/* -*- c++ -*- */ /* * Copyright 2017 Pieter Robyns, William Thenaers. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include "decoder_impl.h" #include "tables.h" #include "utilities.h" //#define NO_TMP_WRITES 1 /// Debug output file write //#define CFO_CORRECT 1 /// Correct shift fft estimation //#undef NDEBUG /// Debug printing //#define NDEBUG /// No debug printing #include "dbugr.hpp" namespace gr { namespace lora { decoder::sptr decoder::make(float samp_rate, int sf) { return gnuradio::get_initial_sptr (new decoder_impl(samp_rate, sf)); } /** * The private constructor */ decoder_impl::decoder_impl(float samp_rate, uint8_t sf) : gr::sync_block("decoder", gr::io_signature::make(1, -1, sizeof(gr_complex)), gr::io_signature::make(0, 2, sizeof(float))) { this->d_state = gr::lora::DecoderState::DETECT; if (sf < 6 || sf > 13) { //throw std::invalid_argument("[LoRa Decoder] ERROR : Spreading factor should be between 6 and 12 (inclusive)!\n Other values are currently not supported."); std::cerr << "[LoRa Decoder] ERROR : Spreading factor should be between 6 and 12 (inclusive)!" << std::endl << " Other values are currently not supported." << std::endl; exit(1); } // Set whitening sequence switch(sf) { case 6: this->d_whitening_sequence = gr::lora::prng_payload_sf12; break; // Using _sf6 results in worse accuracy... case 7: this->d_whitening_sequence = gr::lora::prng_payload_sf7; break; case 8: this->d_whitening_sequence = gr::lora::prng_payload_sf8; break; case 9: this->d_whitening_sequence = gr::lora::prng_payload_sf9; break; case 10: this->d_whitening_sequence = gr::lora::prng_payload_sf10; break; case 11: this->d_whitening_sequence = gr::lora::prng_payload_sf11; break; case 12: this->d_whitening_sequence = gr::lora::prng_payload_sf12; break; default: this->d_whitening_sequence = gr::lora::prng_payload_sf7; break; } if (sf == 6) { std::cerr << "[LoRa Decoder] WARNING : Spreading factor wrapped around to 12 due to incompatibility in hardware!" << std::endl; sf = 12; } #ifndef NDEBUG this->d_debug_samples.open("/tmp/grlora_debug", std::ios::out | std::ios::binary); this->d_debug.open("/tmp/grlora_debug_txt", std::ios::out); #endif this->d_bw = 125000u; this->d_cr = 4; this->d_samples_per_second = samp_rate; this->d_corr_decim_factor = 8u; // samples_per_symbol / corr_decim_factor = correlation window. Also serves as preamble decimation factor this->d_payload_symbols = 0; this->d_cfo_estimation = 0.0f; this->d_dt = 1.0f / this->d_samples_per_second; this->d_sf = sf; // Only affects PHY send this->d_bits_per_second = (double)this->d_sf * (double)(1u + this->d_cr) / (1u << this->d_sf) * this->d_bw; this->d_symbols_per_second = (double)this->d_bw / (1u << this->d_sf); this->d_bits_per_symbol = (uint32_t)(this->d_bits_per_second / this->d_symbols_per_second); this->d_samples_per_symbol = (uint32_t)(this->d_samples_per_second / this->d_symbols_per_second); this->d_delay_after_sync = this->d_samples_per_symbol / 4u; this->d_number_of_bins = (uint32_t)(1u << this->d_sf); this->d_number_of_bins_hdr = this->d_number_of_bins / 4u; this->d_decim_factor = this->d_samples_per_symbol / this->d_number_of_bins; this->d_energy_threshold = 0.01f; // Some preparations std::cout << "Bits per symbol: \t" << this->d_bits_per_symbol << std::endl; std::cout << "Bins per symbol: \t" << this->d_number_of_bins << std::endl; std::cout << "Header bins per symbol: " << this->d_number_of_bins_hdr << std::endl; std::cout << "Samples per symbol: \t" << this->d_samples_per_symbol << std::endl; std::cout << "Decimation: \t\t" << this->d_decim_factor << std::endl; //std::cout << "Magnitude threshold:\t" << this->d_energy_threshold << std::endl; this->build_ideal_chirps(); this->set_output_multiple(2 * this->d_samples_per_symbol); this->d_fft.resize(this->d_samples_per_symbol); this->d_mult_hf.resize(this->d_samples_per_symbol); this->d_tmp.resize(this->d_number_of_bins); this->d_q = fft_create_plan(this->d_samples_per_symbol, &this->d_mult_hf[0], &this->d_fft[0], LIQUID_FFT_FORWARD, 0); this->d_qr = fft_create_plan(this->d_number_of_bins, &this->d_tmp[0], &this->d_mult_hf[0], LIQUID_FFT_BACKWARD, 0); // Decimation filter const int delay = 2; const int decim_filter_size = (2 * this->d_decim_factor * delay + 1); float g[decim_filter_size]; float d_decim_h[decim_filter_size]; ///< The reversed decimation filter for LiquidDSP. liquid_firdes_rrcos(this->d_decim_factor, delay, 0.5f, 0.3f, g); // Filter for interpolating for (uint32_t i = 0u; i < decim_filter_size; i++) // Reverse it to get decimation filter d_decim_h[i] = g[decim_filter_size - i - 1u]; this->d_decim = firdecim_crcf_create(this->d_decim_factor, d_decim_h, decim_filter_size); // Register gnuradio ports this->message_port_register_out(pmt::mp("frames")); this->message_port_register_out(pmt::mp("control")); // Whitening empty file // DBGR_QUICK_TO_FILE("/tmp/whitening_out", false, g, -1, ""); #ifndef NDEBUG d_dbg.attach(); #endif } /** * Our virtual destructor. */ decoder_impl::~decoder_impl() { #ifndef NDEBUG if (this->d_debug_samples.is_open()) this->d_debug_samples.close(); if (this->d_debug.is_open()) this->d_debug.close(); #endif fft_destroy_plan(this->d_q); fft_destroy_plan(this->d_qr); firdecim_crcf_destroy(this->d_decim); } void decoder_impl::build_ideal_chirps(void) { this->d_downchirp.resize(this->d_samples_per_symbol); this->d_upchirp.resize(this->d_samples_per_symbol); this->d_downchirp_ifreq.resize(this->d_samples_per_symbol); this->d_upchirp_ifreq.resize(this->d_samples_per_symbol); const double T = -0.5 * this->d_bw * this->d_symbols_per_second; const double f0 = (this->d_bw / 2.0); const double pre_dir = 2.0 * M_PI; double t; gr_complex cmx = gr_complex(1.0f, 1.0f); for (uint32_t i = 0u; i < this->d_samples_per_symbol; i++) { // Width in number of samples = samples_per_symbol // See https://en.wikipedia.org/wiki/Chirp#Linear t = this->d_dt * i; this->d_downchirp[i] = cmx * gr_expj(pre_dir * t * (f0 + T * t)); this->d_upchirp[i] = cmx * gr_expj(pre_dir * t * (f0 + T * t) * -1.0f); } // Store instant. frequency this->instantaneous_frequency(&this->d_downchirp[0], &this->d_downchirp_ifreq[0], this->d_samples_per_symbol); this->instantaneous_frequency(&this->d_upchirp[0], &this->d_upchirp_ifreq[0], this->d_samples_per_symbol); samples_to_file("/tmp/downchirp", &this->d_downchirp[0], this->d_downchirp.size(), sizeof(gr_complex)); samples_to_file("/tmp/upchirp", &this->d_upchirp[0], this->d_upchirp.size(), sizeof(gr_complex)); } void decoder_impl::values_to_file(const std::string path, const unsigned char *v, const uint32_t length, const uint32_t ppm) { std::ofstream out_file; out_file.open(path.c_str(), std::ios::out | std::ios::app); for (uint32_t i = 0u; i < length; i++) { std::string tmp = gr::lora::to_bin(v[i], ppm); out_file.write(tmp.c_str(), tmp.length()); } out_file.write("\n", 1); out_file.close(); } void decoder_impl::samples_to_file(const std::string path, const gr_complex *v, const uint32_t length, const uint32_t elem_size) { #ifndef NO_TMP_WRITES std::ofstream out_file; out_file.open(path.c_str(), std::ios::out | std::ios::binary); //for(std::vector::const_iterator it = v.begin(); it != v.end(); ++it) { for (uint32_t i = 0u; i < length; i++) { out_file.write(reinterpret_cast(&v[i]), elem_size); } out_file.close(); #else (void) path; (void) v; (void) length; (void) elem_size; #endif } void decoder_impl::samples_debug(const gr_complex *v, const uint32_t length) { #ifndef NDEBUG gr_complex start_indicator(0.0f, 32.0f); this->d_debug_samples.write(reinterpret_cast(&start_indicator), sizeof(gr_complex)); for (uint32_t i = 1u; i < length; i++) { this->d_debug_samples.write(reinterpret_cast(&v[i]), sizeof(gr_complex)); } #else (void) v; (void) length; #endif } /** * Currently unused. */ bool decoder_impl::calc_energy_threshold(const gr_complex *samples, const uint32_t window_size, const float threshold) { float result = 0.0f; for (uint32_t i = 0u; i < window_size; i++) { const float magn = std::abs(samples[i]); result += magn * magn; } result /= (float)window_size; #ifndef NDEBUG this->d_debug << "T: " << result << "\n"; #endif return result > threshold; } inline void decoder_impl::instantaneous_frequency(const gr_complex *in_samples, float *out_ifreq, const uint32_t window) { if (window < 2u) { std::cerr << "[LoRa Decoder] WARNING : window size < 2 !" << std::endl; return; } /* instantaneous_phase */ for (uint32_t i = 1u; i < window; i++) { const float iphase_1 = std::arg(in_samples[i - 1]); float iphase_2 = std::arg(in_samples[i]); // Unwrapped loops from liquid_unwrap_phase while ( (iphase_2 - iphase_1) > M_PI ) iphase_2 -= 2.0f*M_PI; while ( (iphase_2 - iphase_1) < -M_PI ) iphase_2 += 2.0f*M_PI; out_ifreq[i - 1] = iphase_2 - iphase_1; } // Make sure there is no strong gradient if this value is accessed by mistake out_ifreq[window - 1] = out_ifreq[window - 2]; } /** * Currently unused. */ inline void decoder_impl::instantaneous_phase(const gr_complex *in_samples, float *out_iphase, const uint32_t window) { out_iphase[0] = std::arg(in_samples[0]); for (uint32_t i = 1u; i < window; i++) { out_iphase[i] = std::arg(in_samples[i]); // = the same as atan2(imag(in_samples[i]),real(in_samples[i])); // Unwrapped loops from liquid_unwrap_phase while ( (out_iphase[i] - out_iphase[i-1]) > M_PI ) out_iphase[i] -= 2.0f*M_PI; while ( (out_iphase[i] - out_iphase[i-1]) < -M_PI ) out_iphase[i] += 2.0f*M_PI; } } /** * Currently unused. */ float decoder_impl::cross_correlate(const gr_complex *samples_1, const gr_complex *samples_2, const uint32_t window) { float result = 0.0f; for (uint32_t i = 0u; i < window; i++) { result += std::real(samples_1[i] * std::conj(samples_2[i])); } result /= (float)window; return result; } /** * Calculate normalized cross correlation of real values. * See https://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation. */ float decoder_impl::cross_correlate_ifreq(const float *samples_ifreq, const std::vector& ideal_chirp, const uint32_t to_idx) { float result = 0.0f; const float average = std::accumulate(samples_ifreq , samples_ifreq + to_idx, 0.0f) / (float)(to_idx); const float chirp_avg = std::accumulate(&ideal_chirp[0], &ideal_chirp[to_idx] , 0.0f) / (float)(to_idx); const float sd = this->stddev(samples_ifreq , to_idx, average) * this->stddev(&ideal_chirp[0] , to_idx, chirp_avg); for (uint32_t i = 0u; i < to_idx; i++) { result += (samples_ifreq[i] - average) * (ideal_chirp[i] - chirp_avg) / sd; } result /= (float)(to_idx - 1u); return result; } float decoder_impl::detect_downchirp(const gr_complex *samples, const uint32_t window) { float samples_ifreq[window]; this->instantaneous_frequency(samples, samples_ifreq, window); return this->cross_correlate_ifreq(samples_ifreq, this->d_downchirp_ifreq, window - 1u); } /** * 1. Skip through the window and look for a falling edge * 2. Get the upper and lower bound of the upchrip edge, or the local maximum and minimum * 3. Look for the highest cross correlation index between these points and return */ float decoder_impl::sliding_norm_cross_correlate_upchirp(const float *samples_ifreq, const uint32_t window, int32_t *index) { bool found_change = false; uint32_t local_max_idx = 0u, local_min_idx; const uint32_t coeff = (this->d_sf + this->d_sf + this->d_sf / 2u); const uint32_t len = this->d_samples_per_symbol - 1u; float max_correlation = 0.0f; // Approximate local maximum for (uint32_t i = 0u; i < window - coeff - 1u; i += coeff / 2u) { if (samples_ifreq[i] - samples_ifreq[i + coeff] > 0.2f) { // Goes down local_max_idx = i; found_change = true; break; } } if (!found_change) { //printf("No falling edge?\n"); return 0.0f; } // Find top and bottom of falling edge after first upchirp in window local_max_idx = std::max_element(samples_ifreq + gr::lora::clamp((int)(local_max_idx - 2u * coeff), 0, (int)window), samples_ifreq + gr::lora::clamp(local_max_idx + coeff, 0u, window)) - samples_ifreq; local_min_idx = std::min_element(samples_ifreq + gr::lora::clamp(local_max_idx + 1u, 0u, window), samples_ifreq + gr::lora::clamp(local_max_idx + 3u * coeff, 0u, window)) - samples_ifreq; // Cross correlate between start and end of falling edge instead of entire window for (uint32_t i = local_max_idx; i < local_min_idx && (i + len) < window; i++) { const float max_corr = this->cross_correlate_ifreq(samples_ifreq + i, this->d_upchirp_ifreq, len); if (max_corr > max_correlation) { *index = i; max_correlation = max_corr; } } // Signal from local_max_idx vs shifted with *index //DBGR_WRITE_SIGNAL(this->d_upchirp_ifreq, (samples_ifreq + local_max_idx), len, (*index - local_max_idx), 0u, window, false, true, Printed graphs in sliding_norm_cross_correlate_upchirp); return max_correlation; } /** * Slide the given chirp perfectly on top of the ideal upchirp (phase shift). * Currently unused. */ int32_t decoder_impl::slide_phase_shift_upchirp_perfect(const float* samples_ifreq, const uint32_t window) { /// Perfect shift to ideal frequency const uint32_t t_low = window / 4u, t_mid = window / 2u; // Average before compare const uint32_t coeff = 20u; float avg = std::accumulate(&samples_ifreq[t_mid] - coeff / 2u, &samples_ifreq[t_mid] + coeff / 2u, 0.0f) / coeff; uint32_t idx = std::lower_bound( this->d_upchirp_ifreq.begin() + t_low, this->d_upchirp_ifreq.begin() + t_mid, avg) - this->d_upchirp_ifreq.begin(); return (idx <= t_low || idx >= t_mid) ? -1 : t_mid - idx; } float decoder_impl::stddev(const float *values, const uint32_t len, const float mean) { float variance = 0.0f; for (uint32_t i = 0u; i < len; i++) { const float temp = values[i] - mean; variance += temp * temp; } variance /= (float)len; return std::sqrt(variance); } float decoder_impl::detect_upchirp(const gr_complex *samples, const uint32_t window, int32_t *index) { float samples_ifreq[window]; this->instantaneous_frequency(samples, samples_ifreq, window); return this->sliding_norm_cross_correlate_upchirp(samples_ifreq, window, index); } /** * Currently unstable due to center frequency offset. */ uint32_t decoder_impl::get_shift_fft(const gr_complex *samples) { float fft_mag[this->d_number_of_bins]; gr_complex sample[this->d_samples_per_symbol]; memcpy(sample, samples, this->d_samples_per_symbol * sizeof(gr_complex)); #ifdef CFO_CORRECT this->determine_cfo(&samples[0]); #ifndef NDEBUG this->d_debug << "CFO: " << this->d_cfo_estimation << std::endl; #endif this->correct_cfo(&sample[0], this->d_samples_per_symbol); #endif samples_to_file("/tmp/data", &sample[0], this->d_samples_per_symbol, sizeof(gr_complex)); // Multiply with ideal downchirp for (uint32_t i = 0u; i < this->d_samples_per_symbol; i++) { this->d_mult_hf[i] = std::conj(sample[i] * this->d_downchirp[i]); } samples_to_file("/tmp/mult", &this->d_mult_hf[0], this->d_samples_per_symbol, sizeof(gr_complex)); // Perform decimation //for (uint32_t i = 0u; i < this->d_number_of_bins; i++) { // firdecim_crcf_execute(this->d_decim, &mult_hf[this->d_decim_factor * i], &this->d_mult[i]); //} //samples_to_file("/tmp/resampled", &this->d_mult[0], this->d_number_of_bins, sizeof(gr_complex)); // Perform FFT fft_execute(this->d_q); // Decimate. Note: assumes fft size is multiple of decimation factor and number of bins is even const uint32_t N = this->d_number_of_bins; memcpy(&this->d_tmp[0], &this->d_fft[0], (N + 1u) / 2u * sizeof(gr_complex)); memcpy(&this->d_tmp[ (N + 1u) / 2u ], &this->d_fft[this->d_samples_per_symbol - (N / 2u)], N / 2u * sizeof(gr_complex)); this->d_tmp[N / 2u] += this->d_fft[N / 2u]; // Note that you have to kill the grc before checking the plots! // Get magnitude for (uint32_t i = 0u; i < this->d_number_of_bins; i++) { fft_mag[i] = std::abs(this->d_tmp[i]); } samples_to_file("/tmp/fft", &this->d_tmp[0], this->d_number_of_bins, sizeof(gr_complex)); fft_execute(this->d_qr); // debug samples_to_file("/tmp/resampled", &this->d_mult_hf[0], this->d_number_of_bins, sizeof(gr_complex)); // Return argmax here return (std::max_element(fft_mag, fft_mag + this->d_number_of_bins) - fft_mag); } uint32_t decoder_impl::max_frequency_gradient_idx(const gr_complex *samples, const bool is_header) { float samples_ifreq[this->d_samples_per_symbol]; samples_to_file("/tmp/data", &samples[0], this->d_samples_per_symbol, sizeof(gr_complex)); this->instantaneous_frequency(samples, samples_ifreq, this->d_samples_per_symbol); for (uint32_t i = 1u; i < this->d_number_of_bins - 2u; i++) { if (samples_ifreq[this->d_decim_factor * i] - samples_ifreq[this->d_decim_factor * (i + 1u)] > 0.2f) { return i + !is_header; } } const float zero_bin = samples_ifreq[0u] - samples_ifreq[this->d_decim_factor * 2u]; const float high_bin = samples_ifreq[(this->d_number_of_bins - 2u) * this->d_decim_factor] - samples_ifreq[this->d_number_of_bins * this->d_decim_factor - 1u]; // Prefer first bin over last. (First bin == 0 or 1?) return zero_bin > 0.2f || zero_bin > high_bin ? 1u : this->d_number_of_bins; } bool decoder_impl::demodulate(const gr_complex *samples, const bool is_header) { // DBGR_TIME_MEASUREMENT_TO_FILE("SFxx_method"); // DBGR_START_TIME_MEASUREMENT(false, "only"); uint32_t bin_idx = this->max_frequency_gradient_idx(samples, is_header); //uint32_t bin_idx = this->get_shift_fft(samples); // DBGR_INTERMEDIATE_TIME_MEASUREMENT(); // Header has additional redundancy if (is_header) { bin_idx /= 4u; } // Decode (actually gray encode) the bin to get the symbol value const uint32_t word = bin_idx ^ (bin_idx >> 1u); #ifndef NDEBUG this->d_debug << gr::lora::to_bin(word, is_header ? this->d_sf - 2u : this->d_sf) << " " << bin_idx << std::endl; #endif this->d_words.push_back(word); // Look for 4+cr symbols and stop if (this->d_words.size() == (4u + this->d_cr)) { // Deinterleave this->deinterleave(is_header ? this->d_sf - 2u : this->d_sf); return true; // Signal that a block is ready for decoding } return false; // We need more words in order to decode a block } /** * Correct the interleaving by extracting each column of bits after rotating to the left. *
(The words were interleaved diagonally, by rotating we make them straight into columns.) */ void decoder_impl::deinterleave(const uint32_t ppm) { const uint32_t bits_per_word = this->d_words.size(); const uint32_t offset_start = ppm - 1u; std::vector words_deinterleaved(ppm, 0u); if (bits_per_word > 8u) { // Not sure if this can ever occur. It would imply coding rate high than 4/8 e.g. 4/9. std::cerr << "[LoRa Decoder] WARNING : Deinterleaver: More than 8 bits per word. uint8_t will not be sufficient!\nBytes need to be stored in intermediate array and then packed into words_deinterleaved!" << std::endl; } for (uint32_t i = 0u; i < bits_per_word; i++) { const uint32_t word = gr::lora::rotl(this->d_words[i], i, ppm); for (uint32_t j = (1u << offset_start), x = offset_start; j; j >>= 1u, x--) { words_deinterleaved[x] |= !!(word & j) << i; } } #ifndef NDEBUG print_vector(this->d_debug, words_deinterleaved, "D", sizeof(uint8_t) * 8u); #endif // Add to demodulated data this->d_demodulated.insert(this->d_demodulated.end(), words_deinterleaved.begin(), words_deinterleaved.end()); // Cleanup this->d_words.clear(); } void decoder_impl::decode(uint8_t *out_data, const bool is_header) { static const uint8_t shuffle_pattern[] = {7, 6, 3, 4, 2, 1, 0, 5}; this->deshuffle(shuffle_pattern, is_header); // For determining whitening sequence //if (!is_header) // this->values_to_file("/tmp/after_deshuffle", &this->d_words_deshuffled[0], this->d_words_deshuffled.size(), 8); this->dewhiten(is_header ? gr::lora::prng_header : this->d_whitening_sequence); this->hamming_decode(out_data); // Print result std::stringstream result; for (uint32_t i = 0u; i < this->d_payload_length; i++) { result << " " << std::hex << std::setw(2) << std::setfill('0') << (int)out_data[i]; } if (!is_header) { this->d_data.insert(this->d_data.end(), out_data, out_data + this->d_payload_length); std::cout << result.str() << std::endl; pmt::pmt_t payload_blob = pmt::make_blob(&this->d_data[0], sizeof(uint8_t) * (this->d_payload_length + 3u)); this->message_port_pub(pmt::mp("frames"), payload_blob); } else { this->d_data.insert(this->d_data.end(), out_data, out_data + 3u); std::cout << result.str(); } } void decoder_impl::deshuffle(const uint8_t *shuffle_pattern, const bool is_header) { const uint32_t to_decode = is_header ? 5u : this->d_demodulated.size(); const uint32_t len = sizeof(shuffle_pattern) / sizeof(uint8_t); uint8_t result; for (uint32_t i = 0u; i < to_decode; i++) { result = 0u; for (uint32_t j = 0u; j < len; j++) { result |= !!(this->d_demodulated[i] & (1u << shuffle_pattern[j])) << j; } this->d_words_deshuffled.push_back(result); } #ifndef NDEBUG //print_vector(d_debug, d_words_deshuffled, "S", sizeof(uint8_t)*8); print_vector_raw(this->d_debug, this->d_words_deshuffled, sizeof(uint8_t) * 8u); this->d_debug << std::endl; #endif // We're done with these words if (is_header){ this->d_demodulated.erase(this->d_demodulated.begin(), this->d_demodulated.begin() + 5u); } else { this->d_demodulated.clear(); } } void decoder_impl::dewhiten(const uint8_t *prng) { const uint32_t len = this->d_words_deshuffled.size(); // Whitening out // if (prng != gr::lora::prng_header) // DBGR_QUICK_TO_FILE("/tmp/whitening_out", true, this->d_words_deshuffled, len, "0x%02X,"); for (uint32_t i = 0u; i < len; i++) { uint8_t xor_b = this->d_words_deshuffled[i] ^ prng[i]; // TODO: reverse bit order is performed here, // but is probably due to mistake in whitening or interleaving xor_b = (xor_b & 0xF0) >> 4 | (xor_b & 0x0F) << 4; xor_b = (xor_b & 0xCC) >> 2 | (xor_b & 0x33) << 2; xor_b = (xor_b & 0xAA) >> 1 | (xor_b & 0x55) << 1; this->d_words_dewhitened.push_back(xor_b); } #ifndef NDEBUG print_vector(this->d_debug, this->d_words_dewhitened, "W", sizeof(uint8_t) * 8); #endif this->d_words_deshuffled.clear(); } void decoder_impl::hamming_decode(uint8_t *out_data) { static const uint8_t data_indices[4] = {1, 2, 3, 5}; switch(this->d_cr) { case 4: case 3: // Hamming(8,4) or Hamming(7,4) gr::lora::hamming_decode_soft(&this->d_words_dewhitened[0], this->d_words_dewhitened.size(), out_data); break; case 2: case 1: // Hamming(6,4) or Hamming(5,4) // TODO: Report parity error to the user gr::lora::fec_extract_data_only(&this->d_words_dewhitened[0], this->d_words_dewhitened.size(), data_indices, 4u, out_data); break; } this->d_words_dewhitened.clear(); /* fec_scheme fs = LIQUID_FEC_HAMMING84; unsigned int n = ceil(this->d_words_dewhitened.size() * 4.0f / (4.0f + d_cr)); unsigned int k = fec_get_enc_msg_length(fs, n); fec hamming = fec_create(fs, NULL); fec_decode(hamming, n, &d_words_dewhitened[0], out_data); d_words_dewhitened.clear(); fec_destroy(hamming);*/ } void decoder_impl::nibble_reverse(uint8_t *out_data, const uint32_t len) { for (uint32_t i = 0u; i < len; i++) { out_data[i] = ((out_data[i] & 0x0f) << 4u) | ((out_data[i] & 0xf0) >> 4u); } } /** * Currently unused. */ void decoder_impl::determine_cfo(const gr_complex *samples) { float instantaneous_phase[this->d_samples_per_symbol]; // float instantaneous_freq [this->d_samples_per_symbol]; const float div = (float) this->d_samples_per_second / (2.0f * M_PI); // Determine instant phase this->instantaneous_phase(samples, instantaneous_phase, this->d_samples_per_symbol); // Determine instant freq // for (unsigned int i = 1; i < this->d_samples_per_symbol; i++) { // instantaneous_freq[i - 1] = (float)((instantaneous_phase[i] - instantaneous_phase[i - 1]) * div); // } float sum = 0.0f; for (uint32_t i = 1u; i < this->d_samples_per_symbol; i++) { sum += (float)((instantaneous_phase[i] - instantaneous_phase[i - 1u]) * div); } this->d_cfo_estimation = sum / (float)(this->d_samples_per_symbol - 1u); /*d_cfo_estimation = (*std::max_element(instantaneous_freq, instantaneous_freq+d_samples_per_symbol-1) + *std::min_element(instantaneous_freq, instantaneous_freq+d_samples_per_symbol-1)) / 2;*/ } /** * Currently unused. */ void decoder_impl::correct_cfo(gr_complex *samples, const uint32_t num_samples) { const float mul = 2.0f * M_PI * -this->d_cfo_estimation * this->d_dt; for (uint32_t i = 0u; i < num_samples; i++) { samples[i] *= gr_expj(mul * i); } } /** * Currently unused. */ int decoder_impl::find_preamble_start(const gr_complex *samples) { for (uint32_t i = 0u; i < this->d_samples_per_symbol; i++) { if (!this->get_shift_fft(&samples[i])) return i; } return -1; } /** * Look for a signal with an absolute value above `this->d_energy_threshold`. */ int decoder_impl::find_preamble_start_fast(const gr_complex *samples) { const uint32_t decimation = this->d_corr_decim_factor * 4u; const uint32_t decim_size = this->d_samples_per_symbol / decimation; // Absolute value for (uint32_t i = 1u; i < decimation - 1u; i++) { if ( std::abs(samples[ i * decim_size]) > this->d_energy_threshold && std::abs(samples[(i - 1u) * decim_size]) < std::abs(samples[i * decim_size]) && std::abs(samples[(i + 1u) * decim_size]) > std::abs(samples[i * decim_size]) ) { return i * decim_size; } } return -1; } uint8_t decoder_impl::lookup_cr(const uint8_t bytevalue) { switch (bytevalue & 0x0f) { case 0x01: return 4; case 0x0f: return 3; case 0x0d: return 2; case 0x0b: return 1; default: return 4; } } void decoder_impl::msg_raw_chirp_debug(const gr_complex *raw_samples, const uint32_t num_samples) { pmt::pmt_t chirp_blob = pmt::make_blob(raw_samples, sizeof(gr_complex) * num_samples); //message_port_pub(pmt::mp("debug"), chirp_blob); } void decoder_impl::msg_lora_frame(const uint8_t *frame_bytes, const uint32_t frame_len) { // ?? No implementation } int decoder_impl::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { (void) noutput_items; (void) output_items; const gr_complex *input = (gr_complex *) input_items[0]; const gr_complex *raw_input = (gr_complex *) input_items[1]; // float *out = (float *)output_items[0]; // DBGR_TIME_MEASUREMENT_TO_FILE("SF7_fft_idx"); // DBGR_START_TIME_MEASUREMENT(false, gr::lora::DecoderStateToString(this->d_state)); switch (this->d_state) { case gr::lora::DecoderState::DETECT: { const int i = this->find_preamble_start_fast(input); //int i = this->find_preamble_start(&input[0]); //int i = this->calc_energy_threshold(&input[0], 2u * this->d_samples_per_symbol, this->d_energy_threshold); if (i != -1) { int32_t index_correction = 0; const float c = this->detect_upchirp(&input[i], this->d_samples_per_symbol * 2u, &index_correction); if (c > 0.9f) { #ifndef NDEBUG this->d_debug << "Cu: " << c << std::endl; #endif this->samples_to_file("/tmp/detectb", &input[i], this->d_samples_per_symbol, sizeof(gr_complex)); this->samples_to_file("/tmp/detect", &input[i + index_correction], this->d_samples_per_symbol, sizeof(gr_complex)); this->d_corr_fails = 0u; this->d_state = gr::lora::DecoderState::SYNC; this->consume_each(i + index_correction); break; } // Consume just 1 symbol after preamble to have more chances to sync later this->consume_each(i + this->d_samples_per_symbol); } else { // Consume 2 symbols (usual) to skip noise faster before preamble has been found this->consume_each(2u * this->d_samples_per_symbol); } break; } case gr::lora::DecoderState::SYNC: { const float c = this->detect_downchirp(input, this->d_samples_per_symbol); #ifndef NDEBUG this->d_debug << "Cd: " << c << std::endl; #endif if (c > 0.99f) { #ifndef NDEBUG this->d_debug << "SYNC: " << c << std::endl; #endif // Debug stuff this->samples_to_file("/tmp/sync", input, this->d_samples_per_symbol, sizeof(gr_complex)); //printf("---------------------- SYNC! with %f\n", c); this->d_state = gr::lora::DecoderState::PAUSE; } else { this->d_corr_fails++; if (this->d_corr_fails > 32u) { this->d_state = gr::lora::DecoderState::DETECT; #ifndef NDEBUG this->d_debug << "Lost sync" << std::endl; #endif } } this->consume_each(this->d_samples_per_symbol); break; } case gr::lora::DecoderState::PAUSE: { this->d_state = gr::lora::DecoderState::DECODE_HEADER; //samples_debug(input, d_samples_per_symbol + d_delay_after_sync); this->consume_each(this->d_samples_per_symbol + this->d_delay_after_sync); break; } case gr::lora::DecoderState::DECODE_HEADER: { this->d_cr = 4u; if (this->demodulate(input, true)) { uint8_t decoded[3]; // TODO: A bit messy. I think it's better to make an internal decoded std::vector this->d_payload_length = 3u; this->decode(decoded, true); this->nibble_reverse(decoded, 1u); // TODO: Why? Endianess? this->d_payload_length = decoded[0]; this->d_cr = this->lookup_cr(decoded[1]); const int symbols_per_block = this->d_cr + 4u; const float bits_needed = float(this->d_payload_length) * 8.0f + 16.0f; const float symbols_needed = bits_needed * (symbols_per_block / 4.0f) / float(this->d_sf); const int blocks_needed = (int)std::ceil(symbols_needed / symbols_per_block); this->d_payload_symbols = blocks_needed * symbols_per_block; #ifndef NDEBUG this->d_debug << "LEN: " << this->d_payload_length << " (" << this->d_payload_symbols << " symbols)" << std::endl; #endif this->d_state = gr::lora::DecoderState::DECODE_PAYLOAD; } this->msg_raw_chirp_debug(raw_input, this->d_samples_per_symbol); //samples_debug(input, d_samples_per_symbol); this->consume_each(this->d_samples_per_symbol); break; } case gr::lora::DecoderState::DECODE_PAYLOAD: { //************************************************************************** // Failsafe if decoding length reaches end of actual data == noise reached? // Could be replaced be rejecting packets with CRC mismatch... if (std::abs(input[0]) < this->d_energy_threshold) { //printf("\n*** Decode payload reached end of data! (payload length in HDR is wrong)\n"); this->d_payload_symbols = 0; } //************************************************************************** if (this->demodulate(input, false)) { this->d_payload_symbols -= (4u + this->d_cr); if (this->d_payload_symbols <= 0) { uint8_t decoded[this->d_payload_length]; memset( decoded, 0u, this->d_payload_length * sizeof(uint8_t) ); this->decode(decoded, false); this->d_state = gr::lora::DecoderState::DETECT; this->d_data.clear(); // DBGR_STOP_TIME_MEASUREMENT(true); // DBGR_PAUSE(); } } this->msg_raw_chirp_debug(raw_input, this->d_samples_per_symbol); //samples_debug(input, d_samples_per_symbol); this->consume_each(this->d_samples_per_symbol); break; } case gr::lora::DecoderState::STOP: { this->consume_each(this->d_samples_per_symbol); break; } default: { std::cerr << "[LoRa Decoder] WARNING : No state! Shouldn't happen\n"; break; } } // DBGR_INTERMEDIATE_TIME_MEASUREMENT(); // Tell runtime system how many output items we produced. return 0; } void decoder_impl::set_sf(const uint8_t sf) { (void) sf; std::cerr << "[LoRa Decoder] WARNING : Setting the spreading factor during execution is currently not supported." << std::endl << "Nothing set, kept SF of " << this->d_sf << "." << std::endl; } void decoder_impl::set_samp_rate(const float samp_rate) { (void) samp_rate; std::cerr << "[LoRa Decoder] WARNING : Setting the sample rate during execution is currently not supported." << std::endl << "Nothing set, kept SR of " << this->d_samples_per_second << "." << std::endl; } void decoder_impl::set_abs_threshold(const float threshold) { this->d_energy_threshold = gr::lora::clamp(threshold, 0.0f, 20.0f); } } /* namespace lora */ } /* namespace gr */