/* -*- c++ -*- */ /* * Copyright 2017 Pieter Robyns, William Thenaers. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include "decoder_impl.h" #include "tables.h" #include "dbugr.hpp" namespace gr { namespace lora { decoder::sptr decoder::make(float samp_rate, int sf) { return gnuradio::get_initial_sptr (new decoder_impl(samp_rate, sf)); } /** * The private constructor */ decoder_impl::decoder_impl(float samp_rate, uint8_t sf) : gr::sync_block("decoder", gr::io_signature::make(1, -1, sizeof(gr_complex)), gr::io_signature::make(0, 0, 0)) { // Radio config d_state = gr::lora::DecoderState::DETECT; if (sf < 6 || sf > 13) { std::cerr << "[LoRa Decoder] ERROR : Spreading factor should be between 6 and 12 (inclusive)!" << std::endl << " Other values are currently not supported." << std::endl; exit(1); } #ifdef DEBUG d_debug_samples.open("/tmp/grlora_debug", std::ios::out | std::ios::binary); d_debug.open("/tmp/grlora_debug_txt", std::ios::out); d_dbg.attach(); #endif d_bw = 125000u; d_phdr.cr = 4; d_samples_per_second = samp_rate; d_payload_symbols = 0; d_cfo_estimation = 0.0f; d_dt = 1.0f / d_samples_per_second; d_sf = sf; d_bits_per_second = (double)d_sf * (double)(4.0 / (4.0 + d_phdr.cr)) / (1u << d_sf) * d_bw; d_symbols_per_second = (double)d_bw / (1u << d_sf); d_period = 1.0f / (double)d_symbols_per_second; d_bits_per_symbol = (double)(d_bits_per_second / d_symbols_per_second); d_samples_per_symbol = (uint32_t)(d_samples_per_second / d_symbols_per_second); d_delay_after_sync = d_samples_per_symbol / 4u; d_number_of_bins = (uint32_t)(1u << d_sf); d_number_of_bins_hdr = (uint32_t)(1u << (d_sf-2)); d_decim_factor = d_samples_per_symbol / d_number_of_bins; d_energy_threshold = 0.01f; d_whitening_sequence = gr::lora::prng_payload; d_fine_sync = 0; set_output_multiple(2 * d_samples_per_symbol); std::cout << "Bits (nominal) per symbol: \t" << d_bits_per_symbol << std::endl; std::cout << "Bins per symbol: \t" << d_number_of_bins << std::endl; std::cout << "Samples per symbol: \t" << d_samples_per_symbol << std::endl; std::cout << "Decimation: \t\t" << d_decim_factor << std::endl; // Locally generated chirps build_ideal_chirps(); // FFT decoding preparations d_fft.resize(d_samples_per_symbol); d_mult_hf.resize(d_samples_per_symbol); d_tmp.resize(d_number_of_bins); d_q = fft_create_plan(d_samples_per_symbol, &d_mult_hf[0], &d_fft[0], LIQUID_FFT_FORWARD, 0); d_qr = fft_create_plan(d_number_of_bins, &d_tmp[0], &d_mult_hf[0], LIQUID_FFT_BACKWARD, 0); // Register gnuradio ports message_port_register_out(pmt::mp("frames")); message_port_register_out(pmt::mp("control")); } /** * Our virtual destructor. */ decoder_impl::~decoder_impl() { #ifdef DEBUG if (d_debug_samples.is_open()) d_debug_samples.close(); if (d_debug.is_open()) d_debug.close(); #endif fft_destroy_plan(d_q); fft_destroy_plan(d_qr); } void decoder_impl::build_ideal_chirps(void) { d_downchirp.resize(d_samples_per_symbol); d_upchirp.resize(d_samples_per_symbol); d_downchirp_ifreq.resize(d_samples_per_symbol); d_upchirp_ifreq.resize(d_samples_per_symbol); d_upchirp_ifreq_v.resize(d_samples_per_symbol*3); gr_complex tmp[d_samples_per_symbol*3]; const double T = -0.5 * d_bw * d_symbols_per_second; const double f0 = (d_bw / 2.0); const double pre_dir = 2.0 * M_PI; double t; gr_complex cmx = gr_complex(1.0f, 1.0f); for (uint32_t i = 0u; i < d_samples_per_symbol; i++) { // Width in number of samples = samples_per_symbol // See https://en.wikipedia.org/wiki/Chirp#Linear t = d_dt * i; d_downchirp[i] = cmx * gr_expj(pre_dir * t * (f0 + T * t)); d_upchirp[i] = cmx * gr_expj(pre_dir * t * (f0 + T * t) * -1.0f); } // Store instantaneous frequency instantaneous_frequency(&d_downchirp[0], &d_downchirp_ifreq[0], d_samples_per_symbol); instantaneous_frequency(&d_upchirp[0], &d_upchirp_ifreq[0], d_samples_per_symbol); samples_to_file("/tmp/downchirp", &d_downchirp[0], d_downchirp.size(), sizeof(gr_complex)); samples_to_file("/tmp/upchirp", &d_upchirp[0], d_upchirp.size(), sizeof(gr_complex)); // Upchirp sequence memcpy(tmp, &d_upchirp[0], sizeof(gr_complex) * d_samples_per_symbol); memcpy(tmp+d_samples_per_symbol, &d_upchirp[0], sizeof(gr_complex) * d_samples_per_symbol); memcpy(tmp+d_samples_per_symbol*2, &d_upchirp[0], sizeof(gr_complex) * d_samples_per_symbol); instantaneous_frequency(tmp, &d_upchirp_ifreq_v[0], d_samples_per_symbol*3); } void decoder_impl::values_to_file(const std::string path, const unsigned char *v, const uint32_t length, const uint32_t ppm) { std::ofstream out_file; out_file.open(path.c_str(), std::ios::out | std::ios::app); for (uint32_t i = 0u; i < length; i++) { std::string tmp = gr::lora::to_bin(v[i], ppm); out_file.write(tmp.c_str(), tmp.length()); out_file.write(" ", 1); } out_file.write("\n", 1); out_file.close(); } void decoder_impl::samples_to_file(const std::string path, const gr_complex *v, const uint32_t length, const uint32_t elem_size) { #ifdef DEBUG std::ofstream out_file; out_file.open(path.c_str(), std::ios::out | std::ios::binary); //for(std::vector::const_iterator it = v.begin(); it != v.end(); ++it) { for (uint32_t i = 0u; i < length; i++) { out_file.write(reinterpret_cast(&v[i]), elem_size); } out_file.close(); #else (void) path; (void) v; (void) length; (void) elem_size; #endif } void decoder_impl::samples_debug(const gr_complex *v, const uint32_t length) { #ifdef DEBUG gr_complex start_indicator(0.0f, 32.0f); d_debug_samples.write(reinterpret_cast(&start_indicator), sizeof(gr_complex)); for (uint32_t i = 1u; i < length; i++) { d_debug_samples.write(reinterpret_cast(&v[i]), sizeof(gr_complex)); } #else (void) v; (void) length; #endif } inline void decoder_impl::instantaneous_frequency(const gr_complex *in_samples, float *out_ifreq, const uint32_t window) { if (window < 2u) { std::cerr << "[LoRa Decoder] WARNING : window size < 2 !" << std::endl; return; } /* instantaneous_phase */ for (uint32_t i = 1u; i < window; i++) { const float iphase_1 = std::arg(in_samples[i - 1]); float iphase_2 = std::arg(in_samples[i]); // Unwrapped loops from liquid_unwrap_phase while ( (iphase_2 - iphase_1) > M_PI ) iphase_2 -= 2.0f*M_PI; while ( (iphase_2 - iphase_1) < -M_PI ) iphase_2 += 2.0f*M_PI; out_ifreq[i - 1] = iphase_2 - iphase_1; } // Make sure there is no strong gradient if this value is accessed by mistake out_ifreq[window - 1] = out_ifreq[window - 2]; } inline void decoder_impl::instantaneous_phase(const gr_complex *in_samples, float *out_iphase, const uint32_t window) { out_iphase[0] = std::arg(in_samples[0]); for (uint32_t i = 1u; i < window; i++) { out_iphase[i] = std::arg(in_samples[i]); // = the same as atan2(imag(in_samples[i]),real(in_samples[i])); // Unwrapped loops from liquid_unwrap_phase while ( (out_iphase[i] - out_iphase[i-1]) > M_PI ) out_iphase[i] -= 2.0f*M_PI; while ( (out_iphase[i] - out_iphase[i-1]) < -M_PI ) out_iphase[i] += 2.0f*M_PI; } } float decoder_impl::cross_correlate_ifreq_fast(const float *samples_ifreq, const float *ideal_chirp, const uint32_t window) { float result = 0; volk_32f_x2_dot_prod_32f(&result, samples_ifreq, ideal_chirp, window); return result; } float decoder_impl::cross_correlate_fast(const gr_complex *samples, const gr_complex *ideal_chirp, const uint32_t window) { gr_complex result = 0; volk_32fc_x2_conjugate_dot_prod_32fc(&result, samples, ideal_chirp, window); return abs(result); } float decoder_impl::cross_correlate(const gr_complex *samples_1, const gr_complex *samples_2, const uint32_t window) { float result = 0.0f; for (uint32_t i = 0u; i < window; i++) { result += std::real(samples_1[i] * std::conj(samples_2[i])); } result /= (float)window; return result; } float decoder_impl::cross_correlate_ifreq(const float *samples_ifreq, const std::vector& ideal_chirp, const uint32_t to_idx) { float result = 0.0f; const float average = std::accumulate(samples_ifreq , samples_ifreq + to_idx, 0.0f) / (float)(to_idx); const float chirp_avg = std::accumulate(&ideal_chirp[0], &ideal_chirp[to_idx] , 0.0f) / (float)(to_idx); const float sd = stddev(samples_ifreq , to_idx, average) * stddev(&ideal_chirp[0] , to_idx, chirp_avg); for (uint32_t i = 0u; i < to_idx; i++) { result += (samples_ifreq[i] - average) * (ideal_chirp[i] - chirp_avg) / sd; } result /= (float)(to_idx); return result; } void decoder_impl::fine_sync(const gr_complex* in_samples, uint32_t bin_idx, int32_t search_space) { int32_t shift_ref = (bin_idx+1) * d_decim_factor; float samples_ifreq[d_samples_per_symbol]; float max_correlation = 0.0f; int32_t lag = 0; instantaneous_frequency(in_samples, samples_ifreq, d_samples_per_symbol); for(int32_t i = -search_space+1; i < search_space; i++) { //float c = cross_correlate_fast(in_samples, &d_upchirp_v[shift_ref+i+d_samples_per_symbol], d_samples_per_symbol); float c = cross_correlate_ifreq_fast(samples_ifreq, &d_upchirp_ifreq_v[shift_ref+i+d_samples_per_symbol], d_samples_per_symbol); if(c > max_correlation) { max_correlation = c; lag = i; } } #ifdef DEBUG //d_debug << "FINE: " << -lag << std::endl; #endif d_fine_sync = -lag; //if(abs(d_fine_sync) >= d_decim_factor / 2) // d_fine_sync = 0; //d_fine_sync = 0; } float decoder_impl::detect_preamble_autocorr(const gr_complex *samples, const uint32_t window) { const gr_complex* chirp1 = samples; const gr_complex* chirp2 = samples + d_samples_per_symbol; float magsq_chirp1[window]; float magsq_chirp2[window]; float energy_chirp1 = 0; float energy_chirp2 = 0; float autocorr = 0; gr_complex dot_product; volk_32fc_x2_conjugate_dot_prod_32fc(&dot_product, chirp1, chirp2, window); volk_32fc_magnitude_squared_32f(magsq_chirp1, chirp1, window); volk_32fc_magnitude_squared_32f(magsq_chirp2, chirp2, window); volk_32f_accumulator_s32f(&energy_chirp1, magsq_chirp1, window); volk_32f_accumulator_s32f(&energy_chirp2, magsq_chirp2, window); autocorr = abs(dot_product / gr_complex(sqrt(energy_chirp1 * energy_chirp2), 0)); return autocorr; } float decoder_impl::detect_downchirp(const gr_complex *samples, const uint32_t window) { float samples_ifreq[window]; instantaneous_frequency(samples, samples_ifreq, window); return cross_correlate_ifreq(samples_ifreq, d_downchirp_ifreq, window - 1u); } float decoder_impl::detect_upchirp(const gr_complex *samples, const uint32_t window, int32_t *index) { float samples_ifreq[window*2]; instantaneous_frequency(samples, samples_ifreq, window*2); return sliding_norm_cross_correlate_upchirp(samples_ifreq, window, index); } float decoder_impl::sliding_norm_cross_correlate_upchirp(const float *samples_ifreq, const uint32_t window, int32_t *index) { float max_correlation = 0; // Cross correlate for (uint32_t i = 0; i < window; i++) { const float max_corr = cross_correlate_ifreq_fast(samples_ifreq + i, &d_upchirp_ifreq[0], window - 1u); if (max_corr > max_correlation) { *index = i; max_correlation = max_corr; } } return max_correlation; } float decoder_impl::stddev(const float *values, const uint32_t len, const float mean) { float variance = 0.0f; for (uint32_t i = 0u; i < len; i++) { const float temp = values[i] - mean; variance += temp * temp; } variance /= (float)len; return std::sqrt(variance); } /** * Currently unstable due to center frequency offset. */ uint32_t decoder_impl::get_shift_fft(const gr_complex *samples) { float fft_mag[d_number_of_bins]; samples_to_file("/tmp/data", &samples[0], d_samples_per_symbol, sizeof(gr_complex)); // Multiply with ideal downchirp for (uint32_t i = 0u; i < d_samples_per_symbol; i++) { d_mult_hf[i] = samples[i] * d_downchirp[i]; } samples_to_file("/tmp/mult", &d_mult_hf[0], d_samples_per_symbol, sizeof(gr_complex)); // Perform FFT fft_execute(d_q); // Decimate. Note: assumes fft size is multiple of decimation factor and number of bins is even // This decimation should be identical to numpy's approach const uint32_t N = d_number_of_bins; memcpy(&d_tmp[0], &d_fft[0], (N + 1u) / 2u * sizeof(gr_complex)); memcpy(&d_tmp[ (N + 1u) / 2u ], &d_fft[d_samples_per_symbol - (N / 2u)], N / 2u * sizeof(gr_complex)); d_tmp[N / 2u] += d_fft[N / 2u]; // Get magnitude for (uint32_t i = 0u; i < d_number_of_bins; i++) { fft_mag[i] = std::abs(d_tmp[i]); } samples_to_file("/tmp/fft", &d_tmp[0], d_number_of_bins, sizeof(gr_complex)); fft_execute(d_qr); // For debugging samples_to_file("/tmp/resampled", &d_mult_hf[0], d_number_of_bins, sizeof(gr_complex)); // Return argmax here return (std::max_element(fft_mag, fft_mag + d_number_of_bins) - fft_mag); } uint32_t decoder_impl::max_frequency_gradient_idx(const gr_complex *samples) { float samples_ifreq[d_samples_per_symbol]; float samples_ifreq_avg[d_number_of_bins]; samples_to_file("/tmp/data", &samples[0], d_samples_per_symbol, sizeof(gr_complex)); instantaneous_frequency(samples, samples_ifreq, d_samples_per_symbol); for(uint32_t i = 0; i < d_number_of_bins; i++) { volk_32f_accumulator_s32f(&samples_ifreq_avg[i], &samples_ifreq[i*d_decim_factor], d_decim_factor); samples_ifreq_avg[i] /= d_decim_factor; } float max_gradient = 0.1f; float gradient = 0.0f; uint32_t max_index = 0; for (uint32_t i = 1u; i < d_number_of_bins; i++) { gradient = samples_ifreq_avg[i - 1] - samples_ifreq_avg[i]; if (gradient > max_gradient) { max_gradient = gradient; max_index = i+1; } } return (d_number_of_bins - max_index) % d_number_of_bins; } bool decoder_impl::demodulate(const gr_complex *samples, const bool is_header) { // DBGR_TIME_MEASUREMENT_TO_FILE("SFxx_method"); // DBGR_START_TIME_MEASUREMENT(false, "only"); uint32_t bin_idx = max_frequency_gradient_idx(samples); //uint32_t bin_idx = get_shift_fft(samples); fine_sync(samples, bin_idx, std::max(d_decim_factor / 4u, 2u)); // DBGR_INTERMEDIATE_TIME_MEASUREMENT(); // Header has additional redundancy if (is_header || d_sf > 10) { bin_idx = std::lround(bin_idx / 4.0f) % d_number_of_bins_hdr; } // Decode (actually gray encode) the bin to get the symbol value const uint32_t word = bin_idx ^ (bin_idx >> 1u); #ifdef DEBUG d_debug << gr::lora::to_bin(word, is_header ? d_sf - 2u : d_sf) << " " << bin_idx << std::endl; #endif d_words.push_back(word); // Look for 4+cr symbols and stop if (d_words.size() == (4u + d_phdr.cr)) { // Deinterleave deinterleave((is_header || d_sf > 10) ? d_sf - 2u : d_sf); return true; // Signal that a block is ready for decoding } return false; // We need more words in order to decode a block } /** * Correct the interleaving by extracting each column of bits after rotating to the left. *
(The words were interleaved diagonally, by rotating we make them straight into columns.) */ void decoder_impl::deinterleave(const uint32_t ppm) { const uint32_t bits_per_word = d_words.size(); const uint32_t offset_start = ppm - 1u; std::vector words_deinterleaved(ppm, 0u); if (bits_per_word > 8u) { // Not sure if this can ever occur. It would imply coding rate high than 4/8 e.g. 4/9. std::cerr << "[LoRa Decoder] WARNING : Deinterleaver: More than 8 bits per word. uint8_t will not be sufficient!\nBytes need to be stored in intermediate array and then packed into words_deinterleaved!" << std::endl; exit(1); } for (uint32_t i = 0u; i < bits_per_word; i++) { const uint32_t word = gr::lora::rotl(d_words[i], i, ppm); for (uint32_t j = (1u << offset_start), x = offset_start; j; j >>= 1u, x--) { words_deinterleaved[x] |= !!(word & j) << i; } } #ifdef DEBUG print_vector_bin(d_debug, words_deinterleaved, "D", sizeof(uint8_t) * 8u); //print_interleave_matrix(d_debug, d_words, ppm); #endif // Add to demodulated data d_demodulated.insert(d_demodulated.end(), words_deinterleaved.begin(), words_deinterleaved.end()); // Cleanup d_words.clear(); } void decoder_impl::decode(const bool is_header) { static const uint8_t shuffle_pattern[] = {5, 0, 1, 2, 4, 3, 6, 7}; // For determining shuffle pattern //if (!is_header) // values_to_file("/tmp/before_deshuffle", &d_demodulated[0], d_demodulated.size(), 8); deshuffle(shuffle_pattern, is_header); // For determining whitening sequence //if (!is_header) // values_to_file("/tmp/after_deshuffle", &d_words_deshuffled[0], d_words_deshuffled.size(), 8); dewhiten(is_header ? gr::lora::prng_header : d_whitening_sequence); //if (!is_header) // values_to_file("/tmp/after_dewhiten", &d_words_dewhitened[0], d_words_dewhitened.size(), 8); hamming_decode(is_header); } void decoder_impl::msg_lora_frame(void) { uint32_t len = sizeof(loratap_header_t) + sizeof(loraphy_header_t) + d_payload_length; uint32_t offset = 0; uint8_t buffer[len]; loratap_header_t loratap_header; memset(buffer, 0, sizeof(uint8_t) * len); memset(&loratap_header, 0, sizeof(loratap_header)); offset = gr::lora::build_packet(buffer, offset, &loratap_header, sizeof(loratap_header_t)); offset = gr::lora::build_packet(buffer, offset, &d_phdr, sizeof(loraphy_header_t)); offset = gr::lora::build_packet(buffer, offset, &d_decoded[0], d_payload_length); if(offset != len) { std::cerr << "decoder_impl::msg_lora_frame: invalid write" << std::endl; exit(1); } pmt::pmt_t payload_blob = pmt::make_blob(buffer, sizeof(uint8_t)*len); message_port_pub(pmt::mp("frames"), payload_blob); } void decoder_impl::deshuffle(const uint8_t *shuffle_pattern, const bool is_header) { const uint32_t to_decode = is_header ? 5u : d_demodulated.size(); const uint32_t len = sizeof(shuffle_pattern) / sizeof(uint8_t); uint8_t result; for (uint32_t i = 0u; i < to_decode; i++) { result = 0u; for (uint32_t j = 0u; j < len; j++) { result |= !!(d_demodulated[i] & (1u << shuffle_pattern[j])) << j; } d_words_deshuffled.push_back(result); } #ifdef DEBUG print_vector_bin(d_debug, d_words_deshuffled, "S", sizeof(uint8_t)*8); d_debug << std::endl; #endif // We're done with these words if (is_header){ d_demodulated.erase(d_demodulated.begin(), d_demodulated.begin() + 5u); } else { d_demodulated.clear(); } } void decoder_impl::dewhiten(const uint8_t *prng) { const uint32_t len = d_words_deshuffled.size(); for (uint32_t i = 0u; i < len; i++) { uint8_t xor_b = d_words_deshuffled[i] ^ prng[i]; d_words_dewhitened.push_back(xor_b); } #ifdef DEBUG print_vector_bin(d_debug, d_words_dewhitened, "W", sizeof(uint8_t) * 8); #endif d_words_deshuffled.clear(); } void decoder_impl::hamming_decode(bool is_header) { switch(d_phdr.cr) { case 4: case 3: // Hamming(8,4) or Hamming(7,4) hamming_decode_soft(is_header); break; case 2: case 1: // Hamming(6,4) or Hamming(5,4) // TODO: Report parity error to the user extract_data_only(is_header); break; } d_words_dewhitened.clear(); /* fec_scheme fs = LIQUID_FEC_HAMMING84; unsigned int n = ceil(d_words_dewhitened.size() * 4.0f / (4.0f + d_phdr.cr)); unsigned int k = fec_get_enc_msg_length(fs, n); fec hamming = fec_create(fs, NULL); fec_decode(hamming, n, &d_words_dewhitened[0], out_data); d_words_dewhitened.clear(); fec_destroy(hamming);*/ } void decoder_impl::hamming_decode_soft(bool is_header) { uint32_t len = d_words_dewhitened.size(); for (uint32_t i = 0u; i < len; i += 2u) { const uint8_t d2 = (i + 1u < len) ? hamming_decode_soft_byte(d_words_dewhitened[i + 1u]) : 0u; const uint8_t d1 = hamming_decode_soft_byte(d_words_dewhitened[i]); if(is_header) d_decoded.push_back((d1 << 4u) | d2); else d_decoded.push_back((d2 << 4u) | d1); } } void decoder_impl::extract_data_only(bool is_header) { static const uint8_t data_indices[4] = {1, 2, 3, 5}; uint32_t len = d_words_dewhitened.size(); for (uint32_t i = 0u; i < len; i += 2u) { const uint8_t d2 = (i + 1u < len) ? select_bits(d_words_dewhitened[i + 1u], data_indices, 4u) & 0xFF : 0u; const uint8_t d1 = (select_bits(d_words_dewhitened[i], data_indices, 4u) & 0xFF); if(is_header) d_decoded.push_back((d1 << 4u) | d2); else d_decoded.push_back((d2 << 4u) | d1); } } void decoder_impl::nibble_reverse(uint8_t *out_data, const uint32_t len) { for (uint32_t i = 0u; i < len; i++) { out_data[i] = ((out_data[i] & 0x0f) << 4u) | ((out_data[i] & 0xf0) >> 4u); } } /** * Old method to determine CFO. Currently unused. */ void decoder_impl::determine_cfo(const gr_complex *samples) { float iphase[d_samples_per_symbol]; const float div = (float) d_samples_per_second / (2.0f * M_PI); // Determine instant phase instantaneous_phase(samples, iphase, d_samples_per_symbol); float sum = 0.0f; for (uint32_t i = 1u; i < d_samples_per_symbol; i++) { sum += (float)((iphase[i] - iphase[i - 1u]) * div); } d_cfo_estimation = sum / (float)(d_samples_per_symbol - 1u); } /** * New method to determine CFO. */ float decoder_impl::experimental_determine_cfo(const gr_complex *samples, uint32_t window) { gr_complex mult[window]; float mult_ifreq[window]; volk_32fc_x2_multiply_32fc(mult, samples, &d_downchirp[0], window); instantaneous_frequency(mult, mult_ifreq, window); return mult_ifreq[256] / (2.0 * M_PI) * d_samples_per_second; } int decoder_impl::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { (void) noutput_items; (void) output_items; const gr_complex *input = (gr_complex *) input_items[0]; //const gr_complex *raw_input = (gr_complex *) input_items[1]; // Input bypassed by low pass filter d_fine_sync = 0; // Always reset fine sync switch (d_state) { case gr::lora::DecoderState::DETECT: { float correlation = detect_preamble_autocorr(input, d_samples_per_symbol); if (correlation >= 0.90f) { #ifdef DEBUG d_debug << "Ca: " << correlation << std::endl; #endif d_corr_fails = 0u; d_state = gr::lora::DecoderState::SYNC; break; } consume_each(d_samples_per_symbol); break; } case gr::lora::DecoderState::SYNC: { int i = 0; detect_upchirp(input, d_samples_per_symbol, &i); //float cfo = experimental_determine_cfo(&input[i], d_samples_per_symbol); //pmt::pmt_t kv = pmt::cons(pmt::intern(std::string("cfo")), pmt::from_double(cfo)); //message_port_pub(pmt::mp("control"), kv); samples_to_file("/tmp/detect", &input[i], d_samples_per_symbol, sizeof(gr_complex)); consume_each(i); d_state = gr::lora::DecoderState::FIND_SFD; break; } case gr::lora::DecoderState::FIND_SFD: { const float c = detect_downchirp(input, d_samples_per_symbol); #ifdef DEBUG d_debug << "Cd: " << c << std::endl; #endif if (c > 0.96f) { #ifdef DEBUG d_debug << "SYNC: " << c << std::endl; #endif // Debug stuff samples_to_file("/tmp/sync", input, d_samples_per_symbol, sizeof(gr_complex)); d_state = gr::lora::DecoderState::PAUSE; } else { if(c < -0.97f) { fine_sync(input, d_number_of_bins-1, d_decim_factor * 4); } else { d_corr_fails++; } if (d_corr_fails > 4u) { d_state = gr::lora::DecoderState::DETECT; #ifdef DEBUG d_debug << "Lost sync" << std::endl; #endif } } consume_each((int32_t)d_samples_per_symbol+d_fine_sync); break; } case gr::lora::DecoderState::PAUSE: { d_state = gr::lora::DecoderState::DECODE_HEADER; consume_each(d_samples_per_symbol + d_delay_after_sync); break; } case gr::lora::DecoderState::DECODE_HEADER: { d_phdr.cr = 4u; if (demodulate(input, true)) { decode(true); gr::lora::print_vector_hex(std::cout, &d_decoded[0], d_decoded.size(), false); memcpy(&d_phdr, &d_decoded[0], sizeof(loraphy_header_t)); d_decoded.clear(); d_payload_length = d_phdr.length + MAC_CRC_SIZE * d_phdr.has_mac_crc; //d_phy_crc = SM(decoded[1], 4, 0xf0) | MS(decoded[2], 0xf0, 4); // Calculate number of payload symbols needed uint8_t redundancy = (d_sf > 10 ? 2 : 0); const int symbols_per_block = d_phdr.cr + 4u; const float bits_needed = float(d_payload_length) * 8.0f; const float symbols_needed = bits_needed * (symbols_per_block / 4.0f) / float(d_sf - redundancy); const int blocks_needed = (int)std::ceil(symbols_needed / symbols_per_block); d_payload_symbols = blocks_needed * symbols_per_block; #ifdef DEBUG d_debug << "LEN: " << d_payload_length << " (" << d_payload_symbols << " symbols)" << std::endl; #endif d_state = gr::lora::DecoderState::DECODE_PAYLOAD; } consume_each((int32_t)d_samples_per_symbol+d_fine_sync); break; } case gr::lora::DecoderState::DECODE_PAYLOAD: { //************************************************************************** // Failsafe if decoding length reaches end of actual data == noise reached? // Could be replaced be rejecting packets with CRC mismatch... if (std::abs(input[0]) < d_energy_threshold) { //printf("\n*** Decode payload reached end of data! (payload length in HDR is wrong)\n"); d_payload_symbols = 0; } //************************************************************************** if (demodulate(input, false)) { d_payload_symbols -= (4u + d_phdr.cr); if (d_payload_symbols <= 0) { decode(false); gr::lora::print_vector_hex(std::cout, &d_decoded[0], d_payload_length, true); msg_lora_frame(); d_state = gr::lora::DecoderState::DETECT; d_decoded.clear(); } } consume_each((int32_t)d_samples_per_symbol+d_fine_sync); break; } case gr::lora::DecoderState::STOP: { consume_each(d_samples_per_symbol); break; } default: { std::cerr << "[LoRa Decoder] WARNING : No state! Shouldn't happen\n"; break; } } // DBGR_INTERMEDIATE_TIME_MEASUREMENT(); // Tell runtime system how many output items we produced. return 0; } void decoder_impl::set_sf(const uint8_t sf) { (void) sf; std::cerr << "[LoRa Decoder] WARNING : Setting the spreading factor during execution is currently not supported." << std::endl << "Nothing set, kept SF of " << d_sf << "." << std::endl; } void decoder_impl::set_samp_rate(const float samp_rate) { (void) samp_rate; std::cerr << "[LoRa Decoder] WARNING : Setting the sample rate during execution is currently not supported." << std::endl << "Nothing set, kept SR of " << d_samples_per_second << "." << std::endl; } void decoder_impl::set_abs_threshold(const float threshold) { d_energy_threshold = gr::lora::clamp(threshold, 0.0f, 20.0f); } } /* namespace lora */ } /* namespace gr */