- Line number tracking was getting truncated at 255, since it was using
wrong variable type. Fixed it with a trunc().
- Increased the max number line allowed by Grbl to 9999999 from the
g-code standard 99999. The latter seems to be an arbitrary number, so
we are allowing larger ones for at least one known use case scenario.
- Created a new test directory to contain some testing g-code to proof
the firmware. Only got started with one test case so far. More will be
inserted as needed.
- Some other commenting updates to clarify certain aspects of the code.
- Completely overhauled the g-code parser. It’s now 100%* compliant. (*
may have some bugs). Being compliant, here are some of the major
differences.
- SMALLER and JUST AS FAST! A number of optimizations were found that
sped things up and allowed for the more thorough error-checking to be
installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and
still was able to make it significantly smaller than it was.
- No default feed rate setting! Removed completely! This doesn’t exist
in the g-code standard. So, it now errors out whenever it’s undefined
for motions that require it (G1/2/3/38.2).
- Any g-code parser error expunges the ENTIRE block. This means all
information is lost and not passed on to the running state. Before some
of the states would remain, which could have led to some problems.
- If the g-code block passes all of the error-checks, the g-code state
is updated and all motions are executed according to the order of
execution.
- Changes in spindle speed, when already running, will update the
output pin accordingly. This fixes a bug, where it wouldn’t update the
speed.
- Update g-code parser error reporting. Errors now return detailed
information of what exact went wrong. The most common errors return a
short text description. For less common errors, the parser reports
‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs
and their descriptions will be documented for user reference elsewhere
to save flash space.
- Other notable changes:
- Added a print integer routine for uint8 variables. This saved
significant flash space by switching from a heavier universal print
integer routine.
- Saved some flash space with our own short hypotenuse calculation
- Some arc computation flash and memory optimizations.
- G38.2 straight probe now supported. Rough draft. May be tweaked more
as testing ramps up.
- G38.2 requires at least one axis word. Multiple axis words work too.
When commanded, the probe cycle will move at the last ‘F’ feed rate
specified in a straight line.
- During a probe cycle: If the probe pin goes low (normal high), Grbl
will record that immediate position and engage a feed hold. Meaning
that the CNC machine will move a little past the probe switch point, so
keep federates low to stop sooner. Once stopped, Grbl will issue a move
to go back to the recorded probe trigger point.
- During a probe cycle: If the probe switch does not engage by the time
the machine has traveled to its target coordinates, Grbl will issue an
ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe
without error isn’t supported, but would be easy to implement later.)
- After a successful probe, Grbl will send a feedback message
containing the recorded probe coordinates in the machine coordinate
system. This is as the g-code standard on probe parameters specifies.
- The recorded probe parameters are retained in Grbl memory and can be
viewed with the ‘$#’ print parameters command. Upon a power-cycle, not
a soft-reset, Grbl will re-zero these values.
- Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses
EEPROM to fetch the coordinate system offsets.
- Updated the Grbl version to v0.9d.
- The probe cycle is subject to change upon testing or user-feedback.
WARNING: Bugs may still exist. This branch is a work in progress and
will be pushed to the edge branch when at beta stability. Use at your
own risk.
- Homing freezing issue fixed. Had to do with the cycle stop flag being
set incorrectly after the homing cycles and before the pull-off
maneuver. Now resets the stepper motors before this can happen.
- Fixed an issue with a rare feed hold failure. Had to do with feed
hold ending exactly at the end of a block. The runtime protocol now
sets the QUEUED and IDLE states appropriately when this occurs. Still
need to clean this code up however, as it’s patched rather than written
well.
- Updated version build via $I command.
- Forgot to comment on a new feature for the last commit. Since steps
are integers and millimeters traveled are floats, the old step segment
generator ignored the step fraction differences in generating the
segment velocities. Didn’t see like it would be much of a big deal, but
there were instances that this would be a problem, especially for very
slow feed rates. The stepper algorithm now micro-adjusts the segment
velocities based on the step fractions not executed from the previous
segment. This ensures that Grbl generates the velocity profiles EXACTLY
and noticeably improves overall acceleration performance.
WARNING: There are still some bugs to be worked out. Please use caution
if you test this firmware.
- Feed holds work much better, but there are still some failure
conditions that need to be worked out. This is the being worked on
currently and a fix is planned to be pushed next.
- Homing cycle refactoring: Slight adjustment of the homing cycle to
allow for limit pins to be shared by different axes, as long as the
shared limit pins are not homed on the same cycle. Also, removed the
LOCATE_CYCLE portion of the homing cycle configuration. It was
redundant.
- Limit pin sharing: (See above). To clear up one or two limit pins for
other IO, limit pins can now be shared. For example, the Z-limit can be
shared with either X or Y limit pins, because it’s on a separate homing
cycle. Hard limit will still work exactly as before.
- Spindle pin output fixed. The pins weren’t getting initialized
correctly.
- Fixed a cycle issue where streaming was working almost like a single
block mode. This was caused by a problem with the spindle_run() and
coolant_run() commands and issuing an unintended planner buffer sync.
- Refactored the cycle_start, feed_hold, and other runtime routines
into the runtime command module, where they should be handled here
only. These were redundant.
- Moved some function calls around into more appropriate source code
modules.
- Fixed the reporting of spindle state.
- Added a new source and header file called system. These files contain
the system commands and variables, as well as all of the system headers
and standard libraries Grbl uses. Centralizing some of the code.
- Re-organized the include headers throughout the source code.
- ENABLE_M7 define was missing from config.h. Now there.
- SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No
uncommenting to prevent user issues. Minimum spindle RPM now provides
the lower, near 0V, scale adjustment, i.e. some spindles can go really
slow so why use up our 256 voltage bins for them?
- Remove some persistent variables from coolant and spindle control.
They were redundant.
- Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have
been there.
- Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing.
Before we had issues with performance, no longer.
- Fixed a bug with the hard limits and the software debounce feature
enabled. The invert limit pin setting wasn’t honored.
- Fixed a bug with the homing direction mask. Now is like it used to
be. At least for now.
- Re-organized main.c to serve as only as the reset/initialization
routine. Makes things a little bit clearer in terms of execution
procedures.
- Re-organized protocol.c as the overall master control unit for
execution procedures. Not quite there yet, but starting to make a
little more sense in how things are run.
- Removed updating of old settings records. So many new settings have
been added that it’s not worth adding the code to migrate old user
settings.
- Tweaked spindle_control.c a bit and made it more clear and consistent
with other parts of Grbl.
- Tweaked the stepper disable bit code in stepper.c. Requires less
flash memory.
- New build info feature. Hidden command ‘$I’ will print the build info
for your Grbl firmware. Users may also write an identifying message
within it via ‘$I=‘ with up to 32 characters. (no more, or else it will
break).
- Adjusted the max number of startup lines to 3. Majority of people
will only need one.
- Fixed a compile error with spindle_control.c. A rogue #endif was
causing problems.
- Homing travel calculations fixed. It was computing the min travel
rather than max.
- Auto-start disable and pausing after spindle or dwell commands.
Related to plan_synchronize() function call. Now fixed, but still need
to work on the system state.
- Pushed a fix to make this branch more Arduino IDE compatible. Removed
extern call in nuts_bolts.c
- Updated the stepper configuration option of enabling or disabling the
new Adaptive Multi-Axis Step Smoothing Algorithm. Now works either way.
- Updated some copyright info.
- NEW! An active multi-axis step smoothing algorithm that automatically
adjusts dependent on step frequency. This solves the long standing
issue to aliasing when moving with multiple axes. Similar in scheme to
Smoothieware, but more advanced in ensuring a more consistent CPU
overhead throughout all frequencies while maintaining step exactness.
- Switched from Timer2 to Timer0 for the Step Port Reset Interrupt.
Mainly to free up hardware PWM pins.
- Seperated the direction and step pin assignments, so we can now move
them to seperate ports. This means that we can more easily support 4+
axes in the future.
- Added a setting for inverting the limit pins, as so many users have
request. Better late than never.
- Bug fix related to EEPROM calls when in cycle. The EEPROM would kill
the stepper motion. Now protocol mandates that the system be either in
IDLE or ALARM to access or change any settings.
- Bug fix related to resuming the cycle after a spindle or dwell
command if auto start has been disabled. This fix is somewhat temporary
or more of a patch. Doesn’t work with a straight call-response
streaming protocol, but works fine with serial buffer pre-filling
streaming that most clients use.
- Renamed the pin_map.h to cpu_map.h to more accurately describe what
the file is.
- Pushed an auto start bug fix upon re-initialization.
- Much more polishing to do!
- Added Grbl state (Idle, Running, Queued, Hold, etc) to the real-time
status reporting feature as feedback to the user of what Grbl is doing.
Updated the help message to reflect this change.
- Removed switches (dry run, block delete, single block mode). To keep
Grbl simple and not muddled up from things that can easily be taken
care of by an external interface, these were removed.
- Check g-code mode was retained, but the command was moved to '$C'
from '$S0'.
- Refactored system states to be more clear and concise. Alarm locks
processes when position is unknown to indicate to user something has
gone wrong.
- Changed mc_alarm to mc_reset, which now manages the system reset
function. Centralizes it.
- Renamed '$X' kill homing lock to kill alarm lock.
- Created an alarm error reporting method to clear up what is an alarm:
message vs a status error: message. For GUIs mainly. Alarm codes are
negative. Status codes are positive.
- Serial baud support upto 115200. Previous baudrate calc was unstable
for 57600 and above.
- Alarm state locks out all g-code blocks, including startup scripts,
but allows user to access settings and internal commands. For example,
to disable hard limits, if they are problematic.
- Hard limits do not respond in an alarm state.
- Fixed a problem with the hard limit interrupt during the homing
cycle. The interrupt register is still active during the homing cycle
and still signal the interrupt to trigger when re-enabled. Instead,
just disabled the register.
- Homing rate adjusted. All axes move at homing seek rate, regardless
of how many axes move at the same time. This is unlike how the stepper
module does it as a point to point rate.
- New config.h settings to disable the homing rate adjustment and the
force homing upon powerup.
- Reduced the number of startup lines back down to 2 from 3. This
discourages users from placing motion block in there, which can be very
dangerous.
- Startup blocks now run only after an alarm-free reset or after a
homing cycle. Does not run when $X kill is called. For satefy reasons
- Removed the dry run switch. It was getting overly complicated for
what it needed to do. In practice, single block mode and feed rate
overrides (coming in next release) does a much better job with dry runs
than 'dry run'.
- Trimmed all of Grbl's messages from help, status, feedback to
settings. Saved 0.6KB+ of flash space that could be used for v0.9
features.
- Removed some settings inits when set. Will depend on user to power
cycle to get some of these to reload.
- Fixed a bug with settings version not re-writing old settings, when
it should. Thanks Alden!
- Increased the number of startup blocks to 3 for no good reason other
than it doesn't increase the flash size.
- Removed the purge buffer command and replaced with an disable homing
lock command.
- Homing now blocks all g-code commands (not system commands) until the
homing cycle has been performed or the disable homing lock is sent.
Homing is required upon startup or if Grbl loses it position. This is
for safety reasons.
- Cleaned up some of the Grbl states and re-organized it to be little
more cohesive.
- Cleaned up the feedback and status messages to not use so much flash
space, as it's a premium now.
- Check g-code and dry run switches how are mutually exclusive and
can't be enabled when the other is. And automatically resets Grbl when
disabled.
- Some bug fixes and other minor tweaks.
- To make managing the code easier and to help ensure a user starts
with a fresh reset, the functionality of check g-code and dry run has
been changed to automatically perform a soft reset when toggled off.
Position will not be lost, unless there is a cycle active. Feed hold
before toggling off it needed.
This is mainly a safety issue. If a user dry runs a program and kills
it mid-program, and then restarts it thinking to run it as normal, the
g-code modes that we're set may not be what they expect, and very bad
things can happen.
- NOTE: Grbl is at 83.5% of flash capacity. Not a lot of room left, but
I think we can squeeze in some more!
- Pinned out cycle start(A2), feed hold(A1), and reset(A0) runtime
commands. These pins are held high with the internal pull-up resistor
enabled. All you have to do is connect a normally-open switch to the
pin and ground. That's it.
- Moved the coolant control pins to A3 (and the optional mist control
to A4).
- Moved all of the MASK defines into the config.h file to centralize
them.
- Added a purge buffer (and lock) command. This is an advanced option
to clear any queued blocks in the buffer in the event of system
position being lost or homed. These queued blocks will likely not move
correctly if not purged. In typical use, the purging command releases
the homing axes lock in case a user need to move the axes off their
hard limit switches, but position is not guaranteed. Homing is advised
immediately after.
- Created a system-wide sync current position function. Cleans up some
of the repetitive tasks in various places in the code that do the same
thing.
- Removed the clear all switches command '$S'. Not really needed and
helped clean up a sync call.
- Other minor tweaks. Readme updated slightly..
(All v0.8 features installed. Still likely buggy, but now thourough
testing will need to start to squash them all. As soon as we're done,
this will be pushed to master and v0.9 development will be started.
Please report ANY issues to us so we can get this rolled out ASAP.)
- User startup script! A user can now save one (up to 5 as compile-time
option) block of g-code in EEPROM memory. This will be run everytime
Grbl resets. Mainly to be used as a way to set your preferences, like
G21, G54, etc.
- New dry run and check g-code switches. Dry run moves ALL motions at
rapids rate ignoring spindle, coolant, and dwell commands. For rapid
physical proofing of your code. The check g-code switch ignores all
motion and provides the user a way to check if there are any errors in
their program that Grbl may not like.
- Program restart! (sort of). Program restart is typically an advanced
feature that allows users to restart a program mid-stream. The check
g-code switch can perform this feature by enabling the switch at the
start of the program, and disabling it at the desired point with some
minimal changes.
- New system state variable. This state variable tracks all of the
different state processes that Grbl performs, i.e. cycle start, feed
hold, homing, etc. This is mainly for making managing of these task
easier and more clear.
- Position lost state variable. Only when homing is enabled, Grbl will
refuse to move until homing is completed and position is known. This is
mainly for safety. Otherwise, it will let users fend for themselves.
- Moved the default settings defines into config.h. The plan is to
eventually create a set of config.h's for particular as-built machines
to help users from doing it themselves.
- Moved around misc defines into .h files. And lots of other little
things.
NOTE: Another incremental update. Likely buggy, still a ways to go
before everything is installed, such as startup blocks.
- Changed the '$' command to print help. '$$' now prints Grbl settings.
The help now instructs the user of runtime commands, switch toggling,
homing, etc. Jogging will be added to these in v0.9.
- Added switches: block delete, opt stop, and single block mode.
- Now can print the g-code parser state and persistent parameters
(coord sys) to view what Grbl has internally.
- Made the gc struct in the g-code parser global to be able to print
the states. Also moved coordinate system tracking from sys to gc struct.
- Changed up the welcome flag and updated version to v0.8c.
- Removed spindle speed from gcode parser. Not used.
(NOTE: This push is likely buggy so proceed with caution. Just
uploading to let people know where we're going.)
- New report.c module. Moved all feedback functions into this module to
centralize these processes. Includes realtime status reports, status
messages, feedback messages.
- Official support 6 work coordinate systems (G54-G59), which are
persistently held in EEPROM memory.
- New g-code support: G28.1, G30.1 stores current machine position as a
home position into EEPROM. G10 L20 Px stores current machine position
into work coordinates without needing to explicitly send XYZ words.
- Homing performed with '$H' command. G28/G30 no longer start the
homing cycle. This is how it's supposed to be.
- New settings: Stepper enable invert and n_arc correction installed.
- Updated and changed up some limits and homing functionality. Pull-off
travel will now move after the homing cycle regardless of hard limits
enabled. Fixed direction of pull-off travel (went wrong way).
- Started on designing an internal Grbl command protocol based on the
'$' settings letter. Commands with non numeric characters after '$'
will perform switch commands, homing cycle, jogging, printing
paramters, etc. Much more to do here.
- Updated README to reflect all of the new features.
- Installed a new 'alarm' method to centralize motion kills across
alarm or reset events. Right now, this is controlled by system abort
and hard limits. But, in the future, a g-code parser error may call
this too as a safety feature.
- Re(re)organized status messages to just print all errors, regardless
from where it was called. This centralizes them into one place.
- Misc messages method installed for any user feedback that is not a
confirmation or error. Mainly so that there is a place to perform
warnings and such.
- New stuff installed and still made the flash size smaller by saving
flash space from clearing out repeated '\r\n' pgmstrings.
- Fixed a bug where hard limits message would print everytime a system
abort was sent.
- Reorganized all of the status message feedback from both the g-code
parser and settings modules to be centralized into two message modules:
status feedback from executing a line and warnings for misc feedback.
- Pulled out the printPgmString() messages in settings.c and placed it
into the new module. (settings_dump() not moved).
- Some other minor edits. Renaming defines, comment updates, etc.
- Fixed a bug that would not disable the steppers if a user issues a
system abort during a homing cycle.
- Updated the hard limit interrupt to be more correct and to issue a
shutdown for the right situations when the switch has been triggered.
- Added a status message to indicate to the user what happened and what
to do upon a hard limit trigger.
- Thank you statement added for Alden Hart of Synthetos.
- Hard limits option added, which also works with homing by pulling off
the switches to help prevent unintended triggering. Hard limits use a
interrupt to sense a falling edge pin change and immediately go into
alarm mode, which stops everything and forces the user to issue a reset
(Ctrl-x) or reboot.
- Auto cycle start now a configuration option.
- Alarm mode: A new method to kill all Grbl processes in the event of
something catastrophic or potentially catastropic. Just works with hard
limits for now, but will be expanded to include g-code errors (most
likely) and other events.
- Updated status reports to be configurable in inches or mm mode. Much
more to do here, but this is the first step.
- New settings: auto cycle start, hard limit enable, homing direction
mask (which works the same as the stepper mask), homing pulloff
distance (or distance traveled from homed machine zero to prevent
accidental limit trip).
- Minor memory liberation and calculation speed ups.
- Allowed status_message function to be called by others. This is to
centralize all feedback into protocol.c.
- Fixed a bug where line number words 'N' were causing the parser to
error out.
- Allowed homing routine feed rates to move slower than the
MINIMUM_STEP_RATE parameter in config.h.
- Homing performs idle lock at the end of the routine.
- Stepper idle lock time will now not disable the steppers when the
value is set at 255. This is accomodate users who prefer to keep their
axes enabled at all times.
- Moved some defines around to where they need to be.
- Homing cycle will now cycle twice (spec more/less in config) to
improve repeatability and accuracy by decreasing overshoot.
- New Grbl settings added: Enable/disable homing cycles, homing seek
and feed rates, switch debounce delay, and stepper idle lock time.
- Please note that these settings may change upon the next push, since
there will be more added soon. Grbl *should* not re-write your old
settings, just re-write the new ones. So, make sure you keep these
written down somewhere in case they get lost from a code bug.
- Refactored settings migration to be a little smaller and managable
going forward.
- Limit pin internal pull-resistors now enabled. Normal high operation.
This will be the standard going forward.
- Updated all of the 'double' variable types to 'float' to reflect what
happens when compiled for the Arduino. Also done for compatibility
reasons to @jgeisler0303 's Grbl simulator code.
- G-code parser will now ignore 'E' exponent values, since they are
reserved g-code characters for some machines. Thanks @csdexter!
- The read_double() function was re-written and optimized for use in
Grbl. The strtod() avr lib was removed.
- G54 work coordinate system support. Up to 6 work coordinate systems
(G54-G59) available as a compile-time option.
- G10 command added to set work coordinate offsets from machine
position.
- G92/G92.1 position offsets and cancellation support. Properly follows
NIST standard rules with other systems.
- G53 absolute override now works correctly with new coordinate systems.
- Revamped g-code parser with robust error checking. Providing user
feedback with bad commands. Follows NIST standards.
- Planner module slightly changed to only expected position movements
in terms of machine coordinates only. This was to simplify coordinate
system handling, which is done solely by the g-code parser.
- Upon grbl system abort, machine position and work positions are
retained, while G92 offsets are reset per NIST standards.
- Compiler compatibility update for _delay_us().
- Updated README.
- Program stop support (M0,M1*,M2,M30*). *Optional stop to be done.
*Pallet shuttle not supported.
- Work position is set equal to machine position upon reset, as
according to NIST RS274-NGC guidelines. G92 is disabled.
- Renamed mc_set_current_position() to mc_set_coordinate_offset().
- Fixed bug in plan_synchronize(). Would exit right before last step is
finished and caused issues with program stops. Now fixed.
- Spindle now stops upon a run-time abort command.
- Updated readme and misc upkeeping.
- Grbl now tracks both home and work (G92) coordinate systems and does
live updates when G92 is called.
- Rudimentary home and work position status reporting. Works but still
under major construction.
- Updated the main streaming script. Has a disabled periodic timer for
querying status reports, disabled only because the Python timer doesn't
consistently restart after the script exits. Add here only for user
testing.
- Fixed a bug to prevent an endless serial_write loop during status
reports.
- Refactored the planner variables to make it more clear what they are
and make it easier for clear them.
- Added machine position reporting to status queries. This will be
further developed with part positioning/offsets and maintaining
location upon reset.
- System variables refactored into a global struct for better
readability.
- Removed old obsolete Ruby streaming scripts. These were no longer
compatible. Updated Python streaming scripts.
- Fixed printFloat() and other printing functions.
- Decreased planner buffer back to 18 blocks and increased TX serial
buffer to 64 bytes. Need the memory space for future developments.
- Begun adding run-time modes to grbl, where block delete toggle, mm/in
reporting modes, jog modes, etc can be set during runtime. Will be
fleshed out and placed into EEPROM when everything is added.
- ALPHA status. - Multitasking ability with run-time command executions
for real-time control and feedback. - Decelerating feed hold and resume
during operation. - System abort/reset, which immediately kills all
movement and re-initializes grbl. - Re-structured grbl to easily allow
for new features: Status reporting, jogging, backlash compensation. (To
be completed in the following releases.) - Resized TX/RX serial buffers
(32/128 bytes) - Increased planner buffer size to 20 blocks. - Updated
documentation.
- Update grbl version and settings version to automatically reset
eeprom. FYI, this will reset your grbl settings. - Saved
3*BLOCK_BUFFER_SIZE doubles in static memory by removing obsolete
variables: speed_x, speed_y, and speed_z. - Increased buffer size
conservatively to 18 from 16. (Probably can do 20). - Removed expensive!
modulo operator from block indexing function. Reduces significant
computational overhead. - Re-organized some sqrt() calls to be more
efficient during time critical planning cases, rather than non-time
critical. - Minor bug fix in planner max junction velocity logic. -
Simplified arc logic and removed need to multiply for CW or CCW
direction.
- Significant improvements in the planner. Removed or reordered
repetitive and expensive calculations by order of importance:
recalculating unchanged blocks, trig functions [sin(), cos(), tan()],
sqrt(), divides, and multiplications. Blocks long enough for nominal
speed to be guaranteed to be reached ignored by planner. Done by
introducing two uint8_t flags per block. Reduced computational overhead
by an order of magnitude. - Arc motion generation completely
re-written and optimized. Now runs with acceleration planner. Removed
all but one trig function (atan2) from initialization. Streamlined
computations. Segment target locations generated by vector
transformation and small angle approximation. Arc path correction
implemented for accumulated error of approximation and single precision
calculation of Arduino. Bug fix in message passing.
Comments, block delete characters, and blank lines are no longer passed
to the gcode parser and should free up some memory by ignoring these
characters. Gcode parser now expects clean gcode only. There was a bug
if there were block deletes or comments not in the first character (i.e.
spindle on/off for proofing geode without turning it on, or a NXX
followed by a comment). This should fix it by bypassing the problem.
Left a commented line for easily turning on and off block deletes for a
later feature, if desired.
Comments, block delete characters, and blank lines are no longer passed
to the gcode parser and should free up some memory by ignoring these
characters. Gcode parser now expects clean gcode only. There was a bug
if there were block deletes or comments not in the first character (i.e.
spindle on/off for proofing geode without turning it on, or a NXX
followed by a comment). This should fix it by bypassing the problem.
Left a commented line for easily turning on and off block deletes for a
later feature, if desired.