kopia lustrzana https://github.com/gnea/grbl
388 wiersze
16 KiB
C
388 wiersze
16 KiB
C
/*
|
|
stepper.c - stepper motor driver: executes motion plans using stepper motors
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2011-2013 Sungeun K. Jeon
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
|
and Philipp Tiefenbacher. */
|
|
|
|
#include <avr/interrupt.h>
|
|
#include "stepper.h"
|
|
#include "config.h"
|
|
#include "settings.h"
|
|
#include "planner.h"
|
|
|
|
// Some useful constants
|
|
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
|
|
#define CRUISE_RAMP 0
|
|
#define ACCEL_RAMP 1
|
|
#define DECEL_RAMP 2
|
|
|
|
// Stepper state variable. Contains running data and trapezoid variables.
|
|
typedef struct {
|
|
// Used by the bresenham line algorithm
|
|
int32_t counter_x, // Counter variables for the bresenham line tracer
|
|
counter_y,
|
|
counter_z;
|
|
int32_t event_count; // Total event count. Retained for feed holds.
|
|
int32_t step_events_remaining; // Steps remaining in motion
|
|
|
|
// Used by Pramod Ranade inverse time algorithm
|
|
int32_t delta_d; // Ranade distance traveled per interrupt tick
|
|
int32_t d_counter; // Ranade distance traveled since last step event
|
|
uint8_t ramp_count; // Acceleration interrupt tick counter.
|
|
uint8_t ramp_type; // Ramp type variable.
|
|
uint8_t execute_step; // Flags step execution for each interrupt.
|
|
|
|
} stepper_t;
|
|
static stepper_t st;
|
|
static block_t *current_block; // A pointer to the block currently being traced
|
|
|
|
// Used by the stepper driver interrupt
|
|
static uint8_t step_pulse_time; // Step pulse reset time after step rise
|
|
static uint8_t out_bits; // The next stepping-bits to be output
|
|
|
|
// NOTE: If the main interrupt is guaranteed to be complete before the next interrupt, then
|
|
// this blocking variable is no longer needed. Only here for safety reasons.
|
|
static volatile uint8_t busy; // True when "Stepper Driver Interrupt" is being serviced. Used to avoid retriggering that handler.
|
|
|
|
// __________________________
|
|
// /| |\ _________________ ^
|
|
// / | | \ /| |\ |
|
|
// / | | \ / | | \ s
|
|
// / | | | | | \ p
|
|
// / | | | | | \ e
|
|
// +-----+------------------------+---+--+---------------+----+ e
|
|
// | BLOCK 1 | BLOCK 2 | d
|
|
//
|
|
// time ----->
|
|
//
|
|
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates by block->rate_delta
|
|
// until reaching cruising speed block->nominal_rate, and/or until step_events_remaining reaches block->decelerate_after
|
|
// after which it decelerates until the block is completed. The driver uses constant acceleration, which is applied as
|
|
// +/- block->rate_delta velocity increments by the midpoint rule at each ACCELERATION_TICKS_PER_SECOND.
|
|
|
|
|
|
// Stepper state initialization. Cycle should only start if the st.cycle_start flag is
|
|
// enabled. Startup init and limits call this function but shouldn't start the cycle.
|
|
void st_wake_up()
|
|
{
|
|
// Enable steppers by resetting the stepper disable port
|
|
if (bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE)) {
|
|
STEPPERS_DISABLE_PORT |= (1<<STEPPERS_DISABLE_BIT);
|
|
} else {
|
|
STEPPERS_DISABLE_PORT &= ~(1<<STEPPERS_DISABLE_BIT);
|
|
}
|
|
if (sys.state == STATE_CYCLE) {
|
|
// Initialize stepper output bits
|
|
out_bits = settings.invert_mask;
|
|
// Initialize step pulse timing from settings.
|
|
step_pulse_time = -(((settings.pulse_microseconds-2)*TICKS_PER_MICROSECOND) >> 3);
|
|
// Enable stepper driver interrupt
|
|
st.execute_step = false;
|
|
TCNT2 = 0; // Clear Timer2
|
|
TIMSK2 |= (1<<OCIE2A); // Enable Timer2 Compare Match A interrupt
|
|
TCCR2B = (1<<CS21); // Begin Timer2. Full speed, 1/8 prescaler
|
|
}
|
|
}
|
|
|
|
|
|
// Stepper shutdown
|
|
void st_go_idle()
|
|
{
|
|
// Disable stepper driver interrupt. Allow Timer0 to finish. It will disable itself.
|
|
TIMSK2 &= ~(1<<OCIE2A); // Disable Timer2 interrupt
|
|
TCCR2B = 0; // Disable Timer2
|
|
busy = false;
|
|
|
|
// Disable steppers only upon system alarm activated or by user setting to not be kept enabled.
|
|
if ((settings.stepper_idle_lock_time != 0xff) || bit_istrue(sys.execute,EXEC_ALARM)) {
|
|
// Force stepper dwell to lock axes for a defined amount of time to ensure the axes come to a complete
|
|
// stop and not drift from residual inertial forces at the end of the last movement.
|
|
delay_ms(settings.stepper_idle_lock_time);
|
|
if (bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE)) {
|
|
STEPPERS_DISABLE_PORT &= ~(1<<STEPPERS_DISABLE_BIT);
|
|
} else {
|
|
STEPPERS_DISABLE_PORT |= (1<<STEPPERS_DISABLE_BIT);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse of Grbl. It is based
|
|
// on the Pramod Ranade inverse time stepper algorithm, where a timer ticks at a constant
|
|
// frequency and uses time-distance counters to track when its the approximate time for any
|
|
// step event. However, the Ranade algorithm, as described, is susceptible to numerical round-off,
|
|
// meaning that some axes steps may not execute for a given multi-axis motion.
|
|
// Grbl's algorithm slightly differs by using a single Ranade time-distance counter to manage
|
|
// a Bresenham line algorithm for multi-axis step events which ensures the number of steps for
|
|
// each axis are executed exactly. In other words, it uses a Bresenham within a Bresenham algorithm,
|
|
// where one tracks time(Ranade) and the other steps.
|
|
// This interrupt pops blocks from the block_buffer and executes them by pulsing the stepper pins
|
|
// appropriately. It is supported by The Stepper Port Reset Interrupt which it uses to reset the
|
|
// stepper port after each pulse. The bresenham line tracer algorithm controls all three stepper
|
|
// outputs simultaneously with these two interrupts.
|
|
//
|
|
// NOTE: Average time in this ISR is: 5 usec iterating timers only, 20-25 usec with step event, or
|
|
// 15 usec when popping a block. So, ensure Ranade frequency and step pulse times work with this.
|
|
ISR(TIMER2_COMPA_vect)
|
|
{
|
|
// SPINDLE_ENABLE_PORT ^= 1<<SPINDLE_ENABLE_BIT; // Debug: Used to time ISR
|
|
if (busy) { return; } // The busy-flag is used to avoid reentering this interrupt
|
|
|
|
// Pulse stepper port pins, if flagged. New block dir will always be set one timer tick
|
|
// before any step pulse due to algorithm design.
|
|
if (st.execute_step) {
|
|
st.execute_step = false;
|
|
STEPPING_PORT = ( STEPPING_PORT & ~(DIRECTION_MASK | STEP_MASK) ) | out_bits;
|
|
TCNT0 = step_pulse_time; // Reload Timer0 counter.
|
|
TCCR0B = (1<<CS21); // Begin Timer0. Full speed, 1/8 prescaler
|
|
}
|
|
|
|
busy = true;
|
|
sei(); // Re-enable interrupts. This ISR will still finish before returning to main program.
|
|
|
|
// If there is no current block, attempt to pop one from the buffer
|
|
if (current_block == NULL) {
|
|
|
|
// Anything in the buffer? If so, initialize next motion.
|
|
current_block = plan_get_current_block();
|
|
if (current_block != NULL) {
|
|
// By algorithm design, the loading of the next block never coincides with a step event,
|
|
// since there is always one Ranade timer tick before a step event occurs. This means
|
|
// that the Bresenham counter math never is performed at the same time as the loading
|
|
// of a block, hence helping minimize total time spent in this interrupt.
|
|
|
|
// Initialize direction bits for block
|
|
out_bits = current_block->direction_bits ^ settings.invert_mask;
|
|
st.execute_step = true; // Set flag to set direction bits.
|
|
|
|
// Initialize Bresenham variables
|
|
st.counter_x = (current_block->step_event_count >> 1);
|
|
st.counter_y = st.counter_x;
|
|
st.counter_z = st.counter_x;
|
|
st.event_count = current_block->step_event_count;
|
|
st.step_events_remaining = st.event_count;
|
|
|
|
// During feed hold, do not update Ranade counter, rate, or ramp type. Keep decelerating.
|
|
if (sys.state == STATE_CYCLE) {
|
|
// Initialize Ranade variables
|
|
st.d_counter = current_block->d_next;
|
|
st.delta_d = current_block->initial_rate;
|
|
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2;
|
|
|
|
// Initialize ramp type.
|
|
if (st.step_events_remaining == current_block->decelerate_after) { st.ramp_type = DECEL_RAMP; }
|
|
else if (st.delta_d == current_block->nominal_rate) { st.ramp_type = CRUISE_RAMP; }
|
|
else { st.ramp_type = ACCEL_RAMP; }
|
|
}
|
|
|
|
} else {
|
|
st_go_idle();
|
|
bit_true(sys.execute,EXEC_CYCLE_STOP); // Flag main program for cycle end
|
|
return; // Nothing to do but exit.
|
|
}
|
|
}
|
|
|
|
// Adjust inverse time counter for ac/de-celerations
|
|
if (st.ramp_type) {
|
|
// Tick acceleration ramp counter
|
|
st.ramp_count--;
|
|
if (st.ramp_count == 0) {
|
|
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK; // Reload ramp counter
|
|
if (st.ramp_type == ACCEL_RAMP) { // Adjust velocity for acceleration
|
|
st.delta_d += current_block->rate_delta;
|
|
if (st.delta_d >= current_block->nominal_rate) { // Reached cruise state.
|
|
st.ramp_type = CRUISE_RAMP;
|
|
st.delta_d = current_block->nominal_rate; // Set cruise velocity
|
|
}
|
|
} else if (st.ramp_type == DECEL_RAMP) { // Adjust velocity for deceleration
|
|
if (st.delta_d > current_block->rate_delta) {
|
|
st.delta_d -= current_block->rate_delta;
|
|
} else {
|
|
st.delta_d >>= 1; // Integer divide by 2 until complete. Also prevents overflow.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iterate Pramod Ranade inverse time counter. Triggers each Bresenham step event.
|
|
if (st.delta_d < MINIMUM_STEP_RATE) { st.d_counter -= MINIMUM_STEP_RATE; }
|
|
else { st.d_counter -= st.delta_d; }
|
|
|
|
// Execute Bresenham step event, when it's time to do so.
|
|
if (st.d_counter < 0) {
|
|
st.d_counter += current_block->d_next;
|
|
|
|
// Check for feed hold state and execute accordingly.
|
|
if (sys.state == STATE_HOLD) {
|
|
if (st.ramp_type != DECEL_RAMP) {
|
|
st.ramp_type = DECEL_RAMP;
|
|
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2;
|
|
}
|
|
if (st.delta_d <= current_block->rate_delta) {
|
|
st_go_idle();
|
|
bit_true(sys.execute,EXEC_CYCLE_STOP);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// TODO: Vary Bresenham resolution for smoother motions or enable faster step rates (>20kHz).
|
|
|
|
out_bits = current_block->direction_bits; // Reset out_bits and reload direction bits
|
|
st.execute_step = true;
|
|
|
|
// Execute step displacement profile by Bresenham line algorithm
|
|
st.counter_x -= current_block->steps[X_AXIS];
|
|
if (st.counter_x < 0) {
|
|
out_bits |= (1<<X_STEP_BIT);
|
|
st.counter_x += st.event_count;
|
|
if (out_bits & (1<<X_DIRECTION_BIT)) { sys.position[X_AXIS]--; }
|
|
else { sys.position[X_AXIS]++; }
|
|
}
|
|
st.counter_y -= current_block->steps[Y_AXIS];
|
|
if (st.counter_y < 0) {
|
|
out_bits |= (1<<Y_STEP_BIT);
|
|
st.counter_y += st.event_count;
|
|
if (out_bits & (1<<Y_DIRECTION_BIT)) { sys.position[Y_AXIS]--; }
|
|
else { sys.position[Y_AXIS]++; }
|
|
}
|
|
st.counter_z -= current_block->steps[Z_AXIS];
|
|
if (st.counter_z < 0) {
|
|
out_bits |= (1<<Z_STEP_BIT);
|
|
st.counter_z += st.event_count;
|
|
if (out_bits & (1<<Z_DIRECTION_BIT)) { sys.position[Z_AXIS]--; }
|
|
else { sys.position[Z_AXIS]++; }
|
|
}
|
|
|
|
// Check step events for trapezoid change or end of block.
|
|
st.step_events_remaining--; // Decrement step events count
|
|
if (st.step_events_remaining) {
|
|
if (st.ramp_type != DECEL_RAMP) {
|
|
// Acceleration and cruise handled by ramping. Just check for deceleration.
|
|
if (st.step_events_remaining <= current_block->decelerate_after) {
|
|
st.ramp_type = DECEL_RAMP;
|
|
if (st.step_events_remaining == current_block->decelerate_after) {
|
|
if (st.delta_d == current_block->nominal_rate) {
|
|
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2; // Set ramp counter for trapezoid
|
|
} else {
|
|
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK-st.ramp_count; // Set ramp counter for triangle
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// If current block is finished, reset pointer
|
|
current_block = NULL;
|
|
plan_discard_current_block();
|
|
}
|
|
|
|
out_bits ^= settings.invert_mask; // Apply step port invert mask
|
|
}
|
|
busy = false;
|
|
// SPINDLE_ENABLE_PORT ^= 1<<SPINDLE_ENABLE_BIT;
|
|
}
|
|
|
|
|
|
// The Stepper Port Reset Interrupt: Timer0 OVF interrupt handles the falling edge of the
|
|
// step pulse. This should always trigger before the next Timer2 COMPA interrupt and independently
|
|
// finish, if Timer2 is disabled after completing a move.
|
|
ISR(TIMER0_OVF_vect)
|
|
{
|
|
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (settings.invert_mask & STEP_MASK);
|
|
TCCR0B = 0; // Disable timer until needed.
|
|
}
|
|
|
|
|
|
// Reset and clear stepper subsystem variables
|
|
void st_reset()
|
|
{
|
|
memset(&st, 0, sizeof(st));
|
|
current_block = NULL;
|
|
busy = false;
|
|
}
|
|
|
|
|
|
// Initialize and start the stepper motor subsystem
|
|
void st_init()
|
|
{
|
|
// Configure directions of interface pins
|
|
STEPPING_DDR |= STEPPING_MASK;
|
|
STEPPING_PORT = (STEPPING_PORT & ~STEPPING_MASK) | settings.invert_mask;
|
|
STEPPERS_DISABLE_DDR |= 1<<STEPPERS_DISABLE_BIT;
|
|
|
|
// Configure Timer 2
|
|
TIMSK2 &= ~(1<<OCIE2A); // Disable Timer2 interrupt while configuring it
|
|
TCCR2B = 0; // Disable Timer2 until needed
|
|
TCNT2 = 0; // Clear Timer2 counter
|
|
TCCR2A = (1<<WGM21); // Set CTC mode
|
|
OCR2A = (F_CPU/ISR_TICKS_PER_SECOND)/8 - 1; // Set Timer2 CTC rate
|
|
|
|
// Configure Timer 0
|
|
TIMSK0 &= ~(1<<TOIE0);
|
|
TCCR0A = 0; // Normal operation
|
|
TCCR0B = 0; // Disable Timer0 until needed
|
|
TIMSK0 |= (1<<TOIE0); // Enable overflow interrupt
|
|
|
|
// Start in the idle state, but first wake up to check for keep steppers enabled option.
|
|
st_wake_up();
|
|
st_go_idle();
|
|
}
|
|
|
|
|
|
// Planner external interface to start stepper interrupt and execute the blocks in queue. Called
|
|
// by the main program functions: planner auto-start and run-time command execution.
|
|
void st_cycle_start()
|
|
{
|
|
if (sys.state == STATE_QUEUED) {
|
|
sys.state = STATE_CYCLE;
|
|
st_wake_up();
|
|
}
|
|
}
|
|
|
|
|
|
// Execute a feed hold with deceleration, only during cycle. Called by main program.
|
|
void st_feed_hold()
|
|
{
|
|
if (sys.state == STATE_CYCLE) {
|
|
sys.state = STATE_HOLD;
|
|
sys.auto_start = false; // Disable planner auto start upon feed hold.
|
|
}
|
|
}
|
|
|
|
|
|
// Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by
|
|
// runtime command execution in the main program, ensuring that the planner re-plans safely.
|
|
// NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
|
|
// cycle reinitializations. The stepper path should continue exactly as if nothing has happened.
|
|
// Only the planner de/ac-celerations profiles and stepper rates have been updated.
|
|
void st_cycle_reinitialize()
|
|
{
|
|
if (current_block != NULL) {
|
|
// Replan buffer from the feed hold stop location.
|
|
plan_cycle_reinitialize(st.step_events_remaining);
|
|
st.ramp_type = ACCEL_RAMP;
|
|
st.ramp_count = ISR_TICKS_PER_ACCELERATION_TICK/2;
|
|
st.delta_d = 0;
|
|
sys.state = STATE_QUEUED;
|
|
} else {
|
|
sys.state = STATE_IDLE;
|
|
}
|
|
}
|