/*
motion_control.c - cartesian robot controller.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see .
*/
#include
#include "config.h"
#include "motion_control.h"
#include
#include
#include
#include "nuts_bolts.h"
#include "stepper.h"
#include "wiring_serial.h"
int32_t position[3]; // The current position of the tool in absolute steps
void mc_init()
{
clear_vector(position);
}
void mc_dwell(uint32_t milliseconds)
{
st_synchronize();
_delay_ms(milliseconds);
}
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// 1/feed_rate minutes.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
uint8_t axis; // loop variable
int32_t target[3]; // The target position in absolute steps
int32_t steps[3]; // The target line in relative steps
target[X_AXIS] = lround(x*X_STEPS_PER_MM);
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
steps[axis] = target[axis]-position[axis];
}
if (invert_feed_rate) {
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS], lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate));
} else {
// Ask old Phytagoras to estimate how many mm our next move is going to take us
double millimeters_of_travel = sqrt(
square(steps[X_AXIS]/X_STEPS_PER_MM) +
square(steps[Y_AXIS]/Y_STEPS_PER_MM) +
square(steps[Z_AXIS]/Z_STEPS_PER_MM));
st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS],
lround((millimeters_of_travel/feed_rate)*1000000));
}
memcpy(position, target, sizeof(target)); // position[] = target[]
}
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate)
{
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
if (millimeters_of_travel == 0.0) { return; }
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (invert_feed_rate) { feed_rate *= segments; }
// The angular motion for each segment
double theta_per_segment = angular_travel/segments;
// The linear motion for each segment
double linear_per_segment = linear_travel/segments;
// Compute the center of this circle
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
// a vector to track the end point of each segment
double target[3];
int i;
// Initialize the linear axis
target[axis_linear] = position[axis_linear]/Z_STEPS_PER_MM;
for (i=0; i<=segments; i++) {
target[axis_linear] += linear_per_segment;
theta += theta_per_segment;
target[axis_1] = center_x+sin(theta)*radius;
target[axis_2] = center_y+cos(theta)*radius;
mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate);
}
}
void mc_go_home()
{
st_go_home();
clear_vector(position); // By definition this is location [0, 0, 0]
}