modern_python
jaseg 2022-02-03 01:02:45 +01:00
rodzic 18b9da8660
commit ac66fd9d6b
9 zmienionych plików z 381 dodań i 312 usunięć

Wyświetl plik

@ -4,9 +4,6 @@ Aperture Macros
.. autoclass:: gerbonara.aperture_macros.parse.ApertureMacro
:members:
.. autoclass:: gerbonara.aperture_macros.parse.GenericMacros
:members:
.. autoclass:: gerbonara.aperture_macros.expression.Expression
:members:

Wyświetl plik

@ -1,17 +1,22 @@
Graphic Primitives
==================
Graphic prmitives are the core of Gerbonara's rendering interface. Individual graphic objects such as a Gerber
:py:class:`.Region` as well as entire layers such as a :py:class:`.GerberFile` can be rendered into a list of graphic
primitives. This rendering step resolves aperture definitions, calculates out aperture macros, converts units into a
given target unit, and maps complex shapes to a small number of subclasses of :py:class:`.GraphicPrimitive`.
All graphic primitives have a :py:attr:`~.GraphicPrimitive.polarity_dark` attribute. Its meaning is identical with
:py:attr:`.GraphicObject.polarity_dark`.
.. autoclass:: gerbonara.graphic_primitives.GraphicPrimitive
:members:
.. autoclass:: gerbonara.graphic_primitives.Circle
:members:
The five types of Graphic Primitives
------------------------------------
.. autoclass:: gerbonara.graphic_primitives.Obround
:members:
.. autoclass:: gerbonara.graphic_primitives.ArcPoly
:members:
Stroked lines
~~~~~~~~~~~~~
.. autoclass:: gerbonara.graphic_primitives.Line
:members:
@ -19,9 +24,15 @@ Graphic Primitives
.. autoclass:: gerbonara.graphic_primitives.Arc
:members:
Filled shapes
~~~~~~~~~~~~~
.. autoclass:: gerbonara.graphic_primitives.Circle
:members:
.. autoclass:: gerbonara.graphic_primitives.Rectangle
:members:
.. autoclass:: gerbonara.graphic_primitives.RegularPolygon
.. autoclass:: gerbonara.graphic_primitives.ArcPoly
:members:

Wyświetl plik

@ -159,7 +159,7 @@ class Polygon(Primitive):
rotation += deg_to_rad(calc.rotation)
x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
x, y = x+offset[0], y+offset[1]
return [ gp.RegularPolygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
return [ gp.ArcPoly.from_regular_polygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
def dilate(self, offset, unit):

Wyświetl plik

@ -10,10 +10,9 @@ from . import graphic_primitives as gp
def _flash_hole(self, x, y, unit=None, polarity_dark=True):
if getattr(self, 'hole_rect_h', None) is not None:
w, h = self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)
return [*self._primitives(x, y, unit, polarity_dark),
gp.Rectangle((x, y),
(self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)),
rotation=self.rotation, polarity_dark=(not polarity_dark))]
gp.Rectangle(x, y, w, h, rotation=self.rotation, polarity_dark=(not polarity_dark))]
elif self.hole_dia is not None:
return [*self._primitives(x, y, unit, polarity_dark),
gp.Circle(x, y, self.unit.convert_to(unit, self.hole_dia/2), polarity_dark=(not polarity_dark))]
@ -312,7 +311,7 @@ class ObroundAperture(Aperture):
rotation : float = 0
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
return [ gp.Line.from_obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
@ -370,7 +369,7 @@ class PolygonAperture(Aperture):
self.n_vertices = int(self.n_vertices)
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.RegularPolygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
return [ gp.ArcPoly.from_regular_polygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):

Wyświetl plik

@ -198,13 +198,55 @@ class FileSettings:
return format(value, f'0{integer_digits+decimal_digits+1}.{decimal_digits}f')
class Polyline:
""" Class that is internally used to generate compact SVG renderings. Collectes a number of subsequent
:py:class:`~.graphic_objects.Line` and :py:class:`~.graphic_objects.Arc` instances into one SVG <path>. """
def __init__(self, *lines):
self.coords = []
self.polarity_dark = None
self.width = None
for line in lines:
self.append(line)
def append(self, line):
assert isinstance(line, Line)
if not self.coords:
self.coords.append((line.x1, line.y1))
self.coords.append((line.x2, line.y2))
self.polarity_dark = line.polarity_dark
self.width = line.width
return True
else:
x, y = self.coords[-1]
if self.polarity_dark == line.polarity_dark and self.width == line.width \
and math.isclose(line.x1, x) and math.isclose(line.y1, y):
self.coords.append((line.x2, line.y2))
return True
else:
return False
def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
if not self.coords:
return None
(x0, y0), *rest = self.coords
d = f'M {x0:.6} {y0:.6} ' + ' '.join(f'L {x:.6} {y:.6}' for x, y in rest)
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=d, style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linejoin: round; stroke-linecap: round')
class CamFile:
def __init__(self, original_path=None, layer_name=None, import_settings=None):
self.original_path = original_path
self.layer_name = layer_name
self.import_settings = import_settings
def to_svg(self, tag=Tag, margin=0, arg_unit=MM, svg_unit=MM, force_bounds=None, fg='black', bg='white'):
def to_svg(self, margin=0, arg_unit=MM, svg_unit=MM, force_bounds=None, fg='black', bg='white', tag=Tag):
if force_bounds is None:
(min_x, min_y), (max_x, max_y) = self.bounding_box(svg_unit, default=((0, 0), (0, 0)))
@ -252,15 +294,15 @@ class CamFile:
polyline = gp.Polyline(primitive)
else:
if not polyline.append(primitive):
tags.append(polyline.to_svg(tag, fg, bg))
tags.append(polyline.to_svg(fg, bg, tag=tag))
polyline = gp.Polyline(primitive)
else:
if polyline:
tags.append(polyline.to_svg(tag, fg, bg))
tags.append(polyline.to_svg(fg, bg, tag=tag))
polyline = None
tags.append(primitive.to_svg(tag, fg, bg))
tags.append(primitive.to_svg(fg, bg, tag=tag))
if polyline:
tags.append(polyline.to_svg(tag, fg, bg))
tags.append(polyline.to_svg(fg, bg, tag=tag))
# setup viewport transform flipping y axis
xform = f'translate({content_min_x} {content_min_y+content_h}) scale(1 -1) translate({-content_min_x} {-content_min_y})'

Wyświetl plik

@ -262,7 +262,8 @@ class Region(GraphicObject):
def append(self, obj):
if obj.unit != self.unit:
raise ValueError('Cannot append Polyline with "{obj.unit}" coords to Region with "{self.unit}" coords.')
obj = obj.converted(self.unit)
if not self.poly.outline:
self.poly.outline.append(obj.p1)
self.poly.outline.append(obj.p2)

Wyświetl plik

@ -4,210 +4,70 @@ import itertools
from dataclasses import dataclass, KW_ONLY, replace
from .utils import *
@dataclass
class GraphicPrimitive:
_ : KW_ONLY
polarity_dark : bool = True
def bounding_box(self):
""" Return the axis-aligned bounding box of this feature.
def rotate_point(x, y, angle, cx=0, cy=0):
""" rotate point (x,y) around (cx,cy) clockwise angle radians """
:returns: ``((min_x, min_Y), (max_x, max_y))``
:rtype: tuple
"""
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
raise NotImplementedError()
def min_none(a, b):
if a is None:
return b
if b is None:
return a
return min(a, b)
def to_svg(self, fg='black', bg='white', tag=Tag):
""" Render this primitive into its SVG representation.
def max_none(a, b):
if a is None:
return b
if b is None:
return a
return max(a, b)
:param str fg: Foreground color. Must be an SVG color name.
:param str bg: Background color. Must be an SVG color name.
:param function tag: Tag constructor to use.
def add_bounds(b1, b2):
(min_x_1, min_y_1), (max_x_1, max_y_1) = b1
(min_x_2, min_y_2), (max_x_2, max_y_2) = b2
min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
return ((min_x, min_y), (max_x, max_y))
:rtype: str
"""
raise NotImplementedError()
def rad_to_deg(x):
return x/math.pi * 180
@dataclass
class Circle(GraphicPrimitive):
#: Center X coordinate
x : float
#: Center y coordinate
y : float
#: Radius, not diameter like in :py:class:`.apertures.CircleAperture`
r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
def bounding_box(self):
return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
def to_svg(self, tag, fg, bg):
def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
return tag('circle', cx=self.x, cy=self.y, r=self.r, style=f'fill: {color}')
@dataclass
class Obround(GraphicPrimitive):
x : float
y : float
w : float
h : float
rotation : float # radians!
def to_line(self):
if self.w > self.h:
w, a, b = self.h, self.w-self.h, 0
else:
w, a, b = self.w, 0, self.h-self.w
return Line(
*rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
*rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
w, polarity_dark=self.polarity_dark)
def bounding_box(self):
return self.to_line().bounding_box()
def to_svg(self, tag, fg, bg):
return self.to_line().to_svg(tag, fg, bg)
def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
# This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
# happens to be anything but in practice.
#
# Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
# problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
#
# This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
# sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
#
# cx, cy are relative to p1.
# Center arc on cx, cy
cx += x1
cy += y1
x1 -= cx
x2 -= cx
y1 -= cy
y2 -= cy
clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
# Calculate radius
r = math.sqrt(x1**2 + y1**2)
# Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
# Note that we assume the y axis points upwards, as in Gerber and maths.
# SVG has its y axis pointing downwards.
p1_west = x1 < 0
p1_north = y1 > 0
p2_west = x2 < 0
p2_north = y2 > 0
# Calculate bounding box of P1 and P2
min_x = min(x1, x2)
min_y = min(y1, y2)
max_x = max(x1, x2)
max_y = max(y1, y2)
# North
# ^
# |
# |(0,0)
# West <-----X-----> East
# |
# +Y |
# ^ v
# | South
# |
# +-----> +X
#
# Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
# Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
# Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
# point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
# absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
# intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
# corresponding coordinate of the bounding box without min()/max()'ing first.
# Handle north/south halfplanes
if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
max_y = r # add north to bounding box
else: # arc is counter-clockwise west -> east or clockwise east -> west
min_y = -r # south
else: # Arc starts and ends in same halfplane west/east
# Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
# angle comparisons.
small_arc_is_north_to_south = y1 > y2
small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
if small_arc_is_clockwise != clockwise:
min_y, max_y = -r, r # intersect aabb with both north and south
# Handle west/east halfplanes
if p1_north != p2_north:
if p1_north == clockwise:
max_x = r # east
else:
min_x = -r # west
else:
small_arc_is_west_to_east = x1 < x2
small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
if small_arc_is_clockwise != clockwise:
min_x, max_x = -r, r # intersect aabb with both north and south
return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
def point_line_distance(l1, l2, p):
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
x1, y1 = l1
x2, y2 = l2
x0, y0 = p
length = math.dist(l1, l2)
if math.isclose(length, 0):
return math.dist(l1, p)
return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
def svg_arc(old, new, center, clockwise):
r = math.hypot(*center)
# invert sweep flag since the svg y axis is mirrored
sweep_flag = int(not clockwise)
# In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
# in SVG, we have to split it into two.
if math.isclose(math.dist(old, new), 0):
intermediate = old[0] + 2*center[0], old[1] + 2*center[1]
# Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
# a circular cutin
return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\
f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}'
else: # normal case
d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1]))
large_arc = int((d < 0) == clockwise)
return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
@dataclass
class ArcPoly(GraphicPrimitive):
""" Polygon whose sides may be either straight lines or circular arcs """
""" Polygon whose sides may be either straight lines or circular arcs. """
# list of (x : float, y : float) tuples. Describes closed outline, i.e. first and last point are considered
# connected.
#: list of (x : float, y : float) tuples. Describes closed outline, i.e. the first and last point are considered
#: connected.
outline : list
# must be either None (all segments are straight lines) or same length as outline.
# Straight line segments have None entry.
#: Must be either None (all segments are straight lines) or same length as outline.
#: Straight line segments have None entry.
arc_centers : list = None
@property
def segments(self):
""" Return an iterator through all *segments* of this polygon. For each outline segment (line or arc), this
iterator will yield a ``(p1, p2, center)`` tuple. If the segment is a straight line, ``center`` will be
``None``.
"""
ol = self.outline
return itertools.zip_longest(ol, ol[1:] + [ol[0]], self.arc_centers or [])
@ -223,10 +83,24 @@ class ArcPoly(GraphicPrimitive):
bbox = add_bounds(bbox, line_bounds)
return bbox
@classmethod
def from_regular_polygon(kls, x:float, y:float, r:float, n:int, rotation:float=0, polarity_dark:bool=True):
""" Convert an n-sided gerber polygon to a normal ArcPoly defined by outline """
delta = 2*math.pi / self.n
return kls([
(self.x + math.cos(self.rotation + i*delta) * self.r,
self.y + math.sin(self.rotation + i*delta) * self.r)
for i in range(self.n) ], polarity_dark=polarity_dark)
def __len__(self):
""" Return the number of points on this polygon's outline (which is also the number of segments because the
polygon is closed). """
return len(self.outline)
def __bool__(self):
""" Return ``True`` if this polygon has any outline points. """
return bool(len(self))
def _path_d(self):
@ -242,61 +116,44 @@ class ArcPoly(GraphicPrimitive):
clockwise, center = arc
yield svg_arc(old, new, center, clockwise)
def to_svg(self, tag, fg, bg):
def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
return tag('path', d=' '.join(self._path_d()), style=f'fill: {color}')
class Polyline:
def __init__(self, *lines):
self.coords = []
self.polarity_dark = None
self.width = None
for line in lines:
self.append(line)
def append(self, line):
assert isinstance(line, Line)
if not self.coords:
self.coords.append((line.x1, line.y1))
self.coords.append((line.x2, line.y2))
self.polarity_dark = line.polarity_dark
self.width = line.width
return True
else:
x, y = self.coords[-1]
if self.polarity_dark == line.polarity_dark and self.width == line.width \
and math.isclose(line.x1, x) and math.isclose(line.y1, y):
self.coords.append((line.x2, line.y2))
return True
else:
return False
def to_svg(self, tag, fg, bg):
color = fg if self.polarity_dark else bg
if not self.coords:
return None
(x0, y0), *rest = self.coords
d = f'M {x0:.6} {y0:.6} ' + ' '.join(f'L {x:.6} {y:.6}' for x, y in rest)
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=d, style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linejoin: round; stroke-linecap: round')
@dataclass
class Line(GraphicPrimitive):
""" Straight line with round end caps. """
#: Start X coordinate. As usual in modern graphics APIs, this is at the center of the half-circle capping off this
#: line.
x1 : float
#: Start Y coordinate
y1 : float
#: End X coordinate
x2 : float
#: End Y coordinate
y2 : float
#: Line width
width : float
@classmethod
def from_obround(kls, x:float, y:float, w:float, h:float, rotation:float=0, polarity_dark:bool=True):
""" Convert a gerber obround into a :py:class:`~.graphic_primitives.Line`. """
if self.w > self.h:
w, a, b = self.h, self.w-self.h, 0
else:
w, a, b = self.w, 0, self.h-self.w
return kls(
*rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
*rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
w, polarity_dark=self.polarity_dark)
def bounding_box(self):
r = self.width / 2
return add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
def to_svg(self, tag, fg, bg):
def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=f'M {self.x1:.6} {self.y1:.6} L {self.x2:.6} {self.y2:.6}',
@ -304,14 +161,23 @@ class Line(GraphicPrimitive):
@dataclass
class Arc(GraphicPrimitive):
""" Circular arc with line width ``width`` going from ``(x1, y1)`` to ``(x2, y2)`` around center at ``(cx, cy)``. """
#: Start X coodinate
x1 : float
#: Start Y coodinate
y1 : float
#: End X coodinate
x2 : float
#: End Y coodinate
y2 : float
# absolute coordinates
#: Center X coordinate relative to ``x1``
cx : float
#: Center Y coordinate relative to ``y1``
cy : float
#: ``True`` if this arc is clockwise from start to end. Selects between the large arc and the small arc given this
#: start, end and center
clockwise : bool
#: Line width of this arc.
width : float
def bounding_box(self):
@ -333,24 +199,25 @@ class Arc(GraphicPrimitive):
arc = arc_bounds(x1, y1, x2, y2, self.cx, self.cy, self.clockwise)
return add_bounds(endpoints, arc) # FIXME add "include_center" switch
def to_svg(self, tag, fg, bg):
def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
arc = svg_arc((self.x1, self.y1), (self.x2, self.y2), (self.cx, self.cy), self.clockwise)
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=f'M {self.x1:.6} {self.y1:.6} {arc}',
style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linecap: round; fill: none')
def svg_rotation(angle_rad, cx=0, cy=0):
return f'rotate({float(rad_to_deg(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'
@dataclass
class Rectangle(GraphicPrimitive):
# coordinates are center coordinates
#: **Center** X coordinate
x : float
#: **Center** Y coordinate
y : float
#: width
w : float
#: height
h : float
rotation : float # radians, around center!
#: rotation around center in radians
rotation : float
def bounding_box(self):
return self.to_arc_poly().bounding_box()
@ -367,37 +234,9 @@ class Rectangle(GraphicPrimitive):
(x + (cw+sh), y - (ch+sw)),
])
@property
def center(self):
return self.x + self.w/2, self.y + self.h/2
def to_svg(self, tag, fg, bg):
def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
x, y = self.x - self.w/2, self.y - self.h/2
return tag('rect', x=x, y=y, width=self.w, height=self.h,
transform=svg_rotation(self.rotation, self.x, self.y), style=f'fill: {color}')
@dataclass
class RegularPolygon(GraphicPrimitive):
x : float
y : float
r : float
n : int
rotation : float # radians!
def to_arc_poly(self):
''' convert n-sided gerber polygon to normal ArcPoly defined by outline '''
delta = 2*math.pi / self.n
return ArcPoly([
(self.x + math.cos(self.rotation + i*delta) * self.r,
self.y + math.sin(self.rotation + i*delta) * self.r)
for i in range(self.n) ])
def bounding_box(self):
return self.to_arc_poly().bounding_box()
def to_svg(self, tag, fg, bg):
return self.to_arc_poly().to_svg(tag, fg, bg)

Wyświetl plik

@ -24,12 +24,10 @@ import re
import math
import warnings
from pathlib import Path
from itertools import count, chain
from io import StringIO
import dataclasses
from .cam import CamFile, FileSettings
from .utils import sq_distance, rotate_point, MM, Inch, units, InterpMode, UnknownStatementWarning
from .utils import MM, Inch, units, InterpMode, UnknownStatementWarning
from .aperture_macros.parse import ApertureMacro, GenericMacros
from . import graphic_primitives as gp
from . import graphic_objects as go

Wyświetl plik

@ -30,9 +30,11 @@ from enum import Enum
from math import radians, sin, cos, sqrt, atan2, pi
class UnknownStatementWarning(Warning):
""" Gerbonara found an unknown Gerber or Excellon statement. """
pass
class RegexMatcher:
""" Internal parsing helper """
def __init__(self):
self.mapping = {}
@ -51,13 +53,27 @@ class RegexMatcher:
else:
return False
class LengthUnit:
""" Convenience length unit class. Used in :py:class:`.GraphicObject` and :py:class:`.Aperture` to store lenght
information. Provides a number of useful unit conversion functions.
Singleton, use only global instances ``utils.MM`` and ``utils.Inch``.
"""
def __init__(self, name, shorthand, this_in_mm):
self.name = name
self.shorthand = shorthand
self.factor = this_in_mm
def convert_from(self, unit, value):
""" Convert ``value`` from ``unit`` into this unit.
:param unit: ``MM``, ``Inch`` or one of the strings ``"mm"`` or ``"inch"``
:param float value:
:rtype: float
"""
if isinstance(unit, str):
unit = units[unit]
@ -67,6 +83,8 @@ class LengthUnit:
return value * unit.factor / self.factor
def convert_to(self, unit, value):
""" :py:meth:`.LengthUnit.convert_from` but in reverse. """
if isinstance(unit, str):
unit = to_unit(unit)
@ -76,9 +94,17 @@ class LengthUnit:
return unit.convert_from(self, value)
def format(self, value):
""" Return a human-readdable string representing value in this unit.
:param float value:
:returns: something like "3mm"
:rtype: str
"""
return f'{value:.3f}{self.shorthand}' if value is not None else ''
def __call__(self, value, unit):
""" Convenience alias for :py:meth:`.LengthUnit.convert_from` """
return self.convert_from(unit, value)
def __eq__(self, other):
@ -105,12 +131,41 @@ MILLIMETERS_PER_INCH = 25.4
Inch = LengthUnit('inch', 'in', MILLIMETERS_PER_INCH)
MM = LengthUnit('millimeter', 'mm', 1)
units = {'inch': Inch, 'mm': MM, None: None}
to_unit = lambda name: units[name.lower() if name else None]
def _raise_error(*args, **kwargs):
raise SystemError('LengthUnit is a singleton. Use gerbonara.utils.MM or gerbonara.utils.Inch. Please do not invent '
'your own length units, the imperial system is already messed up enough.')
LengthUnit.__init__ = _raise_error
def to_unit(name):
""" Convert string ``name`` into a registered length unit. Returns ``None`` if the argument cannot be converted.
:param str name: ``'mm'`` or ``'inch'``
:returns: ``MM``, ``Inch`` or ``None``
:rtype: :py:class:`.LengthUnit` or ``None``
"""
if name is None:
return None
if isinstance(name, LengthUnit):
return name
if isinstance(name, str):
name = name.lower()
if name in units:
return units[name]
raise ValueError(f'Invalid unit {name!r}. Should be either "mm", "inch" or None for no unit.')
class InterpMode(Enum):
""" Gerber / Excellon interpolation mode. """
#: straight line
LINEAR = 0
#: clockwise circular arc
CIRCULAR_CW = 1
#: counterclockwise circular arc
CIRCULAR_CCW = 2
@ -151,56 +206,53 @@ def decimal_string(value, precision=6, padding=False):
else:
return int(floatstr)
def validate_coordinates(position):
if position is not None:
if len(position) != 2:
raise TypeError('Position must be a tuple (n=2) of coordinates')
else:
for coord in position:
if not (isinstance(coord, int) or isinstance(coord, float)):
raise TypeError('Coordinates must be integers or floats')
def rotate_point(point, angle, center=(0.0, 0.0)):
""" Rotate a point about another point.
def rotate_point(x, y, angle, cx=0, cy=0):
""" Rotate point (x,y) around (cx,cy) by ``angle`` radians clockwise. """
Parameters
-----------
point : tuple(<float>, <float>)
Point to rotate about origin or center point
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
angle : float
Angle to rotate the point [degrees]
center : tuple(<float>, <float>)
Coordinates about which the point is rotated. Defaults to the origin.
def min_none(a, b):
""" Like the ``min(..)`` builtin, but if either value is ``None``, returns the other. """
if a is None:
return b
if b is None:
return a
return min(a, b)
Returns
-------
rotated_point : tuple(<float>, <float>)
`point` rotated about `center` by `angle` degrees.
def max_none(a, b):
""" Like the ``max(..)`` builtin, but if either value is ``None``, returns the other. """
if a is None:
return b
if b is None:
return a
return max(a, b)
def add_bounds(b1, b2):
""" Add/union two bounding boxes.
:param tuple b1: ``((min_x, min_y), (max_x, max_y))``
:param tuple b2: ``((min_x, min_y), (max_x, max_y))``
:returns: ``((min_x, min_y), (max_x, max_y))``
:rtype: tuple
"""
angle = radians(angle)
cos_angle = cos(angle)
sin_angle = sin(angle)
(min_x_1, min_y_1), (max_x_1, max_y_1) = b1
(min_x_2, min_y_2), (max_x_2, max_y_2) = b2
min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
return ((min_x, min_y), (max_x, max_y))
return (
cos_angle * (point[0] - center[0]) - sin_angle * (point[1] - center[1]) + center[0],
sin_angle * (point[0] - center[0]) + cos_angle * (point[1] - center[1]) + center[1])
def nearly_equal(point1, point2, ndigits = 6):
'''Are the points nearly equal'''
return round(point1[0] - point2[0], ndigits) == 0 and round(point1[1] - point2[1], ndigits) == 0
def sq_distance(point1, point2):
diff1 = point1[0] - point2[0]
diff2 = point1[1] - point2[1]
return diff1 * diff1 + diff2 * diff2
class Tag:
""" Helper class to ease creation of SVG. All API functions that create SVG allow you to substitute this with your
own implementation by passing a ``tag`` parameter. """
def __init__(self, name, children=None, root=False, **attrs):
self.name, self.attrs = name, attrs
self.children = children or []
@ -216,3 +268,133 @@ class Tag:
return f'{prefix}<{opening}/>'
def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
""" Calculate bounding box of a circular arc given in Gerber notation (i.e. with center relative to first point).
:returns: ``((x_min, y_min), (x_max, y_max))``
"""
# This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
# happens to be anything but in practice.
#
# Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
# problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
#
# This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
# sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
#
# cx, cy are relative to p1.
# Center arc on cx, cy
cx += x1
cy += y1
x1 -= cx
x2 -= cx
y1 -= cy
y2 -= cy
clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
# Calculate radius
r = math.sqrt(x1**2 + y1**2)
# Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
# Note that we assume the y axis points upwards, as in Gerber and maths.
# SVG has its y axis pointing downwards.
p1_west = x1 < 0
p1_north = y1 > 0
p2_west = x2 < 0
p2_north = y2 > 0
# Calculate bounding box of P1 and P2
min_x = min(x1, x2)
min_y = min(y1, y2)
max_x = max(x1, x2)
max_y = max(y1, y2)
# North
# ^
# |
# |(0,0)
# West <-----X-----> East
# |
# +Y |
# ^ v
# | South
# |
# +-----> +X
#
# Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
# Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
# Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
# point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
# absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
# intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
# corresponding coordinate of the bounding box without min()/max()'ing first.
# Handle north/south halfplanes
if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
max_y = r # add north to bounding box
else: # arc is counter-clockwise west -> east or clockwise east -> west
min_y = -r # south
else: # Arc starts and ends in same halfplane west/east
# Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
# angle comparisons.
small_arc_is_north_to_south = y1 > y2
small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
if small_arc_is_clockwise != clockwise:
min_y, max_y = -r, r # intersect aabb with both north and south
# Handle west/east halfplanes
if p1_north != p2_north:
if p1_north == clockwise:
max_x = r # east
else:
min_x = -r # west
else:
small_arc_is_west_to_east = x1 < x2
small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
if small_arc_is_clockwise != clockwise:
min_x, max_x = -r, r # intersect aabb with both north and south
return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
def point_line_distance(l1, l2, p):
""" Calculate distance between infinite line through l1 and l2, and point p. """
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
x1, y1 = l1
x2, y2 = l2
x0, y0 = p
length = math.dist(l1, l2)
if math.isclose(length, 0):
return math.dist(l1, p)
return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
def svg_arc(old, new, center, clockwise):
""" Format an SVG circular arc "A" path data entry given an arc in Gerber notation (i.e. with center relative to
first point).
:rtype: str
"""
r = math.hypot(*center)
# invert sweep flag since the svg y axis is mirrored
sweep_flag = int(not clockwise)
# In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
# in SVG, we have to split it into two.
if math.isclose(math.dist(old, new), 0):
intermediate = old[0] + 2*center[0], old[1] + 2*center[1]
# Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
# a circular cutin
return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\
f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}'
else: # normal case
d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1]))
large_arc = int((d < 0) == clockwise)
return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
def svg_rotation(angle_rad, cx=0, cy=0):
return f'rotate({float(math.degrees(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'