gr-lora/lib/decoder_impl.cc

537 wiersze
19 KiB
C++
Czysty Zwykły widok Historia

2016-08-11 11:37:40 +00:00
/* -*- c++ -*- */
/*
* Copyright 2016 Pieter Robyns.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include <gnuradio/expj.h>
#include <liquid/liquid.h>
#include "decoder_impl.h"
#include "tables.h"
#include "utilities.h"
#define CORRELATION_SEARCH_RANGE 1024
#define DELAY_AFTER_SYNC 262
//#define NO_TMP_WRITES 1
namespace gr {
namespace lora {
decoder::sptr
decoder::make(int finetune) {
return gnuradio::get_initial_sptr
(new decoder_impl(finetune));
}
/*
* The private constructor
*/
decoder_impl::decoder_impl(int finetune) : gr::sync_block("decoder",
gr::io_signature::make(1, -1, sizeof(gr_complex)),
gr::io_signature::make(0, 2, sizeof(float))) {
d_state = DETECT;
d_debug_samples.open("/tmp/grlora_debug", std::ios::out | std::ios::binary);
d_debug.open("/tmp/grlora_debug_txt", std::ios::out);
d_sf = 7; // Only affects PHY send
d_bw = 125000;
d_cr = 4;
d_bits_per_second = (double)d_sf * 1.0f / (pow(2.0f, d_sf) / d_bw);
d_samples_per_second = 1000000;
d_symbols_per_second = (double)d_bw / pow(2.0f, d_sf);
d_bits_per_symbol = (uint32_t)(d_bits_per_second / d_symbols_per_second);
d_samples_per_symbol = (uint32_t)(d_samples_per_second / d_symbols_per_second);
d_number_of_bins = (uint32_t)pow(2, d_sf);
d_number_of_bins_hdr = d_number_of_bins / 4;
d_compression = 8;
d_payload_symbols = 0;
d_finetune = finetune;
// Some preparations
std::cout << "Bits per symbol: " << d_bits_per_symbol << std::endl;
std::cout << "Bins per symbol: " << d_number_of_bins << std::endl;
std::cout << "Header bins per symbol: " << d_number_of_bins_hdr << std::endl;
std::cout << "Samples per symbol: " << d_samples_per_symbol << std::endl;
build_ideal_downchirp();
set_output_multiple(2*d_samples_per_symbol);
d_fft.resize(d_samples_per_symbol);
d_mult.resize(d_samples_per_symbol);
d_q = fft_create_plan(d_samples_per_symbol, &d_mult[0], &d_fft[0], LIQUID_FFT_FORWARD, 0);
}
/*
* Our virtual destructor.
*/
decoder_impl::~decoder_impl() {
if(d_debug_samples.is_open())
d_debug_samples.close();
if(d_debug.is_open())
d_debug.close();
fft_destroy_plan(d_q);
}
void decoder_impl::build_ideal_downchirp(void) {
d_downchirp.resize(d_samples_per_symbol);
d_downchirp_fft.resize(d_samples_per_symbol);
double T = 1.0f / d_symbols_per_second;
double dir = -1.0f;
double dt = 1.0f / d_samples_per_second;
double f0 = (d_bw / 2.0f);
double amplitude = 1.0f;
// Store time domain signal
for(int i = 0; i < d_samples_per_symbol; i++) { // Width in number of samples = samples_per_symbol
// See https://en.wikipedia.org/wiki/Chirp#Linear
double t = dt * i;
d_downchirp[i] = gr_complex(amplitude, amplitude) * gr_expj(2.0f * M_PI * (f0 * t + (dir * (0.5 * d_bw / T) * pow(t, 2))));
}
// Store FFT of downchirp TODO needed?
int flags = 0;
fftplan q = fft_create_plan(d_samples_per_symbol, &d_downchirp[0], &d_downchirp_fft[0], LIQUID_FFT_FORWARD, flags);
fft_execute(q);
fft_destroy_plan(q);
samples_to_file("/tmp/downchirp", &d_downchirp[0], d_downchirp.size(), sizeof(gr_complex));
samples_to_file("/tmp/downchirp_fft", &d_downchirp_fft[0], d_downchirp_fft.size(), sizeof(gr_complex));
}
void decoder_impl::samples_to_file(const std::string path, const gr_complex* v, int length, int elem_size) {
#ifndef NO_TMP_WRITES
std::ofstream out_file;
2016-08-29 07:36:01 +00:00
out_file.open(path.c_str(), std::ios::out | std::ios::binary);
2016-08-11 11:37:40 +00:00
//for(std::vector<gr_complex>::const_iterator it = v.begin(); it != v.end(); ++it) {
for(uint32_t i = 0; i < length; i++) {
out_file.write(reinterpret_cast<const char *>(&v[i]), elem_size);
}
out_file.close();
#endif
}
void decoder_impl::samples_debug(const gr_complex* v, int length) {
gr_complex start_indicator(0.0f,32.0f);
d_debug_samples.write(reinterpret_cast<const char *>(&start_indicator), sizeof(gr_complex));
for(uint32_t i = 1; i < length; i++) {
d_debug_samples.write(reinterpret_cast<const char *>(&v[i]), sizeof(gr_complex));
}
}
bool decoder_impl::calc_energy_threshold(gr_complex* samples, int window_size, float threshold) {
float result = 0.0f;
for(int i = 0; i < window_size; i++) {
result += std::pow(abs(samples[i]), 2);
}
result /= (float)window_size;
//d_debug << "T: " << result << "\n";
if(result > threshold) {
return true;
} else {
return false;
}
}
inline void decoder_impl::phase(gr_complex* in_samples, float* out_phase, int window) {
for(int i = 0; i < window; i++) {
out_phase[i] = arg(in_samples[i]); // = the same as atan2(imag(in_samples[i]),real(in_samples[i]));
}
}
double decoder_impl::freq_cross_correlate(const gr_complex *samples_1, const gr_complex *samples_2, int window) {
double result = 0.0f;
float instantaneous_phase[window];
float instantaneous_phase_down[window];
float instantaneous_freq[window];
float instantaneous_freq_down[window];
// Determine instant phase
for(unsigned int i = 0; i < window; i++) {
instantaneous_phase[i] = arg(samples_1[i]);
instantaneous_phase_down[i] = arg(samples_2[i]);
}
liquid_unwrap_phase(instantaneous_phase, window);
liquid_unwrap_phase(instantaneous_phase_down, window);
// Instant freq
for(unsigned int i = 1; i < window; i++) {
instantaneous_freq[i-1] = instantaneous_phase[i] - instantaneous_phase[i-1];
instantaneous_freq_down[i-1] = instantaneous_phase_down[i] - instantaneous_phase_down[i-1];
}
for (int i = 0; i < window-1; i++) {
result += instantaneous_freq[i] * instantaneous_freq_down[i];
}
result = result / window;
return result;
}
// TODO: Instead of the finetuning parameter, one could look at the minimum
// and maximum instantaneous frequency to determine how detuned the sender
// is from the channel frequency.
int decoder_impl::sync_fft(const gr_complex* samples) {
float fft_mag[d_samples_per_symbol];
// Multiply with ideal downchirp
for(uint32_t i = 0; i < d_samples_per_symbol; i++) {
d_mult[i] = samples[i] * d_downchirp[i];
}
// Perform FFT
fft_execute(d_q);
// Get magnitude
for(int i = 0; i < d_samples_per_symbol; i++) {
fft_mag[i] = abs(d_fft[i]);
}
samples_to_file("/tmp/fft", &d_fft[0], d_samples_per_symbol, sizeof(gr_complex));
// Return argmax here
return (std::max_element(fft_mag,fft_mag+d_samples_per_symbol) - fft_mag);
}
unsigned int decoder_impl::max_frequency_gradient_idx(gr_complex* samples) {
float instantaneous_phase[d_samples_per_symbol];
float instantaneous_freq[d_samples_per_symbol];
float bins[d_number_of_bins];
// Determine instant phase
for(unsigned int i = 0; i < d_samples_per_symbol; i++) {
instantaneous_phase[i] = arg(samples[i]);
}
liquid_unwrap_phase(instantaneous_phase, d_samples_per_symbol);
float max_if_diff = 2000.0f;
unsigned int max_if_diff_idx = 0;
for(unsigned int i = 1; i < d_samples_per_symbol; i++) {
float ifreq = (instantaneous_phase[i] - instantaneous_phase[i-1]) / (2.0f * M_PI) * d_samples_per_second; // TODO: constant multiplication can be removed
instantaneous_freq[i-1] = ifreq;
}
int osr = d_samples_per_symbol / d_number_of_bins;
float last_avg = instantaneous_freq[0];
for(unsigned int i = 0; i < d_number_of_bins; i++) {
float avg = 0.0f;
for(unsigned int j = 0; j < osr; j++) {
avg += instantaneous_freq[(osr*i) + j];
}
avg /= osr;
float diff = abs(last_avg - avg);
if(diff > max_if_diff) {
max_if_diff = diff;
max_if_diff_idx = i;
}
last_avg = avg;
}
//std::cout << "!!!" << max_if_diff << std::endl;
return max_if_diff_idx;
}
bool decoder_impl::demodulate(gr_complex* samples, bool is_header) {
unsigned int bin_idx = max_frequency_gradient_idx(samples);
// Header has additional redundancy
if(is_header) {
bin_idx /= 4;
}
// Decode (actually gray encode) the bin to get the symbol value
unsigned int word = gray_encode(bin_idx);
d_debug << bin_idx << " " << to_bin(word, is_header ? 5 : 7) << std::endl;
d_words.push_back(word);
// Look for 4+cr symbols and stop
if(d_words.size() == (4 + d_cr)) {
// Deinterleave
if(is_header) {
//print_vector(d_words, "M", d_sf - 2);
deinterleave(d_sf - 2);
} else {
//print_vector(d_words, "M", d_sf);
deinterleave(d_sf);
}
return true; // Signal that a block is ready for decoding
}
return false; // We need more words in order to decode a block
}
void decoder_impl::deinterleave(int ppm) {
unsigned int bits_per_word = d_words.size();
if(bits_per_word > 8) { // Not sure if this can ever occur. It would imply coding rate high than 4/8 e.g. 4/9.
std::cout << "More than 8 bits per word. uint8_t will not be sufficient! Bytes need to be stored in intermediate array and then packed into words_deinterleaved!" << std::endl;
}
unsigned int offset_start = ppm-1;
std::vector<uint8_t> words_deinterleaved;
for(unsigned int i = 0; i < ppm; i++) {
uint8_t d = 0;
unsigned int offset_diag = offset_start;
for(unsigned int j = 0; j < bits_per_word; j++) {
uint8_t power = pow(2, j);
unsigned int power_check = pow(2, offset_diag); // TODO: Here we are actually reversing endianess. This needs to be fixed in the future by implementing the interleaving similarly to how it is done in the Python based decoder.
if((d_words[j] & power_check) > 0) { // Mask triggers
d += power;
}
if(offset_diag == 0)
offset_diag = ppm-1;
else
offset_diag -= 1;
}
offset_start -= 1;
words_deinterleaved.push_back(d);
}
//print_vector(words_deinterleaved, "D", sizeof(uint8_t)*8);
std::reverse(words_deinterleaved.begin(),words_deinterleaved.end());
// Add to demodulated data
for(int i = 0; i < words_deinterleaved.size(); i++) {
d_demodulated.push_back(words_deinterleaved[i]);
}
// Cleanup
d_words.clear();
}
int decoder_impl::decode(uint8_t* out_data, bool is_header) {
const uint8_t* prng = NULL;
const uint8_t shuffle_pattern[] = {7, 6, 3, 4, 2, 1, 0, 5};
if(is_header) {
prng = prng_header;
} else {
prng = prng_payload;
}
deshuffle(shuffle_pattern);
dewhiten(prng);
hamming_decode(out_data);
// Nibbles are reversed
nibble_reverse(out_data, d_payload_length);
// Print result
std::stringstream result;
for (int i = 0; i < d_payload_length; i++) {
result << " " << std::hex << std::setw(2) << std::setfill('0') << (int)out_data[i];
}
if(!is_header)
std::cout << result.str() << std::endl;
return 0;
}
void decoder_impl::deshuffle(const uint8_t* shuffle_pattern) {
for(int i = 0; i < d_demodulated.size(); i++) {
uint8_t original = d_demodulated[i];
uint8_t result = 0;
for(int j = 0; j < sizeof(shuffle_pattern) / sizeof(uint8_t); j++) {
uint8_t mask = pow(2, shuffle_pattern[j]);
if((original & mask) > 0) {
result += pow(2, j);
}
}
d_words_deshuffled.push_back(result);
}
//print_vector(d_words_deshuffled, "S", sizeof(uint8_t)*8);
// We're done with these words
d_demodulated.clear();
}
void decoder_impl::dewhiten(const uint8_t* prng) {
for(int i = 0; i < d_words_deshuffled.size(); i++) {
uint8_t xor_b = d_words_deshuffled[i] ^ prng[i];
xor_b = (xor_b & 0xF0) >> 4 | (xor_b & 0x0F) << 4; // TODO: reverse bit order is performed here, but is probably due to mistake in interleaving
xor_b = (xor_b & 0xCC) >> 2 | (xor_b & 0x33) << 2;
xor_b = (xor_b & 0xAA) >> 1 | (xor_b & 0x55) << 1;
d_words_dewhitened.push_back(xor_b);
}
//print_vector(d_words_dewhitened, "W", sizeof(uint8_t)*8);
d_words_deshuffled.clear();
}
void decoder_impl::hamming_decode(uint8_t* out_data) {
unsigned int n = ceil(d_words_dewhitened.size() * 4.0 / 8.0);
fec_scheme fs = LIQUID_FEC_HAMMING84;
unsigned int k = fec_get_enc_msg_length(fs, n);
fec hamming = fec_create(fs, NULL);
fec_decode(hamming, n, &d_words_dewhitened[0], out_data);
d_words_dewhitened.clear();
fec_destroy(hamming);
}
void decoder_impl::nibble_reverse(uint8_t* out_data, int len) {
for(int i = 0; i < len; i++) {
out_data[i] = ((out_data[i] & 0x0f) << 4) | ((out_data[i] & 0xf0) >> 4);
}
}
int decoder_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items) {
gr_complex * input = (gr_complex*) input_items[0];
float *out = (float*)output_items[0];
switch(d_state) {
case DETECT: {
if(calc_energy_threshold(input, noutput_items, 0.0002)) {
d_debug << "Got something\n";
// Attempt to synchronize to an upchirp of the preamble
int chirp_start_pos = -1;
for(int i = 0; i < CORRELATION_SEARCH_RANGE; i++) {
int c = sync_fft(&input[i]);
if(c == 0) {
chirp_start_pos = i;
d_debug << "DETECT: " << i << std::endl;
samples_to_file("/tmp/detect", &input[chirp_start_pos + d_finetune], CORRELATION_SEARCH_RANGE, sizeof(gr_complex));
break;
}
}
if(chirp_start_pos != -1) {
d_state = SYNC;
d_corr_fails = 0;
consume_each(chirp_start_pos + d_finetune);
} else {
consume_each(noutput_items);
}
} else {
consume_each(noutput_items);
}
break;
}
case SYNC: {
double c = freq_cross_correlate(&input[0], &d_downchirp[0], CORRELATION_SEARCH_RANGE);
d_debug << "C: " << c << std::endl;
if(c > 0.045f) {
d_debug << "SYNC: " << c << std::endl;
// Debug stuff
samples_to_file("/tmp/sync", &input[0], CORRELATION_SEARCH_RANGE, sizeof(gr_complex));
d_state = PAUSE;
consume_each(d_samples_per_symbol);
} else {
d_corr_fails++;
if(d_corr_fails > 32) {
d_state = DETECT;
}
consume_each(d_samples_per_symbol);
}
break;
}
case PAUSE: {
d_state = DECODE_HEADER;
samples_debug(input, d_samples_per_symbol + DELAY_AFTER_SYNC);
consume_each(d_samples_per_symbol + DELAY_AFTER_SYNC);
break;
}
case DECODE_HEADER: {
if(demodulate(input, true)) {
uint8_t decoded[3];
d_payload_length = 3; // TODO: A bit messy. I think it's better to make an internal decoded std::vector
decode(decoded, true);
nibble_reverse(decoded, 1); // TODO: Why?
d_payload_length = decoded[0];
d_cr = 4; // TODO: Get from header instead of hardcode
int symbols_per_block = d_cr + 4;
int bits_needed = ((d_payload_length * 8) + 16) * (symbols_per_block / 4);
float symbols_needed = float(bits_needed) / float(d_sf);
int blocks_needed = ceil(symbols_needed / symbols_per_block);
d_payload_symbols = blocks_needed * symbols_per_block;
d_debug << "LEN: " << d_payload_length << " (" << d_payload_symbols << " symbols)" << std::endl;
d_state = DECODE_PAYLOAD;
}
samples_debug(input, d_samples_per_symbol);
consume_each(d_samples_per_symbol);
break;
}
case DECODE_PAYLOAD: {
if(demodulate(input, false)) {
d_payload_symbols -= (4 + d_cr);
if(d_payload_symbols <= 0) {
uint8_t decoded[d_payload_length];
decode(decoded, false);
d_state = DETECT;
}
}
samples_debug(input, d_samples_per_symbol);
consume_each(d_samples_per_symbol);
break;
}
case STOP: {
consume_each(d_samples_per_symbol);
break;
}
default: {
std::cout << "Shouldn't happen\n";
break;
}
}
// Tell runtime system how many output items we produced.
return 0;
}
void decoder_impl::set_finetune(int32_t finetune) {
d_finetune = finetune;
}
} /* namespace lora */
} /* namespace gr */