grbl/limits.c

109 wiersze
3.5 KiB
C
Executable File

/*
limits.c - code pertaining to limit-switches and performing the homing cycle
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <util/delay.h>
#include <avr/io.h>
#include "stepper.h"
#include "settings.h"
#include "nuts_bolts.h"
#include "config.h"
#include "motion_control.h"
#include "planner.h"
// TODO: Deprecated. Need to update for new version. Sys.position now tracks position relative
// to the home position. Limits should update this vector directly.
void limits_init() {
LIMIT_DDR &= ~(LIMIT_MASK);
}
static void homing_cycle(bool x_axis, bool y_axis, bool z_axis, bool reverse_direction, uint32_t microseconds_per_pulse) {
// First home the Z axis
uint32_t step_delay = microseconds_per_pulse - settings.pulse_microseconds;
uint8_t out_bits = DIRECTION_MASK;
uint8_t limit_bits;
if (x_axis) { out_bits |= (1<<X_STEP_BIT); }
if (y_axis) { out_bits |= (1<<Y_STEP_BIT); }
if (z_axis) { out_bits |= (1<<Z_STEP_BIT); }
// Invert direction bits if this is a reverse homing_cycle
if (reverse_direction) {
out_bits ^= DIRECTION_MASK;
}
// Apply the global invert mask
out_bits ^= settings.invert_mask;
// Set direction pins
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (out_bits & DIRECTION_MASK);
for(;;) {
limit_bits = LIMIT_PIN;
if (reverse_direction) {
// Invert limit_bits if this is a reverse homing_cycle
limit_bits ^= LIMIT_MASK;
}
if (x_axis && !(LIMIT_PIN & (1<<X_LIMIT_BIT))) {
x_axis = false;
out_bits ^= (1<<X_STEP_BIT);
}
if (y_axis && !(LIMIT_PIN & (1<<Y_LIMIT_BIT))) {
y_axis = false;
out_bits ^= (1<<Y_STEP_BIT);
}
if (z_axis && !(LIMIT_PIN & (1<<Z_LIMIT_BIT))) {
z_axis = false;
out_bits ^= (1<<Z_STEP_BIT);
}
// Check if we are done
if(!(x_axis || y_axis || z_axis)) { return; }
STEPPING_PORT |= out_bits & STEP_MASK;
delay_us(settings.pulse_microseconds);
STEPPING_PORT ^= out_bits & STEP_MASK;
delay_us(step_delay);
}
return;
}
static void approach_limit_switch(bool x, bool y, bool z) {
homing_cycle(x, y, z, false, 100000);
}
static void leave_limit_switch(bool x, bool y, bool z) {
homing_cycle(x, y, z, true, 500000);
}
void limits_go_home() {
plan_synchronize();
// Store the current limit switch state
uint8_t original_limit_state = LIMIT_PIN;
approach_limit_switch(false, false, true); // First home the z axis
approach_limit_switch(true, true, false); // Then home the x and y axis
// Xor previous and current limit switch state to determine which were high then but have become
// low now. These are the actual installed limit switches.
uint8_t limit_switches_present = (original_limit_state ^ LIMIT_PIN) & LIMIT_MASK;
// Now carefully leave the limit switches
leave_limit_switch(
limit_switches_present & (1<<X_LIMIT_BIT),
limit_switches_present & (1<<Y_LIMIT_BIT),
limit_switches_present & (1<<Z_LIMIT_BIT));
}