kopia lustrzana https://github.com/gnea/grbl
421 wiersze
18 KiB
C
421 wiersze
18 KiB
C
/*
|
|
stepper_plan.c - buffers movement commands and manages the acceleration profile plan
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
|
|
s == speed, a == acceleration, t == time, d == distance
|
|
|
|
Basic definitions:
|
|
|
|
Speed[s_, a_, t_] := s + (a*t)
|
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
|
|
Distance to reach a specific speed with a constant acceleration:
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
|
|
Speed after a given distance of travel with constant acceleration:
|
|
|
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
m -> Sqrt[2 a d + s^2]
|
|
|
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
|
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
|
from initial speed s1 without ever stopping at a plateau:
|
|
|
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
|
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
*/
|
|
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "stepper_plan.h"
|
|
#include "nuts_bolts.h"
|
|
#include "stepper.h"
|
|
#include "settings.h"
|
|
#include "config.h"
|
|
#include "wiring_serial.h"
|
|
|
|
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
|
volatile int block_buffer_head; // Index of the next block to be pushed
|
|
volatile int block_buffer_tail; // Index of the block to process now
|
|
|
|
static uint8_t acceleration_management; // Acceleration management active?
|
|
|
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
|
// given acceleration:
|
|
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
|
|
return(
|
|
(target_rate*target_rate-initial_rate*initial_rate)/
|
|
(2L*acceleration)
|
|
);
|
|
}
|
|
|
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
|
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
|
|
|
/* + <- some maximum rate we don't care about
|
|
/|\
|
|
/ | \
|
|
/ | + <- final_rate
|
|
/ | |
|
|
initial_rate -> +----+--+
|
|
^ ^
|
|
| |
|
|
intersection_distance distance */
|
|
|
|
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
|
|
return(
|
|
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
|
(4*acceleration)
|
|
);
|
|
}
|
|
|
|
|
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
|
// The factors represent a factor of braking and must be in the range 0.0-1.0.
|
|
|
|
/*
|
|
+--------+ <- nominal_rate
|
|
/ \
|
|
nominal_rate*entry_factor -> + \
|
|
| + <- nominal_rate*exit_factor
|
|
+-------------+
|
|
time -->
|
|
*/
|
|
|
|
void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
|
|
// printString("---/-\\---\n\r");
|
|
// printInteger(entry_factor*1000); printString(" -> "); printInteger(exit_factor*1000); printString("\n\r");
|
|
block->initial_rate = ceil(block->nominal_rate*entry_factor);
|
|
int32_t final_rate = ceil(block->nominal_rate*exit_factor);
|
|
int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0;
|
|
int32_t accelerate_steps =
|
|
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute));
|
|
int32_t decelerate_steps =
|
|
ceil(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration_per_minute));
|
|
// printInteger(accelerate_steps);printString("<-accelerate_steps\n\r");
|
|
// printInteger(decelerate_steps);printString("<-decelerate_steps\n\r");
|
|
|
|
// Calculate the size of Plateau of Nominal Rate.
|
|
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
|
// printInteger(plateau_steps);printString("<-plateau_steps\n\r");
|
|
|
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
|
// in order to reach the final_rate exactly at the end of this block.
|
|
if (plateau_steps < 0) {
|
|
accelerate_steps = ceil(
|
|
intersection_distance(block->initial_rate, final_rate, acceleration_per_minute, block->step_event_count));
|
|
plateau_steps = 0;
|
|
// printString("no plateau\n\r");
|
|
}
|
|
|
|
block->accelerate_until = accelerate_steps;
|
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
|
block->exit_rate = lround(block->nominal_rate*exit_factor); // Debug line please delete me soon
|
|
// printInteger(block->accelerate_until);printString(",");
|
|
// printInteger(block->decelerate_after);printString(" of ");
|
|
// printInteger(block->step_event_count); printString(" <- profile\n\r");
|
|
}
|
|
|
|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
|
// acceleration within the allotted distance.
|
|
inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
|
|
return(
|
|
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
|
|
);
|
|
}
|
|
|
|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
|
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
|
// velocities of the respective blocks.
|
|
inline double junction_jerk(block_t *before, block_t *after) {
|
|
// printString("x: ");
|
|
// printInteger(before->speed_x);
|
|
// printString(", ");
|
|
// printInteger(after->speed_x);
|
|
// printString("\n\r");
|
|
// printString("y: ");
|
|
// printInteger(before->speed_y);
|
|
// printString(", ");
|
|
// printInteger(after->speed_y);
|
|
// printString("\n\r");
|
|
return(sqrt(
|
|
pow(before->speed_x-after->speed_x, 2)+
|
|
pow(before->speed_y-after->speed_y, 2)+
|
|
pow(before->speed_z-after->speed_z, 2))
|
|
);
|
|
}
|
|
|
|
// Calculate a braking factor to reach baseline speed which is max_jerk/2, e.g. the
|
|
// speed under which you cannot exceed max_jerk no matter what you do.
|
|
double factor_for_safe_speed(block_t *block) {
|
|
return(settings.max_jerk/block->nominal_speed);
|
|
}
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
|
if(!current) { return; }
|
|
// printString("----------\n\r");
|
|
|
|
double entry_factor = 1.0;
|
|
double exit_factor;
|
|
if (next) {
|
|
exit_factor = next->entry_factor;
|
|
} else {
|
|
exit_factor = factor_for_safe_speed(current);
|
|
}
|
|
|
|
// Calculate the entry_factor for the current block.
|
|
if (previous) {
|
|
// Reduce speed so that junction_jerk is within the maximum allowed
|
|
double jerk = junction_jerk(previous, current);
|
|
// printInteger(jerk*1000.0);
|
|
// printString("j\n");
|
|
if (jerk > settings.max_jerk) {
|
|
entry_factor = (settings.max_jerk/jerk);
|
|
}
|
|
// printInteger(entry_factor*1000.0);
|
|
// printString("e\n");
|
|
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
|
if (entry_factor > exit_factor) {
|
|
double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor,
|
|
current->millimeters);
|
|
// printInteger(current->nominal_speed*exit_factor*1000.0);
|
|
// printString("exit_v\n");
|
|
// printInteger(current->millimeters*1000.0);
|
|
// printString("mm\n");
|
|
// printInteger(max_entry_speed*1000.0);
|
|
// printString("max_v\n");
|
|
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
|
if (max_entry_factor < entry_factor) {
|
|
entry_factor = max_entry_factor;
|
|
}
|
|
// printInteger(entry_factor*1000.0);
|
|
// printString("e2\n");
|
|
}
|
|
} else {
|
|
entry_factor = factor_for_safe_speed(current);
|
|
}
|
|
// printInteger(current->nominal_speed*1000);printString("<- ns\n\r");
|
|
// printInteger(entry_factor*1000); printString("<- entry-f\n\r");
|
|
// printInteger(exit_factor*1000); printString("<- exit-f\n\r");
|
|
// printInteger((uint16_t)current); printString("<-addr\n\r");
|
|
|
|
// Store result
|
|
current->entry_factor = entry_factor;
|
|
}
|
|
|
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
|
// implements the reverse pass.
|
|
void planner_reverse_pass() {
|
|
auto int8_t block_index = block_buffer_head;
|
|
block_t *block[3] = {NULL, NULL, NULL};
|
|
while(block_index != block_buffer_tail) {
|
|
block_index--;
|
|
if(block_index < 0) {
|
|
block_index = BLOCK_BUFFER_SIZE-1;
|
|
}
|
|
// printInteger(block_index); printString(" <-- index");
|
|
block[2]= block[1];
|
|
block[1]= block[0];
|
|
block[0] = &block_buffer[block_index];
|
|
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
|
}
|
|
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
|
}
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
|
if(!current) { return; }
|
|
// If the previous block is an acceleration block, but it is not long enough to
|
|
// complete the full speed change within the block, we need to adjust out entry
|
|
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
|
// the previous block.
|
|
if(previous->entry_factor < current->entry_factor) {
|
|
double max_entry_speed = max_allowable_speed(-settings.acceleration,
|
|
current->nominal_speed*previous->entry_factor, previous->millimeters);
|
|
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
|
if (max_entry_factor < current->entry_factor) {
|
|
current->entry_factor = max_entry_factor;
|
|
}
|
|
}
|
|
}
|
|
|
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
|
// implements the forward pass.
|
|
void planner_forward_pass() {
|
|
int8_t block_index = block_buffer_tail;
|
|
block_t *block[3] = {NULL, NULL, NULL};
|
|
|
|
while(block_index != block_buffer_head) {
|
|
block[0] = block[1];
|
|
block[1] = block[2];
|
|
block[2] = &block_buffer[block_index];
|
|
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
|
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
|
|
}
|
|
planner_forward_pass_kernel(block[1], block[2], NULL);
|
|
}
|
|
|
|
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
|
// entry_factor for each junction. Must be called by planner_recalculate() after
|
|
// updating the blocks.
|
|
void planner_recalculate_trapezoids() {
|
|
int8_t block_index = block_buffer_tail;
|
|
block_t *current;
|
|
block_t *next = NULL;
|
|
|
|
while(block_index != block_buffer_head) {
|
|
current = next;
|
|
next = &block_buffer[block_index];
|
|
if (current) {
|
|
calculate_trapezoid_for_block(current, current->entry_factor, next->entry_factor);
|
|
}
|
|
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
|
|
}
|
|
calculate_trapezoid_for_block(next, next->entry_factor, factor_for_safe_speed(next));
|
|
}
|
|
|
|
// Recalculates the motion plan according to the following algorithm:
|
|
//
|
|
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
|
// so that:
|
|
// a. The junction jerk is within the set limit
|
|
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
|
// acceleration.
|
|
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
|
// a. The speed increase within one block would require faster accelleration than the one, true
|
|
// constant acceleration.
|
|
//
|
|
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
|
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
|
// the set limit. Finally it will:
|
|
//
|
|
// 3. Recalculate trapezoids for all blocks.
|
|
|
|
void planner_recalculate() {
|
|
// printString("replan\n\r");
|
|
planner_reverse_pass();
|
|
planner_forward_pass();
|
|
planner_recalculate_trapezoids();
|
|
// printString("replan done\n\r");
|
|
}
|
|
|
|
void plan_init() {
|
|
block_buffer_head = 0;
|
|
block_buffer_tail = 0;
|
|
plan_enable_acceleration_management();
|
|
}
|
|
|
|
void plan_enable_acceleration_management() {
|
|
if (!acceleration_management) {
|
|
st_synchronize();
|
|
acceleration_management = TRUE;
|
|
}
|
|
}
|
|
|
|
void plan_disable_acceleration_management() {
|
|
if(acceleration_management) {
|
|
st_synchronize();
|
|
acceleration_management = FALSE;
|
|
}
|
|
}
|
|
|
|
// Add a new linear movement to the buffer. steps_x, _y and _z is the signed, relative motion in
|
|
// steps. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
|
void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_t microseconds, double millimeters) {
|
|
// Calculate the buffer head after we push this byte
|
|
int next_buffer_head = (block_buffer_head + 1) % BLOCK_BUFFER_SIZE;
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
// Rest here until there is room in the buffer.
|
|
while(block_buffer_tail == next_buffer_head) { sleep_mode(); }
|
|
// Prepare to set up new block
|
|
block_t *block = &block_buffer[block_buffer_head];
|
|
// Number of steps for each axis
|
|
block->steps_x = labs(steps_x);
|
|
block->steps_y = labs(steps_y);
|
|
block->steps_z = labs(steps_z);
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
|
|
// Bail if this is a zero-length block
|
|
if (block->step_event_count == 0) { return; };
|
|
// Calculate speed in mm/minute for each axis
|
|
double multiplier = 60.0*1000000.0/microseconds;
|
|
// printInteger(multiplier*1000); printString("<-multi\n\r");
|
|
block->speed_x = steps_x*multiplier/settings.steps_per_mm[0];
|
|
block->speed_y = steps_y*multiplier/settings.steps_per_mm[1];
|
|
block->speed_z = steps_z*multiplier/settings.steps_per_mm[2];
|
|
block->nominal_speed = millimeters*multiplier;
|
|
// printInteger(millimeters*1000); printString("<-mm\n\r");
|
|
// printInteger(block->nominal_speed*1000); printString("<-ns\n\r");
|
|
block->nominal_rate = ceil(block->step_event_count*multiplier);
|
|
// printInteger(block->nominal_rate*1000); printString("<-nr\n\r");
|
|
// printInteger((uint16_t)block); printString("<-addr\n\r");
|
|
block->millimeters = millimeters;
|
|
block->entry_factor = 0.0;
|
|
|
|
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
|
|
// average travel per step event changes. For a line along one axis the travel per step event
|
|
// is equal to the travel/step in the particular axis. For a 45 degree line the steppers of both
|
|
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
|
|
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
|
|
// specifically for each line to compensate for this phenomenon:
|
|
double travel_per_step = millimeters/block->step_event_count;
|
|
block->rate_delta = ceil(
|
|
((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
|
|
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
|
|
if (acceleration_management) {
|
|
double safe_speed_factor = factor_for_safe_speed(block);
|
|
calculate_trapezoid_for_block(block, safe_speed_factor, safe_speed_factor); // compute a conservative acceleration trapezoid for now
|
|
} else {
|
|
block->initial_rate = block->nominal_rate;
|
|
block->accelerate_until = 0;
|
|
block->decelerate_after = block->step_event_count;
|
|
block->rate_delta = 0;
|
|
}
|
|
|
|
// Compute direction bits for this block
|
|
block->direction_bits = 0;
|
|
if (steps_x < 0) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
|
if (steps_y < 0) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
|
if (steps_z < 0) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
|
// Move buffer head
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
if (acceleration_management) {
|
|
planner_recalculate();
|
|
} else {
|
|
calculate_trapezoid_for_block(block, 1.0, 1.0);
|
|
}
|
|
}
|
|
|