/* -*- c++ -*- */ /* * Copyright 2016 Pieter Robyns. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include "decoder_impl.h" #include "tables.h" #include "utilities.h" //#define NO_TMP_WRITES 1 //#define CFO_CORRECT 1 namespace gr { namespace lora { decoder::sptr decoder::make(int sf) { return gnuradio::get_initial_sptr (new decoder_impl(sf)); } /* * The private constructor */ decoder_impl::decoder_impl(int sf) : gr::sync_block("decoder", gr::io_signature::make(1, -1, sizeof(gr_complex)), gr::io_signature::make(0, 2, sizeof(float))) { d_state = DETECT; d_debug_samples.open("/tmp/grlora_debug", std::ios::out | std::ios::binary); d_debug.open("/tmp/grlora_debug_txt", std::ios::out); d_sf = sf; // Only affects PHY send d_bw = 125000; d_cr = 4; d_bits_per_second = (double)d_sf * (4.0f/4.0f+d_cr) / (pow(2.0f, d_sf) / d_bw); d_samples_per_second = 1000000; d_symbols_per_second = (double)d_bw / pow(2.0f, d_sf); d_bits_per_symbol = (uint32_t)(d_bits_per_second / d_symbols_per_second); d_samples_per_symbol = (uint32_t)(d_samples_per_second / d_symbols_per_second); d_delay_after_sync = d_samples_per_symbol / 4; //262; d_delay_after_sync += (uint32_t)d_delay_after_sync * 2.4f / 100.0f; d_corr_decim_factor = 8; // samples_per_symbol / corr_decim_factor = correlation window. Also serves as preamble decimation factor d_number_of_bins = (uint32_t)pow(2, d_sf); d_number_of_bins_hdr = d_number_of_bins / 4; d_payload_symbols = 0; d_cfo_estimation = 0.0f; d_cfo_step = 0; d_dt = 1.0f / d_samples_per_second; // Some preparations std::cout << "Bits per symbol: " << d_bits_per_symbol << std::endl; std::cout << "Bins per symbol: " << d_number_of_bins << std::endl; std::cout << "Header bins per symbol: " << d_number_of_bins_hdr << std::endl; std::cout << "Samples per symbol: " << d_samples_per_symbol << std::endl; std::cout << "Decimation: " << d_samples_per_symbol / d_number_of_bins << std::endl; build_ideal_chirps(); set_output_multiple(2*d_samples_per_symbol); d_fft.resize(d_number_of_bins); d_mult.resize(d_number_of_bins); d_q = fft_create_plan(d_number_of_bins, &d_mult[0], &d_fft[0], LIQUID_FFT_FORWARD, 0); // Decimation filter float g[DECIMATOR_FILTER_SIZE]; liquid_firdes_rrcos(8, 1, 0.5f, 0.3f, g); // Filter for interpolating for (uint32_t i = 0; i < DECIMATOR_FILTER_SIZE; i++) // Reverse it to get decimation filter d_decim_h[i] = g[DECIMATOR_FILTER_SIZE-i-1]; d_decim_factor = d_samples_per_symbol / d_number_of_bins; d_decim = firdecim_crcf_create(d_decim_factor, d_decim_h, DECIMATOR_FILTER_SIZE); } /* * Our virtual destructor. */ decoder_impl::~decoder_impl() { if(d_debug_samples.is_open()) d_debug_samples.close(); if(d_debug.is_open()) d_debug.close(); fft_destroy_plan(d_q); firdecim_crcf_destroy(d_decim); } void decoder_impl::build_ideal_chirps(void) { d_downchirp.resize(d_samples_per_symbol); d_upchirp.resize(d_samples_per_symbol); d_downchirp_ifreq.resize(d_samples_per_symbol); d_upchirp_ifreq.resize(d_samples_per_symbol); double dir; double T = 1.0f / d_symbols_per_second; double f0 = (d_bw / 2.0f); double amplitude = 1.0f; // Store time domain signal dir = 1.0f; for(int i = 0; i < d_samples_per_symbol; i++) { // Width in number of samples = samples_per_symbol // See https://en.wikipedia.org/wiki/Chirp#Linear double t = d_dt * i; d_downchirp[i] = gr_complex(amplitude, amplitude) * gr_expj(dir * 2.0f * M_PI * (f0 * t + (-1.0f * (0.5 * d_bw / T) * pow(t, 2)))); } dir = -1.0f; for(int i = 0; i < d_samples_per_symbol; i++) { double t = d_dt * i; d_upchirp[i] = gr_complex(amplitude, amplitude) * gr_expj(dir * 2.0f * M_PI * (f0 * t + (-1.0f * (0.5 * d_bw / T) * pow(t, 2)))); } // Store instant. frequency instantaneous_frequency(&d_downchirp[0], &d_downchirp_ifreq[0], d_samples_per_symbol); instantaneous_frequency(&d_upchirp[0], &d_upchirp_ifreq[0], d_samples_per_symbol); samples_to_file("/tmp/downchirp", &d_downchirp[0], d_downchirp.size(), sizeof(gr_complex)); samples_to_file("/tmp/upchirp", &d_upchirp[0], d_upchirp.size(), sizeof(gr_complex)); } void decoder_impl::samples_to_file(const std::string path, const gr_complex* v, int length, int elem_size) { #ifndef NO_TMP_WRITES std::ofstream out_file; out_file.open(path.c_str(), std::ios::out | std::ios::binary); //for(std::vector::const_iterator it = v.begin(); it != v.end(); ++it) { for(uint32_t i = 0; i < length; i++) { out_file.write(reinterpret_cast(&v[i]), elem_size); } out_file.close(); #endif } void decoder_impl::samples_debug(const gr_complex* v, int length) { gr_complex start_indicator(0.0f,32.0f); d_debug_samples.write(reinterpret_cast(&start_indicator), sizeof(gr_complex)); for(uint32_t i = 1; i < length; i++) { d_debug_samples.write(reinterpret_cast(&v[i]), sizeof(gr_complex)); } } bool decoder_impl::calc_energy_threshold(gr_complex* samples, int window_size, float threshold) { float result = 0.0f; for(int i = 0; i < window_size; i++) { result += std::pow(abs(samples[i]), 2); } result /= (float)window_size; //d_debug << "T: " << result << "\n"; if(result > threshold) { return true; } else { return false; } } void decoder_impl::instantaneous_frequency(const gr_complex* in_samples, float* out_ifreq, uint32_t window) { float iphase[window]; if(window < 2) { // TODO: throw warning here return; } instantaneous_phase(in_samples, iphase, window); // Instant freq for(uint32_t i = 1; i < window; i++) { out_ifreq[i-1] = iphase[i] - iphase[i-1]; } out_ifreq[window-1] = out_ifreq[window-2]; // Make sure there is no strong gradient if this value is accessed by mistake } inline void decoder_impl::instantaneous_phase(const gr_complex* in_samples, float* out_iphase, uint32_t window) { for(uint32_t i = 0; i < window; i++) { out_iphase[i] = arg(in_samples[i]); // = the same as atan2(imag(in_samples[i]),real(in_samples[i])); } liquid_unwrap_phase(out_iphase, window); } float decoder_impl::cross_correlate(const gr_complex *samples_1, const gr_complex *samples_2, int window) { float result = 0.0f; for (int i = 0; i < window; i++) { result += real(samples_1[i] * conj(samples_2[i])); } result = result / window; return result; } float decoder_impl::detect_downchirp(const gr_complex *samples, uint32_t window) { float samples_ifreq[window]; instantaneous_frequency(samples, samples_ifreq, window); return norm_cross_correlate(samples_ifreq, &d_downchirp_ifreq[0], window); } /** * Calculate normalized cross correlation of real values. * See https://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation. */ float decoder_impl::norm_cross_correlate(const float *samples_1, const float *samples_2, uint32_t window) { float result = 0.0f; double average_1 = std::accumulate(samples_1, samples_1 + window, 0.0) / window; double average_2 = std::accumulate(samples_2, samples_2 + window, 0.0) / window; double sd_1 = stddev(samples_1, window, average_1); double sd_2 = stddev(samples_2, window, average_2); for (int i = 0; i < window-1; i++) { result += (samples_1[i] - average_1) * (samples_2[i] - average_2) / (sd_1 * sd_2); } result = result / window; return result; } float decoder_impl::sliding_norm_cross_correlate(const float *samples_1, const float *samples_2, uint32_t window, uint32_t slide, int32_t* index) { float correlations[slide*2]; float samples_1_padded[window+slide*2]; double average_1 = std::accumulate(samples_1, samples_1 + window, 0.0) / window; double average_2 = std::accumulate(samples_2, samples_2 + window, 0.0) / window; double sd_1 = stddev(samples_1, window, average_1); double sd_2 = stddev(samples_2, window, average_2); // Create padding on both sides of the samples for(uint32_t i = 0; i < window+slide*2; i++) { samples_1_padded[i] = 0.0f; } for(uint32_t i = 0; i < window; i++) { samples_1_padded[i+slide-1] = samples_1[i]; } // Slide and correlate for(uint32_t i = 0; i < 2*slide; i++) { float result = 0.0f; for (uint32_t j = 0; j < window; j++) { result += (samples_1_padded[i+j] - average_1) * (samples_2[j] - average_2) / (sd_1 * sd_2); } correlations[i] = result / window; } uint32_t argmax = (std::max_element(correlations,correlations+slide*2) - correlations); // Determine best correlation *index = argmax - slide; // Determine how much we have to slide before the best correlation is reached return correlations[argmax]; } float decoder_impl::stddev(const float *values, int len, float mean) { double variance = 0.0f; for (unsigned int i = 0; i < len; i++) { variance += std::pow(values[i] - mean, 2); } variance /= len; return std::sqrt(variance); } float decoder_impl::detect_upchirp(const gr_complex *samples, uint32_t window, int32_t* index) { float samples_ifreq[window]; instantaneous_frequency(samples, samples_ifreq, window); return sliding_norm_cross_correlate(samples_ifreq, &d_upchirp_ifreq[0], window, d_samples_per_symbol / d_corr_decim_factor, index); } unsigned int decoder_impl::get_shift_fft(gr_complex* samples) { float fft_mag[d_number_of_bins]; gr_complex mult_hf[d_samples_per_symbol]; #ifdef CFO_CORRECT determine_cfo(&samples[0]); d_debug << "CFO: " << d_cfo_estimation << std::endl; correct_cfo(&samples[0], d_samples_per_symbol); #endif samples_to_file("/tmp/data", &samples[0], d_samples_per_symbol, sizeof(gr_complex)); // Multiply with ideal downchirp for(uint32_t i = 0; i < d_samples_per_symbol; i++) { mult_hf[i] = conj(samples[i] * d_downchirp[i]); } samples_to_file("/tmp/mult", &mult_hf[0], d_samples_per_symbol, sizeof(gr_complex)); // Perform decimation for (uint32_t i = 0; i < d_number_of_bins; i++) { firdecim_crcf_execute(d_decim, &mult_hf[d_decim_factor*i], &d_mult[i]); } samples_to_file("/tmp/resampled", &d_mult[0], d_number_of_bins, sizeof(gr_complex)); // Perform FFT fft_execute(d_q); // Get magnitude for(int i = 0; i < d_number_of_bins; i++) { fft_mag[i] = abs(d_fft[i]); } samples_to_file("/tmp/fft", &d_fft[0], d_number_of_bins, sizeof(gr_complex)); // Return argmax here return (std::max_element(fft_mag,fft_mag+d_number_of_bins) - fft_mag); } unsigned int decoder_impl::max_frequency_gradient_idx(gr_complex* samples) { float instantaneous_phase[d_samples_per_symbol]; float instantaneous_freq[d_samples_per_symbol]; float bins[d_number_of_bins]; // Determine instant phase for(unsigned int i = 0; i < d_samples_per_symbol; i++) { instantaneous_phase[i] = arg(samples[i]); } liquid_unwrap_phase(instantaneous_phase, d_samples_per_symbol); float max_if_diff = 2000.0f; unsigned int max_if_diff_idx = 0; for(unsigned int i = 1; i < d_samples_per_symbol; i++) { float ifreq = (instantaneous_phase[i] - instantaneous_phase[i-1]) / (2.0f * M_PI) * d_samples_per_second; // TODO: constant multiplication can be removed instantaneous_freq[i-1] = ifreq; } int osr = d_samples_per_symbol / d_number_of_bins; float last_avg = instantaneous_freq[0]; for(unsigned int i = 0; i < d_number_of_bins; i++) { float avg = 0.0f; for(unsigned int j = 0; j < osr; j++) { avg += instantaneous_freq[(osr*i) + j]; } avg /= osr; float diff = abs(last_avg - avg); if(diff > max_if_diff) { max_if_diff = diff; max_if_diff_idx = i; } last_avg = avg; } //std::cout << "!!!" << max_if_diff << std::endl; return max_if_diff_idx; } bool decoder_impl::demodulate(gr_complex* samples, bool is_header) { //unsigned int bin_idx = max_frequency_gradient_idx(samples); unsigned int bin_idx = get_shift_fft(samples); //unsigned int bin_idx_test = get_shift_fft(samples); unsigned int bin_idx_test = 0; // Header has additional redundancy if(is_header) { bin_idx /= 4; bin_idx_test /= 4; } // Decode (actually gray encode) the bin to get the symbol value unsigned int word = gray_encode(bin_idx); d_debug << to_bin(word, is_header ? d_sf-2 : d_sf) << " " << bin_idx << std::endl; d_words.push_back(word); // Look for 4+cr symbols and stop if(d_words.size() == (4 + d_cr)) { // Deinterleave if(is_header) { deinterleave(d_sf - 2); } else { deinterleave(d_sf); } return true; // Signal that a block is ready for decoding } return false; // We need more words in order to decode a block } void decoder_impl::deinterleave(int ppm) { unsigned int bits_per_word = d_words.size(); if(bits_per_word > 8) { // Not sure if this can ever occur. It would imply coding rate high than 4/8 e.g. 4/9. std::cout << "More than 8 bits per word. uint8_t will not be sufficient! Bytes need to be stored in intermediate array and then packed into words_deinterleaved!" << std::endl; } unsigned int offset_start = ppm-1; std::vector words_deinterleaved; for(unsigned int i = 0; i < ppm; i++) { uint8_t d = 0; unsigned int offset_diag = offset_start; for(unsigned int j = 0; j < bits_per_word; j++) { uint8_t power = pow(2, j); unsigned int power_check = pow(2, offset_diag); // TODO: Here we are actually reversing endianess. This needs to be fixed in the future by implementing the interleaving similarly to how it is done in the Python based decoder. if((d_words[j] & power_check) > 0) { // Mask triggers d += power; } if(offset_diag == 0) offset_diag = ppm-1; else offset_diag -= 1; } offset_start -= 1; words_deinterleaved.push_back(d); } //print_vector(words_deinterleaved, "D", sizeof(uint8_t)*8); std::reverse(words_deinterleaved.begin(),words_deinterleaved.end()); // Add to demodulated data for(int i = 0; i < words_deinterleaved.size(); i++) { d_demodulated.push_back(words_deinterleaved[i]); } // Cleanup d_words.clear(); } int decoder_impl::decode(uint8_t* out_data, bool is_header) { const uint8_t* prng = NULL; const uint8_t shuffle_pattern[] = {7, 6, 3, 4, 2, 1, 0, 5}; if(is_header) { prng = prng_header; } else { prng = prng_payload; } deshuffle(shuffle_pattern); dewhiten(prng); hamming_decode(out_data); // Nibbles are reversed nibble_reverse(out_data, d_payload_length); // Print result std::stringstream result; for (int i = 0; i < d_payload_length; i++) { result << " " << std::hex << std::setw(2) << std::setfill('0') << (int)out_data[i]; } if(!is_header) std::cout << result.str() << std::endl; else std::cout << result.str(); return 0; } void decoder_impl::deshuffle(const uint8_t* shuffle_pattern) { for(int i = 0; i < d_demodulated.size(); i++) { uint8_t original = d_demodulated[i]; uint8_t result = 0; for(int j = 0; j < sizeof(shuffle_pattern) / sizeof(uint8_t); j++) { uint8_t mask = pow(2, shuffle_pattern[j]); if((original & mask) > 0) { result += pow(2, j); } } d_words_deshuffled.push_back(result); } //print_vector(d_words_deshuffled, "S", sizeof(uint8_t)*8); // We're done with these words d_demodulated.clear(); } void decoder_impl::dewhiten(const uint8_t* prng) { for(int i = 0; i < d_words_deshuffled.size(); i++) { uint8_t xor_b = d_words_deshuffled[i] ^ prng[i]; xor_b = (xor_b & 0xF0) >> 4 | (xor_b & 0x0F) << 4; // TODO: reverse bit order is performed here, but is probably due to mistake in interleaving xor_b = (xor_b & 0xCC) >> 2 | (xor_b & 0x33) << 2; xor_b = (xor_b & 0xAA) >> 1 | (xor_b & 0x55) << 1; d_words_dewhitened.push_back(xor_b); } //print_vector(d_words_dewhitened, "W", sizeof(uint8_t)*8); d_words_deshuffled.clear(); } void decoder_impl::hamming_decode(uint8_t* out_data) { unsigned int n = ceil(d_words_dewhitened.size() * 4.0f / (4.0f + d_cr)); fec_scheme fs = LIQUID_FEC_HAMMING84; if(d_cr == 4) fs = LIQUID_FEC_HAMMING84; else if(d_cr == 3) fs = LIQUID_FEC_HAMMING74; else if(d_cr == 2) fs = LIQUID_FEC_HAMMING128; else if(d_cr == 1) { // TODO: Temporary, since Liquid doesn't support 4/5 Hamming so we need to implement it ourselves / extend Liquid. uint8_t indices[4] = {1, 2, 3, 5}; fec_extract_data_only(&d_words_dewhitened[0], d_words_dewhitened.size(), indices, 4, out_data); d_words_dewhitened.clear(); return; } unsigned int k = fec_get_enc_msg_length(fs, n); fec hamming = fec_create(fs, NULL); fec_decode(hamming, n, &d_words_dewhitened[0], out_data); d_words_dewhitened.clear(); fec_destroy(hamming); } void decoder_impl::nibble_reverse(uint8_t* out_data, int len) { for(int i = 0; i < len; i++) { out_data[i] = ((out_data[i] & 0x0f) << 4) | ((out_data[i] & 0xf0) >> 4); } } void decoder_impl::determine_cfo(const gr_complex* samples) { float instantaneous_phase[d_samples_per_symbol]; float instantaneous_freq[d_samples_per_symbol]; // Determine instant phase for(unsigned int i = 0; i < d_samples_per_symbol; i++) { instantaneous_phase[i] = arg(samples[i]); } liquid_unwrap_phase(instantaneous_phase, d_samples_per_symbol); // Determine instant freq for(unsigned int i = 1; i < d_samples_per_symbol; i++) { float ifreq = (instantaneous_phase[i] - instantaneous_phase[i-1]) / (2.0f * M_PI) * d_samples_per_second; instantaneous_freq[i-1] = ifreq; } float sum = 0.0f; for(int i = 0; i < d_samples_per_symbol-1; i++) { sum += instantaneous_freq[i]; } sum /= d_samples_per_symbol-1; d_cfo_estimation = sum; /*d_cfo_estimation = (*std::max_element(instantaneous_freq, instantaneous_freq+d_samples_per_symbol-1) + *std::min_element(instantaneous_freq, instantaneous_freq+d_samples_per_symbol-1)) / 2;*/ } void decoder_impl::correct_cfo(gr_complex* samples, int num_samples) { for(uint32_t i = 0; i < num_samples; i++) { samples[i] = samples[i] * gr_expj(2.0f * M_PI * -d_cfo_estimation * (d_dt * d_cfo_step)); d_cfo_step += 1; } } int decoder_impl::find_preamble_start(gr_complex* samples) { for(int i = 0; i < d_samples_per_symbol; i++) { unsigned int c = get_shift_fft(&samples[i]); if(c == 0) { return i; } } } int decoder_impl::find_preamble_start_fast(gr_complex* samples, uint32_t len) { int decimation = d_corr_decim_factor; int decim_size = d_samples_per_symbol / decimation; float decim[decimation]; float gradient[decimation]; uint32_t rising = 0; uint32_t rising_required = 2; gradient[0] = 0.0f; for(int i = 0; i < decimation; i++) { float s[2] = { arg(samples[i*decim_size]), arg(samples[(i+1)*decim_size]) }; liquid_unwrap_phase(s, 2); decim[i] = (s[1] - s[0]) / (2.0f * M_PI) * d_samples_per_second; } for(int i = 1; i < decimation; i++) { gradient[i] = decim[i] - decim[i-1]; if(gradient[i] > gradient[i-1]) rising++; if(rising >= rising_required && gradient[i] <= -20000) { // TODO: Make this a bit more logical, e.g. d_bw / decimation * 2 -> 2 steps down return i*decim_size; } //d_debug << "G:" << gradient[i] << std::endl; } return -1; } uint8_t decoder_impl::lookup_cr(uint8_t bytevalue) { switch (bytevalue & 0x0f) { case 0x0a: { return 4; break; } case 0x0b: { return 3; break; } case 0x0c: { return 2; break; } case 0x08: { return 1; break; } default: { return 4; break; } } } int decoder_impl::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { gr_complex * input = (gr_complex*) input_items[0]; float *out = (float*)output_items[0]; switch(d_state) { case DETECT: { int i = find_preamble_start_fast(&input[0], 2*d_samples_per_symbol); if(i != -1) { uint32_t c_window = std::min(2*d_samples_per_symbol - i, d_samples_per_symbol); int32_t index_correction = 0; float c = detect_upchirp(&input[i], c_window, &index_correction); if(c > 0.8f) { d_debug << "Cu: " << c << std::endl; samples_to_file("/tmp/detectb", &input[i], d_samples_per_symbol, sizeof(gr_complex)); samples_to_file("/tmp/detect", &input[i+index_correction], d_samples_per_symbol, sizeof(gr_complex)); d_corr_fails = 0; d_state = SYNC; consume_each(i+index_correction); break; } } consume_each(2*d_samples_per_symbol); break; } case SYNC: { double c = detect_downchirp(&input[0], d_samples_per_symbol); d_debug << "Cd: " << c << std::endl; if(c > 0.8f) { d_debug << "SYNC: " << c << std::endl; // Debug stuff samples_to_file("/tmp/sync", &input[0], d_samples_per_symbol, sizeof(gr_complex)); d_state = PAUSE; d_cr = 4; consume_each(d_samples_per_symbol); } else { d_corr_fails++; if(d_corr_fails > 32) { d_state = DETECT; } consume_each(d_samples_per_symbol); } break; } case PAUSE: { d_state = DECODE_HEADER; samples_debug(input, d_samples_per_symbol + d_delay_after_sync); consume_each(d_samples_per_symbol + d_delay_after_sync); break; } case DECODE_HEADER: { if(demodulate(input, true)) { uint8_t decoded[3]; d_payload_length = 3; // TODO: A bit messy. I think it's better to make an internal decoded std::vector decode(decoded, true); nibble_reverse(decoded, 1); // TODO: Why? d_payload_length = decoded[0]; d_cr = lookup_cr(decoded[2]); int symbols_per_block = d_cr + 4; int bits_needed = ((d_payload_length * 8) + 16) * (symbols_per_block / 4); float symbols_needed = float(bits_needed) / float(d_sf); int blocks_needed = ceil(symbols_needed / symbols_per_block); d_payload_symbols = blocks_needed * symbols_per_block; d_debug << "LEN: " << d_payload_length << " (" << d_payload_symbols << " symbols)" << std::endl; d_state = DECODE_PAYLOAD; } samples_debug(input, d_samples_per_symbol); consume_each(d_samples_per_symbol); break; } case DECODE_PAYLOAD: { if(demodulate(input, false)) { d_payload_symbols -= (4 + d_cr); if(d_payload_symbols <= 0) { uint8_t decoded[d_payload_length]; decode(decoded, false); d_state = DETECT; } } samples_debug(input, d_samples_per_symbol); consume_each(d_samples_per_symbol); break; } case STOP: { consume_each(d_samples_per_symbol); break; } default: { std::cout << "Shouldn't happen\n"; break; } } // Tell runtime system how many output items we produced. return 0; } void decoder_impl::set_sf(uint8_t sf) { if(sf >= 7 && sf <= 13) d_sf = sf; } } /* namespace lora */ } /* namespace gr */