grbl/grbl/protocol.c

386 wiersze
19 KiB
C

/*
protocol.c - controls Grbl execution protocol and procedures
Part of Grbl
Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
static char line[LINE_BUFFER_SIZE]; // Line to be executed. Zero-terminated.
// Directs and executes one line of formatted input from protocol_process. While mostly
// incoming streaming g-code blocks, this also directs and executes Grbl internal commands,
// such as settings, initiating the homing cycle, and toggling switch states.
static void protocol_execute_line(char *line)
{
protocol_execute_realtime(); // Runtime command check point.
if (sys.abort) { return; } // Bail to calling function upon system abort
if (line[0] == 0) {
// Empty or comment line. Send status message for syncing purposes.
report_status_message(STATUS_OK);
} else if (line[0] == '$') {
// Grbl '$' system command
report_status_message(system_execute_line(line));
} else if (sys.state == STATE_ALARM) {
// Everything else is gcode. Block if in alarm mode.
report_status_message(STATUS_ALARM_LOCK);
} else {
// Parse and execute g-code block!
report_status_message(gc_execute_line(line));
}
}
/*
GRBL PRIMARY LOOP:
*/
void protocol_main_loop()
{
// ------------------------------------------------------------
// Complete initialization procedures upon a power-up or reset.
// ------------------------------------------------------------
// Print welcome message
report_init_message();
// Check for and report alarm state after a reset, error, or an initial power up.
if (sys.state == STATE_ALARM) {
report_feedback_message(MESSAGE_ALARM_LOCK);
} else {
// All systems go! But first check for safety door.
if (system_check_safety_door_ajar()) {
bit_true(sys.rt_exec_state, EXEC_SAFETY_DOOR);
protocol_execute_realtime(); // Enter safety door mode. Should return as IDLE state.
} else {
sys.state = STATE_IDLE; // Set system to ready. Clear all state flags.
}
system_execute_startup(line); // Execute startup script.
}
// ---------------------------------------------------------------------------------
// Primary loop! Upon a system abort, this exits back to main() to reset the system.
// ---------------------------------------------------------------------------------
uint8_t iscomment = false;
uint8_t char_counter = 0;
uint8_t c;
for (;;) {
// Process one line of incoming serial data, as the data becomes available. Performs an
// initial filtering by removing spaces and comments and capitalizing all letters.
// NOTE: While comment, spaces, and block delete(if supported) handling should technically
// be done in the g-code parser, doing it here helps compress the incoming data into Grbl's
// line buffer, which is limited in size. The g-code standard actually states a line can't
// exceed 256 characters, but the Arduino Uno does not have the memory space for this.
// With a better processor, it would be very easy to pull this initial parsing out as a
// seperate task to be shared by the g-code parser and Grbl's system commands.
while((c = serial_read()) != SERIAL_NO_DATA) {
if ((c == '\n') || (c == '\r')) { // End of line reached
line[char_counter] = 0; // Set string termination character.
protocol_execute_line(line); // Line is complete. Execute it!
iscomment = false;
char_counter = 0;
} else {
if (iscomment) {
// Throw away all comment characters
if (c == ')') {
// End of comment. Resume line.
iscomment = false;
}
} else {
if (c <= ' ') {
// Throw away whitepace and control characters
} else if (c == '/') {
// Block delete NOT SUPPORTED. Ignore character.
// NOTE: If supported, would simply need to check the system if block delete is enabled.
} else if (c == '(') {
// Enable comments flag and ignore all characters until ')' or EOL.
// NOTE: This doesn't follow the NIST definition exactly, but is good enough for now.
// In the future, we could simply remove the items within the comments, but retain the
// comment control characters, so that the g-code parser can error-check it.
iscomment = true;
// } else if (c == ';') {
// Comment character to EOL NOT SUPPORTED. LinuxCNC definition. Not NIST.
// TODO: Install '%' feature
// } else if (c == '%') {
// Program start-end percent sign NOT SUPPORTED.
// NOTE: This maybe installed to tell Grbl when a program is running vs manual input,
// where, during a program, the system auto-cycle start will continue to execute
// everything until the next '%' sign. This will help fix resuming issues with certain
// functions that empty the planner buffer to execute its task on-time.
} else if (char_counter >= (LINE_BUFFER_SIZE-1)) {
// Detect line buffer overflow. Report error and reset line buffer.
report_status_message(STATUS_OVERFLOW);
iscomment = false;
char_counter = 0;
} else if (c >= 'a' && c <= 'z') { // Upcase lowercase
line[char_counter++] = c-'a'+'A';
} else {
line[char_counter++] = c;
}
}
}
}
// If there are no more characters in the serial read buffer to be processed and executed,
// this indicates that g-code streaming has either filled the planner buffer or has
// completed. In either case, auto-cycle start, if enabled, any queued moves.
protocol_auto_cycle_start();
protocol_execute_realtime(); // Runtime command check point.
if (sys.abort) { return; } // Bail to main() program loop to reset system.
}
return; /* Never reached */
}
// Executes run-time commands, when required. This is called from various check points in the main
// program, primarily where there may be a while loop waiting for a buffer to clear space or any
// point where the execution time from the last check point may be more than a fraction of a second.
// This is a way to execute realtime commands asynchronously (aka multitasking) with grbl's g-code
// parsing and planning functions. This function also serves as an interface for the interrupts to
// set the system realtime flags, where only the main program handles them, removing the need to
// define more computationally-expensive volatile variables. This also provides a controlled way to
// execute certain tasks without having two or more instances of the same task, such as the planner
// recalculating the buffer upon a feedhold or override.
// NOTE: The sys.rt_exec_state variable flags are set by any process, step or serial interrupts, pinouts,
// limit switches, or the main program.
void protocol_execute_realtime()
{
uint8_t rt_exec; // Temp variable to avoid calling volatile multiple times.
do { // If system is suspended, suspend loop restarts here.
// Check and execute alarms.
rt_exec = sys.rt_exec_alarm; // Copy volatile sys.rt_exec_alarm.
if (rt_exec) { // Enter only if any bit flag is true
// System alarm. Everything has shutdown by something that has gone severely wrong. Report
// the source of the error to the user. If critical, Grbl disables by entering an infinite
// loop until system reset/abort.
sys.state = STATE_ALARM; // Set system alarm state
if (rt_exec & EXEC_ALARM_HARD_LIMIT) {
report_alarm_message(ALARM_HARD_LIMIT_ERROR);
} else if (rt_exec & EXEC_ALARM_SOFT_LIMIT) {
report_alarm_message(ALARM_SOFT_LIMIT_ERROR);
} else if (rt_exec & EXEC_ALARM_ABORT_CYCLE) {
report_alarm_message(ALARM_ABORT_CYCLE);
} else if (rt_exec & EXEC_ALARM_PROBE_FAIL) {
report_alarm_message(ALARM_PROBE_FAIL);
} else if (rt_exec & EXEC_ALARM_HOMING_FAIL) {
report_alarm_message(ALARM_HOMING_FAIL);
}
// Halt everything upon a critical event flag. Currently hard and soft limits flag this.
if (rt_exec & EXEC_CRITICAL_EVENT) {
report_feedback_message(MESSAGE_CRITICAL_EVENT);
bit_false_atomic(sys.rt_exec_state,EXEC_RESET); // Disable any existing reset
do {
// Nothing. Block EVERYTHING until user issues reset or power cycles. Hard limits
// typically occur while unattended or not paying attention. Gives the user time
// to do what is needed before resetting, like killing the incoming stream. The
// same could be said about soft limits. While the position is not lost, the incoming
// stream could be still engaged and cause a serious crash if it continues afterwards.
} while (bit_isfalse(sys.rt_exec_state,EXEC_RESET));
}
bit_false_atomic(sys.rt_exec_alarm,0xFF); // Clear all alarm flags
}
// Check amd execute realtime commands
rt_exec = sys.rt_exec_state; // Copy volatile sys.rt_exec_state.
if (rt_exec) { // Enter only if any bit flag is true
// Execute system abort.
if (rt_exec & EXEC_RESET) {
sys.abort = true; // Only place this is set true.
return; // Nothing else to do but exit.
}
// Execute and serial print status
if (rt_exec & EXEC_STATUS_REPORT) {
report_realtime_status();
bit_false_atomic(sys.rt_exec_state,EXEC_STATUS_REPORT);
}
// Execute hold states.
// NOTE: The math involved to calculate the hold should be low enough for most, if not all,
// operational scenarios. Once hold is initiated, the system enters a suspend state to block
// all main program processes until either reset or resumed.
if (rt_exec & (EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR)) {
// TODO: CHECK MODE? How to handle this? Likely nothing, since it only works when IDLE and then resets Grbl.
// State check for allowable states for hold methods.
if ((sys.state == STATE_IDLE) || (sys.state & (STATE_CYCLE | STATE_HOMING | STATE_MOTION_CANCEL | STATE_HOLD | STATE_SAFETY_DOOR))) {
// If in CYCLE state, all hold states immediately initiate a motion HOLD.
if (sys.state == STATE_CYCLE) {
st_update_plan_block_parameters(); // Notify stepper module to recompute for hold deceleration.
sys.suspend = SUSPEND_ENABLE_HOLD; // Initiate holding cycle with flag.
}
// If IDLE, Grbl is not in motion. Simply indicate suspend ready state.
if (sys.state == STATE_IDLE) { sys.suspend = SUSPEND_ENABLE_READY; }
// Execute and flag a motion cancel with deceleration and return to idle. Used primarily by probing cycle
// to halt and cancel the remainder of the motion.
if (rt_exec & EXEC_MOTION_CANCEL) {
// MOTION_CANCEL only occurs during a CYCLE, but a HOLD and SAFETY_DOOR may been initiated beforehand
// to hold the CYCLE. If so, only flag that motion cancel is complete.
if (sys.state == STATE_CYCLE) { sys.state = STATE_MOTION_CANCEL; }
sys.suspend |= SUSPEND_MOTION_CANCEL; // Indicate motion cancel when resuming. Special motion complete.
}
// Execute a feed hold with deceleration, only during cycle.
if (rt_exec & EXEC_FEED_HOLD) {
// Block SAFETY_DOOR state from prematurely changing back to HOLD.
if (bit_isfalse(sys.state,STATE_SAFETY_DOOR)) { sys.state = STATE_HOLD; }
}
// Execute a safety door stop with a feed hold, only during a cycle, and disable spindle/coolant.
// NOTE: Safety door differs from feed holds by stopping everything no matter state, disables powered
// devices (spindle/coolant), and blocks resuming until switch is re-engaged. The power-down is
// executed here, if IDLE, or when the CYCLE completes via the EXEC_CYCLE_STOP flag.
if (rt_exec & EXEC_SAFETY_DOOR) {
report_feedback_message(MESSAGE_SAFETY_DOOR_AJAR);
// If already in active, ready-to-resume HOLD, set CYCLE_STOP flag to force de-energize.
// NOTE: Only temporarily sets the 'rt_exec' variable, not the volatile 'rt_exec_state' variable.
if (sys.suspend & SUSPEND_ENABLE_READY) { bit_true(rt_exec,EXEC_CYCLE_STOP); }
sys.suspend |= SUSPEND_ENERGIZE;
sys.state = STATE_SAFETY_DOOR;
}
}
bit_false_atomic(sys.rt_exec_state,(EXEC_MOTION_CANCEL | EXEC_FEED_HOLD | EXEC_SAFETY_DOOR));
}
// Execute a cycle start by starting the stepper interrupt to begin executing the blocks in queue.
if (rt_exec & EXEC_CYCLE_START) {
// Block if called at same time as the hold commands: feed hold, motion cancel, and safety door.
// Ensures auto-cycle-start doesn't resume a hold without an explicit user-input.
if (!(rt_exec & (EXEC_FEED_HOLD | EXEC_MOTION_CANCEL | EXEC_SAFETY_DOOR))) {
// Cycle start only when IDLE or when a hold is complete and ready to resume.
// NOTE: SAFETY_DOOR is implicitly blocked. It reverts to HOLD when the door is closed.
if ((sys.state == STATE_IDLE) || ((sys.state & (STATE_HOLD | STATE_MOTION_CANCEL)) && (sys.suspend & SUSPEND_ENABLE_READY))) {
// Re-energize powered components, if disabled by SAFETY_DOOR.
if (sys.suspend & SUSPEND_ENERGIZE) {
// Delayed Tasks: Restart spindle and coolant, delay to power-up, then resume cycle.
if (gc_state.modal.spindle != SPINDLE_DISABLE) {
spindle_set_state(gc_state.modal.spindle, gc_state.spindle_speed);
delay_ms(SAFETY_DOOR_SPINDLE_DELAY); // TODO: Blocking function call. Need a non-blocking one eventually.
}
if (gc_state.modal.coolant != COOLANT_DISABLE) {
coolant_set_state(gc_state.modal.coolant);
delay_ms(SAFETY_DOOR_COOLANT_DELAY); // TODO: Blocking function call. Need a non-blocking one eventually.
}
// TODO: Install return to pre-park position.
}
// Start cycle only if queued motions exist in planner buffer and the motion is not canceled.
if (plan_get_current_block() && bit_isfalse(sys.suspend,SUSPEND_MOTION_CANCEL)) {
sys.state = STATE_CYCLE;
st_prep_buffer(); // Initialize step segment buffer before beginning cycle.
st_wake_up();
} else { // Otherwise, do nothing. Set and resume IDLE state.
sys.state = STATE_IDLE;
}
sys.suspend = SUSPEND_DISABLE; // Break suspend state.
}
}
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_START);
}
// Reinitializes the cycle plan and stepper system after a feed hold for a resume. Called by
// realtime command execution in the main program, ensuring that the planner re-plans safely.
// NOTE: Bresenham algorithm variables are still maintained through both the planner and stepper
// cycle reinitializations. The stepper path should continue exactly as if nothing has happened.
// NOTE: EXEC_CYCLE_STOP is set by the stepper subsystem when a cycle or feed hold completes.
if (rt_exec & EXEC_CYCLE_STOP) {
if (sys.state & (STATE_HOLD | STATE_SAFETY_DOOR)) {
// Hold complete. Set to indicate ready to resume. Remain in HOLD or DOOR states until user
// has issued a resume command or reset.
if (sys.suspend & SUSPEND_ENERGIZE) { // De-energize system if safety door has been opened.
spindle_stop();
coolant_stop();
// TODO: Install parking motion here.
}
bit_true(sys.suspend,SUSPEND_ENABLE_READY);
} else { // Motion is complete. Includes CYCLE, HOMING, and MOTION_CANCEL states.
sys.suspend = SUSPEND_DISABLE;
sys.state = STATE_IDLE;
}
bit_false_atomic(sys.rt_exec_state,EXEC_CYCLE_STOP);
}
}
// Overrides flag byte (sys.override) and execution should be installed here, since they
// are realtime and require a direct and controlled interface to the main stepper program.
// Reload step segment buffer
if (sys.state & (STATE_CYCLE | STATE_HOLD | STATE_MOTION_CANCEL | STATE_SAFETY_DOOR | STATE_HOMING)) { st_prep_buffer(); }
// If safety door was opened, actively check when safety door is closed and ready to resume.
// NOTE: This unlocks the SAFETY_DOOR state to a HOLD state, such that CYCLE_START can activate a resume.
if (sys.state == STATE_SAFETY_DOOR) {
if (bit_istrue(sys.suspend,SUSPEND_ENABLE_READY)) {
if (!(system_check_safety_door_ajar())) {
sys.state = STATE_HOLD; // Update to HOLD state to indicate door is closed and ready to resume.
}
}
}
} while(sys.suspend); // Check for system suspend state before exiting.
}
// Block until all buffered steps are executed or in a cycle state. Works with feed hold
// during a synchronize call, if it should happen. Also, waits for clean cycle end.
void protocol_buffer_synchronize()
{
// If system is queued, ensure cycle resumes if the auto start flag is present.
protocol_auto_cycle_start();
do {
protocol_execute_realtime(); // Check and execute run-time commands
if (sys.abort) { return; } // Check for system abort
} while (plan_get_current_block() || (sys.state == STATE_CYCLE));
}
// Auto-cycle start has two purposes: 1. Resumes a plan_synchronize() call from a function that
// requires the planner buffer to empty (spindle enable, dwell, etc.) 2. As a user setting that
// automatically begins the cycle when a user enters a valid motion command manually. This is
// intended as a beginners feature to help new users to understand g-code. It can be disabled
// as a beginner tool, but (1.) still operates. If disabled, the operation of cycle start is
// manually issuing a cycle start command whenever the user is ready and there is a valid motion
// command in the planner queue.
// NOTE: This function is called from the main loop, buffer sync, and mc_line() only and executes
// when one of these conditions exist respectively: There are no more blocks sent (i.e. streaming
// is finished, single commands), a command that needs to wait for the motions in the buffer to
// execute calls a buffer sync, or the planner buffer is full and ready to go.
void protocol_auto_cycle_start() { bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE_START); }