fixed buffering of pace changes and general cleaning

pull/1/head
Simen Svale Skogsrud 2009-02-08 20:40:24 +01:00
rodzic 8a0c9fd180
commit c07a322589
5 zmienionych plików z 64 dodań i 44 usunięć

20
gcode.c
Wyświetl plik

@ -126,6 +126,7 @@ void select_plane(uint8_t axis_0, uint8_t axis_1)
// characters and signed floats (no whitespace).
uint8_t gc_execute_line(char *line) {
int counter = 0;
int requires_nudge = false;
char letter;
double value;
double unit_converted_value;
@ -376,17 +377,24 @@ uint8_t gc_execute_line(char *line) {
// Find the radius
double radius = hypot(offset[gc.plane_axis_0], offset[gc.plane_axis_1]);
// Prepare the arc
printString("mc_arc(");
printInteger(trunc(theta_start/M_PI*180)); printByte(',');
printInteger(trunc(angular_travel/M_PI*180)); printByte(',');
printInteger(trunc(radius));
printByte(')');
// printString("mc_arc(");
// printInteger(trunc(theta_start/M_PI*180)); printByte(',');
// printInteger(trunc(angular_travel/M_PI*180)); printByte(',');
// printInteger(trunc(radius));
// printByte(')');
mc_arc(theta_start, angular_travel, radius, gc.plane_axis_0, gc.plane_axis_1, gc.feed_rate);
break;
// Rounding errors means the arcing might not land us exactly where we wanted. Thats why this
// operation must be finalized with a linear nudge to the exact target spot.
requires_nudge = true;
break;
}
}
mc_execute();
if (requires_nudge) {
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], gc.feed_rate, false);
mc_execute();
}
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position

2
main.c
Wyświetl plik

@ -40,7 +40,7 @@ int main(void)
sp_init(); // initialize the serial protocol
for(;;){
// sleep_mode();
sleep_mode();
sp_process(); // process the serial protocol
}
return 0; /* never reached */

Wyświetl plik

@ -60,7 +60,6 @@ struct ArcMotionParameters {
int32_t error, x2, y2; // error is always == (x**2 + y**2 - radius**2),
// x2 is always 2*x, y2 is always 2*y
uint8_t axis_x, axis_y; // maps the arc axes to stepper axes
int32_t target[3]; // The target position in absolute steps
int8_t plane_steppers[3]; // A vector with the steppers of axis_x and axis_y set to 1, the remaining 0
int incomplete; // True if the arc has not reached its target yet
};
@ -102,18 +101,12 @@ void mc_dwell(uint32_t milliseconds)
// Prepare for linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate states the number of seconds for the whole movement.
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
prepare_linear_motion(trunc(x*X_STEPS_PER_MM), trunc(y*Y_STEPS_PER_MM), trunc(z*Z_STEPS_PER_MM), feed_rate, invert_feed_rate);
}
// Same as mc_linear_motion but accepts target in absolute step coordinates
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate)
{
memset(&mc.linear, 0, sizeof(mc.arc));
mc.linear.target[X_AXIS] = x;
mc.linear.target[Y_AXIS] = y;
mc.linear.target[Z_AXIS] = z;
mc.linear.target[X_AXIS] = x*X_STEPS_PER_MM;
mc.linear.target[Y_AXIS] = y*Y_STEPS_PER_MM;
mc.linear.target[Z_AXIS] = z*Z_STEPS_PER_MM;
mc.mode = MC_MODE_LINEAR;
uint8_t axis; // loop variable
@ -125,9 +118,8 @@ void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate,
// Find the magnitude of the axis with the longest travel
mc.linear.maximum_steps = max(mc.linear.step_count[Z_AXIS],
max(mc.linear.step_count[X_AXIS], mc.linear.step_count[Y_AXIS]));
if(mc.linear.maximum_steps == 0) { return; }
// Nothing to do?
if ((mc.linear.maximum_steps) == 0)
if (mc.linear.maximum_steps == 0)
{
mc.mode = MC_MODE_AT_REST;
return;
@ -306,8 +298,7 @@ void execute_arc()
// Update the tool position to the new actual position
mc.position[mc.arc.axis_x] += mc.arc.x-start_x;
mc.position[mc.arc.axis_y] += mc.arc.y-start_y;
// Todo: Because of rounding errors we might still be off by a step or two.
mc.mode = MC_MODE_AT_REST;
mc.mode = MC_MODE_AT_REST;
}
void mc_go_home()
@ -324,15 +315,17 @@ void execute_go_home()
}
void mc_execute() {
st_set_pace(mc.pace);
sp_send_execution_marker();
while(mc.mode) { // Loop because one task might start another task
switch(mc.mode) {
case MC_MODE_AT_REST: break;
case MC_MODE_DWELL: st_synchronize(); _delay_ms(mc.dwell_milliseconds); mc.mode = MC_MODE_AT_REST; break;
case MC_MODE_LINEAR: execute_linear_motion(); break;
case MC_MODE_ARC: execute_arc(); break;
case MC_MODE_HOME: execute_go_home(); break;
if (mc.mode != MC_MODE_AT_REST) {
st_buffer_pace(mc.pace);
sp_send_execution_marker();
while(mc.mode) { // Loop because one task might start another task
switch(mc.mode) {
case MC_MODE_AT_REST: break;
case MC_MODE_DWELL: st_synchronize(); _delay_ms(mc.dwell_milliseconds); mc.mode = MC_MODE_AT_REST; break;
case MC_MODE_LINEAR: execute_linear_motion(); break;
case MC_MODE_ARC: execute_arc(); break;
case MC_MODE_HOME: execute_go_home(); break;
}
}
}
}

Wyświetl plik

@ -35,24 +35,34 @@
volatile uint8_t step_buffer[STEP_BUFFER_SIZE]; // A buffer for step instructions
volatile int step_buffer_head = 0;
volatile int step_buffer_tail = 0;
volatile uint32_t current_pace;
volatile uint32_t next_pace = 0;
uint8_t stepper_mode = STEPPER_MODE_STOPPED;
uint8_t echo_steps = true;
void config_pace_timer(uint32_t microseconds);
// This timer interrupt is executed at the pace set with set_pace. It pops one instruction from
// the step_buffer, executes it. Then it starts timer2 in order to reset the motor port after
// five microseconds.
SIGNAL(SIG_OUTPUT_COMPARE1A)
{
if (step_buffer_head != step_buffer_tail) {
// Set the direction pins a nanosecond or two before you step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (step_buffer[step_buffer_tail] & DIRECTION_MASK);
// Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | step_buffer[step_buffer_tail];
// Reset and start timer 2 which will reset the motor port after 5 microsecond
TCNT2 = 0; // reset counter
OCR2A = 5*TICKS_PER_MICROSECOND; // set the time
TIMSK2 |= (1<<OCIE2A); // enable interrupt
if(step_buffer[step_buffer_tail] == 0xff) {
// If this is not a step-instruction, but a pace-marker: change pace
config_pace_timer(next_pace);
next_pace = 0;
} else {
// Set the direction pins a nanosecond or two before you step the steppers
STEPPING_PORT = (STEPPING_PORT & ~DIRECTION_MASK) | (step_buffer[step_buffer_tail] & DIRECTION_MASK);
// Then pulse the stepping pins
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | step_buffer[step_buffer_tail];
// Reset and start timer 2 which will reset the motor port after 5 microsecond
TCNT2 = 0; // reset counter
OCR2A = 5*TICKS_PER_MICROSECOND; // set the time
TIMSK2 |= (1<<OCIE2A); // enable interrupt
}
// move the step buffer tail to the next instruction
step_buffer_tail = (step_buffer_tail + 1) % STEP_BUFFER_SIZE;
}
@ -92,7 +102,7 @@ void st_init()
sei();
// start off with a slow pace
st_set_pace(20000);
config_pace_timer(20000);
st_start();
}
@ -148,11 +158,20 @@ inline void st_stop()
stepper_mode = STEPPER_MODE_STOPPED;
}
void st_set_pace(uint32_t microseconds)
void st_buffer_pace(uint32_t microseconds)
{
// Do nothing if the pace in unchanged
if (current_pace == microseconds) { return; }
// If the one-element pace buffer is full, flush step buffer
if (next_pace != 0) {
st_synchronize();
}
next_pace = microseconds;
st_buffer_step(0xff);
}
void config_pace_timer(uint32_t microseconds)
{
printString("pace = ");
printInteger(microseconds);
printString("\n\r");
uint32_t ticks = microseconds*TICKS_PER_MICROSECOND;
uint16_t ceiling;
uint16_t prescaler;
@ -180,6 +199,7 @@ void st_set_pace(uint32_t microseconds)
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | ((prescaler+1)<<CS10);
// Set ceiling
OCR1A = ceiling;
current_pace = microseconds;
}
int check_limit_switches()

Wyświetl plik

@ -4,7 +4,6 @@
* Generalize feed rate code and support inverse feed rate for arcs
* Implement homing cycle in stepper.c
* Implement limit switch support in stepper.c (use port-triggered interrupts?)
* How to implement st_set_pace? Consider synchronizing when pace is changed
* How on earth am I going to deal with arcs in setups that have different steps/mm on each axis? Must
support elipses?! Oh no.
* Support helical interpolation