellery and the NIST RS274/NGC Interpreter
|
|
by Kramer, Proctor and Messina. */
|
|
|
|
#include "gcode.h"
|
|
#include <string.h>
|
|
#include "nuts_bolts.h"
|
|
#include <math.h>
|
|
#include "settings.h"
|
|
#include "motion_control.h"
|
|
#include "spindle_control.h"
|
|
#include "coolant_control.h"
|
|
#include "errno.h"
|
|
#include "protocol.h"
|
|
#include "report.h"
|
|
|
|
// Declare gc extern struct
|
|
parser_state_t gc;
|
|
|
|
#define FAIL(status) gc.status_code = status;
|
|
|
|
static uint8_t next_statement(char *letter, float *float_ptr, char *line, uint8_t *char_counter);
|
|
static void gc_convert_arc_radius_mode(float *target) __attribute__((noinline));
|
|
|
|
|
|
static void select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
|
|
{
|
|
gc.plane_axis_0 = axis_0;
|
|
gc.plane_axis_1 = axis_1;
|
|
gc.plane_axis_2 = axis_2;
|
|
}
|
|
|
|
|
|
void gc_init()
|
|
{
|
|
memset(&gc, 0, sizeof(gc));
|
|
gc.feed_rate = settings.default_feed_rate;
|
|
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
|
|
gc.absolute_mode = true;
|
|
|
|
// Load default G54 coordinate system.
|
|
if (!(settings_read_coord_data(gc.coord_select,gc.coord_system))) {
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
}
|
|
}
|
|
|
|
|
|
// Sets g-code parser position in mm. Input in steps. Called by the system abort and hard
|
|
// limit pull-off routines.
|
|
void gc_sync_position(int32_t x, int32_t y, int32_t z)
|
|
{
|
|
uint8_t i;
|
|
for (i=0; i<N_AXIS; i++) {
|
|
gc.position[i] = sys.position[i]/settings.steps_per_mm[i];
|
|
}
|
|
}
|
|
|
|
|
|
static float to_millimeters(float value)
|
|
{
|
|
return(gc.inches_mode ? (value * MM_PER_INCH) : value);
|
|
}
|
|
|
|
|
|
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
|
|
// characters and signed floating point values (no whitespace). Comments and block delete
|
|
// characters have been removed. In this function, all units and positions are converted and
|
|
// exported to grbl's internal functions in terms of (mm, mm/min) and absolute machine
|
|
// coordinates, respectively.
|
|
uint8_t gc_execute_line(char *line)
|
|
{
|
|
|
|
// If in alarm state, don't process. Immediately return with error.
|
|
// NOTE: Might not be right place for this, but also prevents $N storing during alarm.
|
|
if (sys.state == STATE_ALARM) { return(STATUS_ALARM_LOCK); }
|
|
|
|
uint8_t char_counter = 0;
|
|
char letter;
|
|
float value;
|
|
int int_value;
|
|
|
|
uint16_t modal_group_words = 0; // Bitflag variable to track and check modal group words in block
|
|
uint8_t axis_words = 0; // Bitflag to track which XYZ(ABC) parameters exist in block
|
|
|
|
float inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified
|
|
uint8_t absolute_override = false; // true(1) = absolute motion for this block only {G53}
|
|
uint8_t non_modal_action = NON_MODAL_NONE; // Tracks the actions of modal group 0 (non-modal)
|
|
|
|
float target[N_AXIS];
|
|
clear_vector(target); // XYZ(ABC) axes parameters.
|
|
|
|
gc.arc_radius = 0;
|
|
clear_vector(gc.arc_offset); // IJK Arc offsets are incremental. Value of zero indicates no change.
|
|
|
|
gc.status_code = STATUS_OK;
|
|
|
|
/* Pass 1: Commands and set all modes. Check for modal group violations.
|
|
NOTE: Modal group numbers are defined in Table 4 of NIST RS274-NGC v3, pg.20 */
|
|
uint8_t group_number = MODAL_GROUP_NONE;
|
|
while(next_statement(&letter, &value, line, &char_counter)) {
|
|
int_value = trunc(value);
|
|
switch(letter) {
|
|
case 'G':
|
|
// Set modal group values
|
|
switch(int_value) {
|
|
case 4: case 10: case 28: case 30: case 53: case 92: group_number = MODAL_GROUP_0; break;
|
|
case 0: case 1: case 2: case 3: case 80: group_number = MODAL_GROUP_1; break;
|
|
case 17: case 18: case 19: group_number = MODAL_GROUP_2; break;
|
|
case 90: case 91: group_number = MODAL_GROUP_3; break;
|
|
case 93: case 94: group_number = MODAL_GROUP_5; break;
|
|
case 20: case 21: group_number = MODAL_GROUP_6; break;
|
|
case 54: case 55: case 56: case 57: case 58: case 59: group_number = MODAL_GROUP_12; break;
|
|
}
|
|
// Set 'G' commands
|
|
switch(int_value) {
|
|
case 0: gc.motion_mode = MOTION_MODE_SEEK; break;
|
|
case 1: gc.motion_mode = MOTION_MODE_LINEAR; break;
|
|
case 2: gc.motion_mode = MOTION_MODE_CW_ARC; break;
|
|
case 3: gc.motion_mode = MOTION_MODE_CCW_ARC; break;
|
|
case 4: non_modal_action = NON_MODAL_DWELL; break;
|
|
case 10: non_modal_action = NON_MODAL_SET_COORDINATE_DATA; break;
|
|
case 17: select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
|
|
case 18: select_plane(Z_AXIS, X_AXIS, Y_AXIS); break;
|
|
case 19: select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
|
|
case 20: gc.inches_mode = true; break;
|
|
case 21: gc.inches_mode = false; break;
|
|
case 28: case 30:
|
|
int_value = trunc(10*value); // Multiply by 10 to pick up Gxx.1
|
|
switch(int_value) {
|
|
case 280: non_modal_action = NON_MODAL_GO_HOME_0; break;
|
|
case 281: non_modal_action = NON_MODAL_SET_HOME_0; break;
|
|
case 300: non_modal_action = NON_MODAL_GO_HOME_1; break;
|
|
case 301: non_modal_action = NON_MODAL_SET_HOME_1; break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
break;
|
|
case 53: absolute_override = true; break;
|
|
case 54: case 55: case 56: case 57: case 58: case 59:
|
|
gc.coord_select = int_value-54;
|
|
break;
|
|
case 80: gc.motion_mode = MOTION_MODE_CANCEL; break;
|
|
case 90: gc.absolute_mode = true; break;
|
|
case 91: gc.absolute_mode = false; break;
|
|
case 92:
|
|
int_value = trunc(10*value); // Multiply by 10 to pick up G92.1
|
|
switch(int_value) {
|
|
case 920: non_modal_action = NON_MODAL_SET_COORDINATE_OFFSET; break;
|
|
case 921: non_modal_action = NON_MODAL_RESET_COORDINATE_OFFSET; break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
break;
|
|
case 93: gc.inverse_feed_rate_mode = true; break;
|
|
case 94: gc.inverse_feed_rate_mode = false; break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
break;
|
|
case 'M':
|
|
// Set modal group values
|
|
switch(int_value) {
|
|
case 0: case 1: case 2: case 30: group_number = MODAL_GROUP_4; break;
|
|
case 3: case 4: case 5: group_number = MODAL_GROUP_7; break;
|
|
case 7: case 8: case 9: group_number = MODAL_GROUP_8; break;
|
|
}
|
|
// Set 'M' commands
|
|
switch(int_value) {
|
|
case 0: gc.program_flow = PROGRAM_FLOW_PAUSED; break; // Program pause
|
|
case 1: break; // Optional stop not supported. Ignore.
|
|
case 2: case 30: gc.program_flow = PROGRAM_FLOW_COMPLETED; break; // Program end and reset
|
|
case 3: gc.spindle_direction = 1; break;
|
|
case 4: gc.spindle_direction = -1; break;
|
|
case 5: gc.spindle_direction = 0; break;
|
|
#ifdef ENABLE_M7
|
|
case 7: gc.coolant_mode = COOLANT_MIST_ENABLE; break;
|
|
#endif
|
|
case 8: gc.coolant_mode = COOLANT_FLOOD_ENABLE; break;
|
|
case 9: gc.coolant_mode = COOLANT_DISABLE; break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
break;
|
|
}
|
|
// Check for modal group multiple command violations in the current block
|
|
if (group_number) {
|
|
if ( bit_istrue(modal_group_words,bit(group_number)) ) {
|
|
FAIL(STATUS_MODAL_GROUP_VIOLATION);
|
|
} else {
|
|
bit_true(modal_group_words,bit(group_number));
|
|
}
|
|
group_number = MODAL_GROUP_NONE; // Reset for next command.
|
|
}
|
|
}
|
|
|
|
// If there were any errors parsing this line, we will return right away with the bad news
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
|
|
/* Pass 2: Parameters. All units converted according to current block commands. Position
|
|
parameters are converted and flagged to indicate a change. These can have multiple connotations
|
|
for different commands. Each will be converted to their proper value upon execution.
|
|
NOTE: Grbl unconventionally pre-converts these parameter values based on the block G and M
|
|
commands. This is set out of the order of execution defined by NIST only for code efficiency/size
|
|
purposes, but should not affect proper g-code execution. */
|
|
float p = 0;
|
|
uint8_t l = 0;
|
|
char_counter = 0;
|
|
while(next_statement(&letter, &value, line, &char_counter)) {
|
|
switch(letter) {
|
|
case 'G': case 'M': case 'N': break; // Ignore command statements and line numbers
|
|
case 'F':
|
|
if (value <= 0) { FAIL(STATUS_INVALID_STATEMENT); } // Must be greater than zero
|
|
if (gc.inverse_feed_rate_mode) {
|
|
inverse_feed_rate = to_millimeters(value); // seconds per motion for this motion only
|
|
} else {
|
|
gc.feed_rate = to_millimeters(value); // millimeters per minute
|
|
}
|
|
break;
|
|
case 'I': case 'J': case 'K': gc.arc_offset[letter-'I'] = to_millimeters(value); break;
|
|
case 'L': l = trunc(value); break;
|
|
case 'P': p = value; break;
|
|
case 'R': gc.arc_radius = to_millimeters(value); break;
|
|
case 'S':
|
|
if (value < 0) { FAIL(STATUS_INVALID_STATEMENT); } // Cannot be negative
|
|
gc.spindle_speed = value;
|
|
break;
|
|
case 'T':
|
|
if (value < 0) { FAIL(STATUS_INVALID_STATEMENT); } // Cannot be negative
|
|
gc.tool = trunc(value);
|
|
break;
|
|
case 'X': target[X_AXIS] = to_millimeters(value); bit_true(axis_words,bit(X_AXIS)); break;
|
|
case 'Y': target[Y_AXIS] = to_millimeters(value); bit_true(axis_words,bit(Y_AXIS)); break;
|
|
case 'Z': target[Z_AXIS] = to_millimeters(value); bit_true(axis_words,bit(Z_AXIS)); break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
}
|
|
|
|
// If there were any errors parsing this line, we will return right away with the bad news
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
|
|
// Initialize axis index
|
|
uint8_t idx;
|
|
|
|
/* Execute Commands: Perform by order of execution defined in NIST RS274-NGC.v3, Table 8, pg.41. */
|
|
|
|
// ([F]: Set feed rate.)
|
|
|
|
if (sys.state != STATE_CHECK_MODE) {
|
|
// ([M6]: Tool change should be executed here.)
|
|
|
|
// [M3,M4,M5]: Update spindle state
|
|
spindle_run(gc.spindle_direction, gc.spindle_speed);
|
|
|
|
// [*M7,M8,M9]: Update coolant state
|
|
coolant_run(gc.coolant_mode);
|
|
}
|
|
|
|
// [G54,G55,...,G59]: Coordinate system selection
|
|
if ( bit_istrue(modal_group_words,bit(MODAL_GROUP_12)) ) { // Check if called in block
|
|
float coord_data[N_AXIS];
|
|
if (!(settings_read_coord_data(gc.coord_select,coord_data))) { return(STATUS_SETTING_READ_FAIL); }
|
|
memcpy(gc.coord_system,coord_data,sizeof(coord_data));
|
|
}
|
|
|
|
// [G4,G10,G28,G30,G92,G92.1]: Perform dwell, set coordinate system data, homing, or set axis offsets.
|
|
// NOTE: These commands are in the same modal group, hence are mutually exclusive. G53 is in this
|
|
// modal group and do not effect these actions.
|
|
switch (non_modal_action) {
|
|
case NON_MODAL_DWELL:
|
|
if (p < 0) { // Time cannot be negative.
|
|
FAIL(STATUS_INVALID_STATEMENT);
|
|
} else {
|
|
// Ignore dwell in check gcode modes
|
|
if (sys.state != STATE_CHECK_MODE) { mc_dwell(p); }
|
|
}
|
|
break;
|
|
case NON_MODAL_SET_COORDINATE_DATA:
|
|
int_value = trunc(p); // Convert p value to int.
|
|
if ((l != 2 && l != 20) || (int_value < 0 || int_value > N_COORDINATE_SYSTEM)) { // L2 and L20. P1=G54, P2=G55, ...
|
|
FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
} else if (!axis_words && l==2) { // No axis words.
|
|
FAIL(STATUS_INVALID_STATEMENT);
|
|
} else {
|
|
if (int_value > 0) { int_value--; } // Adjust P1-P6 index to EEPROM coordinate data indexing.
|
|
else { int_value = gc.coord_select; } // Index P0 as the active coordinate system
|
|
float coord_data[N_AXIS];
|
|
if (!settings_read_coord_data(int_value,coord_data)) { return(STATUS_SETTING_READ_FAIL); }
|
|
// Update axes defined only in block. Always in machine coordinates. Can change non-active system.
|
|
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
|
|
if (bit_istrue(axis_words,bit(idx)) ) {
|
|
if (l == 20) {
|
|
coord_data[idx] = gc.position[idx]-target[idx]; // L20: Update axis current position to target
|
|
} else {
|
|
coord_data[idx] = target[idx]; // L2: Update coordinate system axis
|
|
}
|
|
}
|
|
}
|
|
settings_write_coord_data(int_value,coord_data);
|
|
// Update system coordinate system if currently active.
|
|
if (gc.coord_select == int_value) { memcpy(gc.coord_system,coord_data,sizeof(coord_data)); }
|
|
}
|
|
axis_words = 0; // Axis words used. Lock out from motion modes by clearing flags.
|
|
break;
|
|
case NON_MODAL_GO_HOME_0: case NON_MODAL_GO_HOME_1:
|
|
// Move to intermediate position before going home. Obeys current coordinate system and offsets
|
|
// and absolute and incremental modes.
|
|
if (axis_words) {
|
|
// Apply absolute mode coordinate offsets or incremental mode offsets.
|
|
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
|
|
if ( bit_istrue(axis_words,bit(idx)) ) {
|
|
if (gc.absolute_mode) {
|
|
target[idx] += gc.coord_system[idx] + gc.coord_offset[idx];
|
|
} else {
|
|
target[idx] += gc.position[idx];
|
|
}
|
|
} else {
|
|
target[idx] = gc.position[idx];
|
|
}
|
|
}
|
|
mc_line(target, -1.0, false);
|
|
}
|
|
// Retreive G28/30 go-home position data (in machine coordinates) from EEPROM
|
|
float coord_data[N_AXIS];
|
|
if (non_modal_action == NON_MODAL_GO_HOME_0) {
|
|
if (!settings_read_coord_data(SETTING_INDEX_G28,coord_data)) { return(STATUS_SETTING_READ_FAIL); }
|
|
} else {
|
|
if (!settings_read_coord_data(SETTING_INDEX_G30,coord_data)) { return(STATUS_SETTING_READ_FAIL); }
|
|
}
|
|
mc_line(coord_data, -1.0, false);
|
|
memcpy(gc.position, coord_data, sizeof(coord_data)); // gc.position[] = coord_data[];
|
|
axis_words = 0; // Axis words used. Lock out from motion modes by clearing flags.
|
|
break;
|
|
case NON_MODAL_SET_HOME_0: case NON_MODAL_SET_HOME_1:
|
|
if (non_modal_action == NON_MODAL_SET_HOME_0) {
|
|
settings_write_coord_data(SETTING_INDEX_G28,gc.position);
|
|
} else {
|
|
settings_write_coord_data(SETTING_INDEX_G30,gc.position);
|
|
}
|
|
break;
|
|
case NON_MODAL_SET_COORDINATE_OFFSET:
|
|
if (!axis_words) { // No axis words
|
|
FAIL(STATUS_INVALID_STATEMENT);
|
|
} else {
|
|
// Update axes defined only in block. Offsets current system to defined value. Does not update when
|
|
// active coordinate system is selected, but is still active unless G92.1 disables it.
|
|
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used.
|
|
if (bit_istrue(axis_words,bit(idx)) ) {
|
|
gc.coord_offset[idx] = gc.position[idx]-gc.coord_system[idx]-target[idx];
|
|
}
|
|
}
|
|
}
|
|
axis_words = 0; // Axis words used. Lock out from motion modes by clearing flags.
|
|
break;
|
|
case NON_MODAL_RESET_COORDINATE_OFFSET:
|
|
clear_vector(gc.coord_offset); // Disable G92 offsets by zeroing offset vector.
|
|
break;
|
|
}
|
|
|
|
// [G0,G1,G2,G3,G80]: Perform motion modes.
|
|
// NOTE: Commands G10,G28,G30,G92 lock out and prevent axis words from use in motion modes.
|
|
// Enter motion modes only if there are axis words or a motion mode command word in the block.
|
|
if ( bit_istrue(modal_group_words,bit(MODAL_GROUP_1)) || axis_words ) {
|
|
|
|
// G1,G2,G3 require F word in inverse time mode.
|
|
if ( gc.inverse_feed_rate_mode ) {
|
|
if (inverse_feed_rate < 0 && gc.motion_mode != MOTION_MODE_CANCEL) {
|
|
FAIL(STATUS_INVALID_STATEMENT);
|
|
}
|
|
}
|
|
// Absolute override G53 only valid with G0 and G1 active.
|
|
if ( absolute_override && !(gc.motion_mode == MOTION_MODE_SEEK || gc.motion_mode == MOTION_MODE_LINEAR)) {
|
|
FAIL(STATUS_INVALID_STATEMENT);
|
|
}
|
|
// Report any errors.
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
|
|
// Convert all target position data to machine coordinates for executing motion. Apply
|
|
// absolute mode coordinate offsets or incremental mode offsets.
|
|
// NOTE: Tool offsets may be appended to these conversions when/if this feature is added.
|
|
for (idx=0; idx<N_AXIS; idx++) { // Axes indices are consistent, so loop may be used to save flash space.
|
|
if ( bit_istrue(axis_words,bit(idx)) ) {
|
|
if (!absolute_override) { // Do not update target in absolute override mode
|
|
if (gc.absolute_mode) {
|
|
target[idx] += gc.coord_system[idx] + gc.coord_offset[idx]; // Absolute mode
|
|
} else {
|
|
target[idx] += gc.position[idx]; // Incremental mode
|
|
}
|
|
}
|
|
} else {
|
|
target[idx] = gc.position[idx]; // No axis word in block. Keep same axis position.
|
|
}
|
|
}
|
|
|
|
switch (gc.motion_mode) {
|
|
case MOTION_MODE_CANCEL:
|
|
if (axis_words) { FAIL(STATUS_INVALID_STATEMENT); } // No axis words allowed while active.
|
|
break;
|
|
case MOTION_MODE_SEEK:
|
|
if (!axis_words) { FAIL(STATUS_INVALID_STATEMENT);}
|
|
else { mc_line(target, -1.0, false); }
|
|
break;
|
|
case MOTION_MODE_LINEAR:
|
|
// TODO: Inverse time requires F-word with each statement. Need to do a check. Also need
|
|
// to check for initial F-word upon startup. Maybe just set to zero upon initialization
|
|
// and after an inverse time move and then check for non-zero feed rate each time. This
|
|
// should be efficient and effective.
|
|
if (!axis_words) { FAIL(STATUS_INVALID_STATEMENT);}
|
|
else { mc_line(target, (gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode); }
|
|
break;
|
|
case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC:
|
|
// Check if at least one of the axes of the selected plane has been specified. If in center
|
|
// format arc mode, also check for at least one of the IJK axes of the selected plane was sent.
|
|
if ( !( bit_false(axis_words,bit(gc.plane_axis_2)) ) ||
|
|
( !gc.arc_radius && !gc.arc_offset[gc.plane_axis_0] && !gc.arc_offset[gc.plane_axis_1] ) ) {
|
|
FAIL(STATUS_INVALID_STATEMENT);
|
|
} else {
|
|
if (gc.arc_radius != 0) { // Arc Radius Mode
|
|
// Compute arc radius and offsets
|
|
gc_convert_arc_radius_mode(target);
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
} else { // Arc Center Format Offset Mode
|
|
gc.arc_radius = hypot(gc.arc_offset[gc.plane_axis_0], gc.arc_offset[gc.plane_axis_1]); // Compute arc radius for mc_arc
|
|
}
|
|
|
|
// Set clockwise/counter-clockwise sign for mc_arc computations
|
|
uint8_t isclockwise = false;
|
|
if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
|
|
|
|
// Trace the arc
|
|
mc_arc(gc.position, target, gc.arc_offset, gc.plane_axis_0, gc.plane_axis_1, gc.plane_axis_2,
|
|
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode,
|
|
gc.arc_radius, isclockwise);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Report any errors.
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
memcpy(gc.position, target, sizeof(target)); // gc.position[] = target[];
|
|
}
|
|
|
|
// M0,M1,M2,M30: Perform non-running program flow actions. During a program pause, the buffer may
|
|
// refill and can only be resumed by the cycle start run-time command.
|
|
if (gc.program_flow) {
|
|
plan_synchronize(); // Finish all remaining buffered motions. Program paused when complete.
|
|
sys.auto_start = false; // Disable auto cycle start. Forces pause until cycle start issued.
|
|
|
|
// If complete, reset to reload defaults (G92.2,G54,G17,G90,G94,M48,G40,M5,M9). Otherwise,
|
|
// re-enable program flow after pause complete, where cycle start will resume the program.
|
|
if (gc.program_flow == PROGRAM_FLOW_COMPLETED) { mc_reset(); }
|
|
else { gc.program_flow = PROGRAM_FLOW_RUNNING; }
|
|
}
|
|
|
|
return(gc.status_code);
|
|
}
|
|
|
|
// Parses the next statement and leaves the counter on the first character following
|
|
// the statement. Returns 1 if there was a statements, 0 if end of string was reached
|
|
// or there was an error (check state.status_code).
|
|
static uint8_t next_statement(char *letter, float *float_ptr, char *line, uint8_t *char_counter)
|
|
{
|
|
if (line[*char_counter] == 0) {
|
|
return(0); // No more statements
|
|
}
|
|
|
|
*letter = line[*char_counter];
|
|
if((*letter < 'A') || (*letter > 'Z')) {
|
|
FAIL(STATUS_EXPECTED_COMMAND_LETTER);
|
|
return(0);
|
|
}
|
|
(*char_counter)++;
|
|
if (!read_float(line, char_counter, float_ptr)) {
|
|
FAIL(STATUS_BAD_NUMBER_FORMAT);
|
|
return(0);
|
|
};
|
|
return(1);
|
|
}
|
|
|
|
|
|
static void gc_convert_arc_radius_mode(float *target)
|
|
{
|
|
/* We need to calculate the center of the circle that has the designated radius and passes
|
|
through both the current position and the target position. This method calculates the following
|
|
set of equations where [x,y] is the vector from current to target position, d == magnitude of
|
|
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
|
|
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
|
|
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
|
|
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
|
|
|
|
d^2 == x^2 + y^2
|
|
h^2 == r^2 - (d/2)^2
|
|
i == x/2 - y/d*h
|
|
j == y/2 + x/d*h
|
|
|
|
O <- [i,j]
|
|
- |
|
|
r - |
|
|
- |
|
|
- | h
|
|
- |
|
|
[0,0] -> C -----------------+--------------- T <- [x,y]
|
|
| <------ d/2 ---->|
|
|
|
|
C - Current position
|
|
T - Target position
|
|
O - center of circle that pass through both C and T
|
|
d - distance from C to T
|
|
r - designated radius
|
|
h - distance from center of CT to O
|
|
|
|
Expanding the equations:
|
|
|
|
d -> sqrt(x^2 + y^2)
|
|
h -> sqrt(4 * r^2 - x^2 - y^2)/2
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
|
|
Which can be written:
|
|
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
|
|
Which we for size and speed reasons optimize to:
|
|
|
|
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
|
|
i = (x - (y * h_x2_div_d))/2
|
|
j = (y + (x * h_x2_div_d))/2 */
|
|
|
|
// Calculate the change in position along each selected axis
|
|
float x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
|
|
float y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
|
|
|
|
clear_vector(gc.arc_offset);
|
|
// First, use h_x2_div_d to compute 4*h^2 to check if it is negative or r is smaller
|
|
// than d. If so, the sqrt of a negative number is complex and error out.
|
|
float h_x2_div_d = 4 * gc.arc_radius*gc.arc_radius - x*x - y*y;
|
|
if (h_x2_div_d < 0) { FAIL(STATUS_ARC_RADIUS_ERROR); return; }
|
|
// Finish computing h_x2_div_d.
|
|
h_x2_div_d = -sqrt(h_x2_div_d)/hypot(x,y); // == -(h * 2 / d)
|
|
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
|
|
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
|
|
|
|
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
|
|
the left hand circle will be generated - when it is negative the right hand circle is generated.
|
|
|
|
|
|
T <-- Target position
|
|
|
|
^
|
|
Clockwise circles with this center | Clockwise circles with this center will have
|
|
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
|
|
\ | /
|
|
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
|
|
|
|
|
|
|
|
C <-- Current position */
|
|
|
|
|
|
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
|
|
// even though it is advised against ever generating such circles in a single line of g-code. By
|
|
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
|
|
// travel and thus we get the unadvisably long arcs as prescribed.
|
|
if (gc.arc_radius < 0) {
|
|
h_x2_div_d = -h_x2_div_d;
|
|
gc.arc_radius = -gc.arc_radius; // Finished with r. Set to positive for mc_arc
|
|
}
|
|
// Complete the operation by calculating the actual center of the arc
|
|
gc.arc_offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
|
|
gc.arc_offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
|
|
}
|
|
|
|
/*
|
|
Not supported:
|
|
|
|
- Canned cycles
|
|
- Tool radius compensation
|
|
- A,B,C-axes
|
|
- Evaluation of expressions
|
|
- Variables
|
|
- Probing
|
|
- Override control (TBD)
|
|
- Tool changes
|
|
- Switches
|
|
|
|
(*) Indicates optional parameter, enabled through config.h and re-compile
|
|
group 0 = {G92.2, G92.3} (Non modal: Cancel and re-enable G92 offsets)
|
|
group 1 = {G38.2, G81 - G89} (Motion modes: straight probe, canned cycles)
|
|
group 4 = {M1} (Optional stop, ignored)
|
|
group 6 = {M6} (Tool change)
|
|
group 8 = {*M7} enable mist coolant
|
|
group 9 = {M48, M49} enable/disable feed and speed override switches
|
|
group 13 = {G61, G61.1, G64} path control mode
|
|
*/
|