#!/usr/bin/python import numpy as np files = [ "lora-time_SF7_grad_idx_DECODE_HEADER", # Run 6 times (9856 samples) "lora-time_SF7_grad_idx_DECODE_PAYLOAD", "lora-time_SF7_grad_idx_DETECT", "lora-time_SF7_grad_idx_PAUSE", "lora-time_SF7_grad_idx_SYNC", "lora-time_SF7_grad_idx_only", # Run 3 times "lora-time_SF12_grad_idx_DECODE_HEADER", "lora-time_SF12_grad_idx_DECODE_PAYLOAD", "lora-time_SF12_grad_idx_DETECT", "lora-time_SF12_grad_idx_PAUSE", "lora-time_SF12_grad_idx_SYNC", "lora-time_SF12_grad_idx_only", "lora-time_SF7_fft_idx_DECODE_HEADER", "lora-time_SF7_fft_idx_DECODE_PAYLOAD", "lora-time_SF7_fft_idx_DETECT", "lora-time_SF7_fft_idx_PAUSE", "lora-time_SF7_fft_idx_SYNC", "lora-time_SF7_fft_idx_only", "lora-time_SF12_fft_idx_DECODE_HEADER", "lora-time_SF12_fft_idx_DECODE_PAYLOAD", "lora-time_SF12_fft_idx_DETECT", "lora-time_SF12_fft_idx_PAUSE", "lora-time_SF12_fft_idx_SYNC", "lora-time_SF12_fft_idx_only" ] for name in files: with open("./" + name) as f: data = f.read() data = [float(x) for x in data.split('\n')[0:-1]] avg = np.mean(data) std = np.std(data, dtype=np.float64) print("File: {0:s}\n\tLength: {1:d}\n\tAverage: {2:2.10f} ms\n\tStd: {3:2.10f}" .format(name, len(data), avg, std))