/* motion_control.c - cartesian robot controller. Part of Grbl Copyright (c) 2009 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include #include "config.h" #include "motion_control.h" #include #include #include #include "nuts_bolts.h" #include "stepper.h" #include "wiring_serial.h" int32_t position[3]; // The current position of the tool in absolute steps void mc_init() { clear_vector(position); } void mc_dwell(uint32_t milliseconds) { st_synchronize(); _delay_ms(milliseconds); } // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in // 1/feed_rate minutes. void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate) { uint8_t axis; // loop variable int32_t target[3]; // The target position in absolute steps int32_t steps[3]; // The target line in relative steps target[X_AXIS] = lround(x*X_STEPS_PER_MM); target[Y_AXIS] = lround(y*Y_STEPS_PER_MM); target[Z_AXIS] = lround(z*Z_STEPS_PER_MM); for(axis = X_AXIS; axis <= Z_AXIS; axis++) { steps[axis] = target[axis]-position[axis]; } if (invert_feed_rate) { st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS], lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate)); } else { // Ask old Phytagoras to estimate how many mm our next move is going to take us double millimeters_of_travel = sqrt( square(steps[X_AXIS]/X_STEPS_PER_MM) + square(steps[Y_AXIS]/Y_STEPS_PER_MM) + square(steps[Z_AXIS]/Z_STEPS_PER_MM)); st_buffer_line(steps[X_AXIS], steps[Y_AXIS], steps[Z_AXIS], lround((millimeters_of_travel/feed_rate)*1000000)); } memcpy(position, target, sizeof(target)); // position[] = target[] } // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc, // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining // axis in axis_l which will be the axis for linear travel if you are tracing a helical motion. // The arc is approximated by generating a huge number of tiny, linear segments. The length of each // segment is configured in config.h by setting MM_PER_ARC_SEGMENT. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, int axis_linear, double feed_rate, int invert_feed_rate) { double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel)); if (millimeters_of_travel == 0.0) { return; } uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT); // Multiply inverse feed_rate to compensate for the fact that this movement is approximated // by a number of discrete segments. The inverse feed_rate should be correct for the sum of // all segments. if (invert_feed_rate) { feed_rate *= segments; } // The angular motion for each segment double theta_per_segment = angular_travel/segments; // The linear motion for each segment double linear_per_segment = linear_travel/segments; // Compute the center of this circle double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius; double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius; // a vector to track the end point of each segment double target[3]; int i; // Initialize the linear axis target[axis_linear] = position[axis_linear]/Z_STEPS_PER_MM; for (i=0; i<=segments; i++) { target[axis_linear] += linear_per_segment; theta += theta_per_segment; target[axis_1] = center_x+sin(theta)*radius; target[axis_2] = center_y+cos(theta)*radius; mc_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate); } } void mc_go_home() { st_go_home(); clear_vector(position); // By definition this is location [0, 0, 0] }