kopia lustrzana https://github.com/gnea/grbl
431 wiersze
17 KiB
C
431 wiersze
17 KiB
C
/*
|
|
gcode.c - rs274/ngc parser.
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* This code is inspired by the Arduino GCode Interpreter by Mike Ellery and the NIST RS274/NGC Interpreter
|
|
by Kramer, Proctor and Messina. */
|
|
|
|
#include "gcode.h"
|
|
#include <string.h>
|
|
#include "nuts_bolts.h"
|
|
#include <math.h>
|
|
#include "settings.h"
|
|
#include "motion_control.h"
|
|
#include "spindle_control.h"
|
|
#include "errno.h"
|
|
#include "protocol.h"
|
|
|
|
#define MM_PER_INCH (25.4)
|
|
|
|
#define NEXT_ACTION_DEFAULT 0
|
|
#define NEXT_ACTION_DWELL 1
|
|
#define NEXT_ACTION_GO_HOME 2
|
|
#define NEXT_ACTION_SET_COORDINATE_OFFSET 3
|
|
|
|
#define MOTION_MODE_SEEK 0 // G0
|
|
#define MOTION_MODE_LINEAR 1 // G1
|
|
#define MOTION_MODE_CW_ARC 2 // G2
|
|
#define MOTION_MODE_CCW_ARC 3 // G3
|
|
#define MOTION_MODE_CANCEL 4 // G80
|
|
|
|
#define PATH_CONTROL_MODE_EXACT_PATH 0
|
|
#define PATH_CONTROL_MODE_EXACT_STOP 1
|
|
#define PATH_CONTROL_MODE_CONTINOUS 2
|
|
|
|
#define PROGRAM_FLOW_RUNNING 0
|
|
#define PROGRAM_FLOW_PAUSED 1
|
|
#define PROGRAM_FLOW_COMPLETED 2
|
|
|
|
#define SPINDLE_DIRECTION_CW 0
|
|
#define SPINDLE_DIRECTION_CCW 1
|
|
|
|
typedef struct {
|
|
uint8_t status_code;
|
|
|
|
uint8_t motion_mode; /* {G0, G1, G2, G3, G80} */
|
|
uint8_t inverse_feed_rate_mode; /* G93, G94 */
|
|
uint8_t inches_mode; /* 0 = millimeter mode, 1 = inches mode {G20, G21} */
|
|
uint8_t absolute_mode; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
|
|
uint8_t program_flow;
|
|
int8_t spindle_direction;
|
|
double feed_rate, seek_rate; /* Millimeters/second */
|
|
double position[3]; /* Where the interpreter considers the tool to be at this point in the code */
|
|
uint8_t tool;
|
|
int16_t spindle_speed; /* RPM/100 */
|
|
uint8_t plane_axis_0,
|
|
plane_axis_1,
|
|
plane_axis_2; // The axes of the selected plane
|
|
} parser_state_t;
|
|
static parser_state_t gc;
|
|
|
|
#define FAIL(status) gc.status_code = status;
|
|
|
|
static int next_statement(char *letter, double *double_ptr, char *line, uint8_t *char_counter);
|
|
|
|
static void select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
|
|
{
|
|
gc.plane_axis_0 = axis_0;
|
|
gc.plane_axis_1 = axis_1;
|
|
gc.plane_axis_2 = axis_2;
|
|
}
|
|
|
|
void gc_init() {
|
|
memset(&gc, 0, sizeof(gc));
|
|
gc.feed_rate = settings.default_feed_rate/60;
|
|
gc.seek_rate = settings.default_seek_rate/60;
|
|
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
|
|
gc.absolute_mode = true;
|
|
}
|
|
|
|
static float to_millimeters(double value) {
|
|
return(gc.inches_mode ? (value * MM_PER_INCH) : value);
|
|
}
|
|
|
|
#ifdef __AVR_ATmega328P__
|
|
// Find the angle in radians of deviance from the positive y axis. negative angles to the left of y-axis,
|
|
// positive to the right.
|
|
static double theta(double x, double y)
|
|
{
|
|
double theta = atan(x/fabs(y));
|
|
if (y>0) {
|
|
return(theta);
|
|
} else {
|
|
if (theta>0)
|
|
{
|
|
return(M_PI-theta);
|
|
} else {
|
|
return(-M_PI-theta);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
|
|
// characters and signed floating point values (no whitespace). Comments and block delete
|
|
// characters have been removed.
|
|
uint8_t gc_execute_line(char *line) {
|
|
uint8_t char_counter = 0;
|
|
char letter;
|
|
double value;
|
|
double unit_converted_value;
|
|
double inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified
|
|
int radius_mode = false;
|
|
|
|
uint8_t absolute_override = false; /* 1 = absolute motion for this block only {G53} */
|
|
uint8_t next_action = NEXT_ACTION_DEFAULT; /* The action that will be taken by the parsed line */
|
|
|
|
double target[3], offset[3];
|
|
|
|
double p = 0, r = 0;
|
|
int int_value;
|
|
|
|
clear_vector(target);
|
|
clear_vector(offset);
|
|
|
|
gc.status_code = STATUS_OK;
|
|
|
|
// Pass 1: Commands
|
|
while(next_statement(&letter, &value, line, &char_counter)) {
|
|
int_value = trunc(value);
|
|
switch(letter) {
|
|
case 'G':
|
|
switch(int_value) {
|
|
case 0: gc.motion_mode = MOTION_MODE_SEEK; break;
|
|
case 1: gc.motion_mode = MOTION_MODE_LINEAR; break;
|
|
#ifdef __AVR_ATmega328P__
|
|
case 2: gc.motion_mode = MOTION_MODE_CW_ARC; break;
|
|
case 3: gc.motion_mode = MOTION_MODE_CCW_ARC; break;
|
|
#endif
|
|
case 4: next_action = NEXT_ACTION_DWELL; break;
|
|
case 17: select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
|
|
case 18: select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
|
|
case 19: select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
|
|
case 20: gc.inches_mode = true; break;
|
|
case 21: gc.inches_mode = false; break;
|
|
case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break;
|
|
case 53: absolute_override = true; break;
|
|
case 80: gc.motion_mode = MOTION_MODE_CANCEL; break;
|
|
case 90: gc.absolute_mode = true; break;
|
|
case 91: gc.absolute_mode = false; break;
|
|
case 92: next_action = NEXT_ACTION_SET_COORDINATE_OFFSET; break;
|
|
case 93: gc.inverse_feed_rate_mode = true; break;
|
|
case 94: gc.inverse_feed_rate_mode = false; break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
break;
|
|
|
|
case 'M':
|
|
switch(int_value) {
|
|
case 0: case 1: gc.program_flow = PROGRAM_FLOW_PAUSED; break;
|
|
case 2: case 30: case 60: gc.program_flow = PROGRAM_FLOW_COMPLETED; break;
|
|
case 3: gc.spindle_direction = 1; break;
|
|
case 4: gc.spindle_direction = -1; break;
|
|
case 5: gc.spindle_direction = 0; break;
|
|
default: FAIL(STATUS_UNSUPPORTED_STATEMENT);
|
|
}
|
|
break;
|
|
case 'T': gc.tool = trunc(value); break;
|
|
}
|
|
if(gc.status_code) { break; }
|
|
}
|
|
|
|
// If there were any errors parsing this line, we will return right away with the bad news
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
|
|
char_counter = 0;
|
|
clear_vector(offset);
|
|
memcpy(target, gc.position, sizeof(target)); // i.e. target = gc.position
|
|
|
|
// Pass 2: Parameters
|
|
while(next_statement(&letter, &value, line, &char_counter)) {
|
|
int_value = trunc(value);
|
|
unit_converted_value = to_millimeters(value);
|
|
switch(letter) {
|
|
case 'F':
|
|
if (gc.inverse_feed_rate_mode) {
|
|
inverse_feed_rate = unit_converted_value; // seconds per motion for this motion only
|
|
} else {
|
|
if (gc.motion_mode == MOTION_MODE_SEEK) {
|
|
gc.seek_rate = unit_converted_value/60;
|
|
} else {
|
|
gc.feed_rate = unit_converted_value/60; // millimeters pr second
|
|
}
|
|
}
|
|
break;
|
|
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;
|
|
case 'P': p = value; break;
|
|
case 'R': r = unit_converted_value; radius_mode = true; break;
|
|
case 'S': gc.spindle_speed = value; break;
|
|
case 'X': case 'Y': case 'Z':
|
|
if (gc.absolute_mode || absolute_override) {
|
|
target[letter - 'X'] = unit_converted_value;
|
|
} else {
|
|
target[letter - 'X'] += unit_converted_value;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there were any errors parsing this line, we will return right away with the bad news
|
|
if (gc.status_code) { return(gc.status_code); }
|
|
|
|
// Update spindle state
|
|
spindle_run(gc.spindle_direction, gc.spindle_speed);
|
|
|
|
// Perform any physical actions
|
|
switch (next_action) {
|
|
case NEXT_ACTION_GO_HOME: mc_go_home(); clear_vector(gc.position); break;
|
|
case NEXT_ACTION_DWELL: mc_dwell(trunc(p*1000)); break;
|
|
case NEXT_ACTION_SET_COORDINATE_OFFSET:
|
|
mc_set_current_position(target[X_AXIS], target[Y_AXIS], target[Z_AXIS]);
|
|
break;
|
|
case NEXT_ACTION_DEFAULT:
|
|
switch (gc.motion_mode) {
|
|
case MOTION_MODE_CANCEL: break;
|
|
case MOTION_MODE_SEEK:
|
|
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], gc.seek_rate, false);
|
|
break;
|
|
case MOTION_MODE_LINEAR:
|
|
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
|
|
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode);
|
|
break;
|
|
#ifdef __AVR_ATmega328P__
|
|
case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC:
|
|
if (radius_mode) {
|
|
/*
|
|
We need to calculate the center of the circle that has the designated radius and passes
|
|
through both the current position and the target position. This method calculates the following
|
|
set of equations where [x,y] is the vector from current to target position, d == magnitude of
|
|
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
|
|
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
|
|
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
|
|
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
|
|
|
|
d^2 == x^2 + y^2
|
|
h^2 == r^2 - (d/2)^2
|
|
i == x/2 - y/d*h
|
|
j == y/2 + x/d*h
|
|
|
|
O <- [i,j]
|
|
- |
|
|
r - |
|
|
- |
|
|
- | h
|
|
- |
|
|
[0,0] -> C -----------------+--------------- T <- [x,y]
|
|
| <------ d/2 ---->|
|
|
|
|
C - Current position
|
|
T - Target position
|
|
O - center of circle that pass through both C and T
|
|
d - distance from C to T
|
|
r - designated radius
|
|
h - distance from center of CT to O
|
|
|
|
Expanding the equations:
|
|
|
|
d -> sqrt(x^2 + y^2)
|
|
h -> sqrt(4 * r^2 - x^2 - y^2)/2
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
|
|
|
Which can be written:
|
|
|
|
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
|
|
|
Which we for size and speed reasons optimize to:
|
|
|
|
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
|
|
i = (x - (y * h_x2_div_d))/2
|
|
j = (y + (x * h_x2_div_d))/2
|
|
|
|
*/
|
|
|
|
// Calculate the change in position along each selected axis
|
|
double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
|
|
double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
|
|
|
|
clear_vector(offset);
|
|
double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
|
|
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
|
|
// real CNC, and thus - for practical reasons - we will terminate promptly:
|
|
if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
|
|
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
|
|
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
|
|
|
|
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
|
|
the left hand circle will be generated - when it is negative the right hand circle is generated.
|
|
|
|
|
|
T <-- Target position
|
|
|
|
^
|
|
Clockwise circles with this center | Clockwise circles with this center will have
|
|
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
|
|
\ | /
|
|
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
|
|
|
|
|
|
|
|
C <-- Current position */
|
|
|
|
|
|
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
|
|
// even though it is advised against ever generating such circles in a single line of g-code. By
|
|
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
|
|
// travel and thus we get the unadvisably long arcs as prescribed.
|
|
if (r < 0) { h_x2_div_d = -h_x2_div_d; }
|
|
// Complete the operation by calculating the actual center of the arc
|
|
offset[gc.plane_axis_0] = (x-(y*h_x2_div_d))/2;
|
|
offset[gc.plane_axis_1] = (y+(x*h_x2_div_d))/2;
|
|
}
|
|
|
|
/*
|
|
This segment sets up an clockwise or counterclockwise arc from the current position to the target position around
|
|
the center designated by the offset vector. All theta-values measured in radians of deviance from the positive
|
|
y-axis.
|
|
|
|
| <- theta == 0
|
|
* * *
|
|
* *
|
|
* *
|
|
* O ----T <- theta_end (e.g. 90 degrees: theta_end == PI/2)
|
|
* /
|
|
C <- theta_start (e.g. -145 degrees: theta_start == -PI*(3/4))
|
|
|
|
*/
|
|
|
|
// calculate the theta (angle) of the current point
|
|
double theta_start = theta(-offset[gc.plane_axis_0], -offset[gc.plane_axis_1]);
|
|
// calculate the theta (angle) of the target point
|
|
double theta_end = theta(target[gc.plane_axis_0] - offset[gc.plane_axis_0] - gc.position[gc.plane_axis_0],
|
|
target[gc.plane_axis_1] - offset[gc.plane_axis_1] - gc.position[gc.plane_axis_1]);
|
|
// ensure that the difference is positive so that we have clockwise travel
|
|
if (theta_end < theta_start) { theta_end += 2*M_PI; }
|
|
double angular_travel = theta_end-theta_start;
|
|
// Invert angular motion if the g-code wanted a counterclockwise arc
|
|
if (gc.motion_mode == MOTION_MODE_CCW_ARC) {
|
|
angular_travel = angular_travel-2*M_PI;
|
|
}
|
|
// Find the radius
|
|
double radius = hypot(offset[gc.plane_axis_0], offset[gc.plane_axis_1]);
|
|
// Calculate the motion along the depth axis of the helix
|
|
double depth = target[gc.plane_axis_2]-gc.position[gc.plane_axis_2];
|
|
// Trace the arc
|
|
mc_arc(theta_start, angular_travel, radius, depth, gc.plane_axis_0, gc.plane_axis_1, gc.plane_axis_2,
|
|
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode,
|
|
gc.position);
|
|
// Finish off with a line to make sure we arrive exactly where we think we are
|
|
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
|
|
(gc.inverse_feed_rate_mode) ? inverse_feed_rate : gc.feed_rate, gc.inverse_feed_rate_mode);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
memcpy(gc.position, target, sizeof(double)*3); // gc.position[] = target[];
|
|
return(gc.status_code);
|
|
}
|
|
|
|
// Parses the next statement and leaves the counter on the first character following
|
|
// the statement. Returns 1 if there was a statements, 0 if end of string was reached
|
|
// or there was an error (check state.status_code).
|
|
static int next_statement(char *letter, double *double_ptr, char *line, uint8_t *char_counter) {
|
|
if (line[*char_counter] == 0) {
|
|
return(0); // No more statements
|
|
}
|
|
|
|
*letter = line[*char_counter];
|
|
if((*letter < 'A') || (*letter > 'Z')) {
|
|
FAIL(STATUS_EXPECTED_COMMAND_LETTER);
|
|
return(0);
|
|
}
|
|
(*char_counter)++;
|
|
if (!read_double(line, char_counter, double_ptr)) {
|
|
FAIL(STATUS_BAD_NUMBER_FORMAT);
|
|
return(0);
|
|
};
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
Intentionally not supported:
|
|
|
|
- Canned cycles
|
|
- Tool radius compensation
|
|
- A,B,C-axes
|
|
- Multiple coordinate systems
|
|
- Evaluation of expressions
|
|
- Variables
|
|
- Multiple home locations
|
|
- Probing
|
|
- Override control
|
|
|
|
group 0 = {G10, G28, G30, G92, G92.1, G92.2, G92.3} (Non modal G-codes)
|
|
group 8 = {M7, M8, M9} coolant (special case: M7 and M8 may be active at the same time)
|
|
group 9 = {M48, M49} enable/disable feed and speed override switches
|
|
group 12 = {G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3} coordinate system selection
|
|
group 13 = {G61, G61.1, G64} path control mode
|
|
*/
|
|
|