Added documentation page on how to reduce memory usage.

merge-requests/180/head
Eliot Berriot 2018-04-28 16:17:29 +02:00
rodzic 770f9fbda4
commit 29645aab1d
Nie znaleziono w bazie danych klucza dla tego podpisu
ID klucza GPG: DD6965E2476E5C27
5 zmienionych plików z 56 dodań i 2 usunięć

Wyświetl plik

@ -1,3 +1,3 @@
#!/bin/bash -eux
python /app/manage.py collectstatic --noinput
/usr/local/bin/daphne -b 0.0.0.0 -p 5000 config.asgi:application
/usr/local/bin/daphne -b 0.0.0.0 -p 5000 config.asgi:application --proxy-headers

Wyświetl plik

@ -0,0 +1,11 @@
Added documentation for optimizing Funkwhale and reduce its memory
footprint.
Changelog
^^^^^^^^^
For non-docker deployments, add ``--proxy-headers`` at the end of the ``daphne``
command in :file:`/etc/systemd/system/funkwhale-server.service`.
This will ensure the application receive the correct IP address from the client
and not the proxy's one.

Wyświetl plik

@ -8,7 +8,7 @@ User=funkwhale
# adapt this depending on the path of your funkwhale installation
WorkingDirectory=/srv/funkwhale/api
EnvironmentFile=/srv/funkwhale/config/.env
ExecStart=/srv/funkwhale/virtualenv/bin/daphne -b ${FUNKWHALE_API_IP} -p ${FUNKWHALE_API_PORT} config.asgi:application
ExecStart=/srv/funkwhale/virtualenv/bin/daphne -b ${FUNKWHALE_API_IP} -p ${FUNKWHALE_API_PORT} config.asgi:application --proxy-headers
[Install]
WantedBy=multi-user.target

Wyświetl plik

@ -28,10 +28,16 @@ On a dockerized instance with 2 CPUs and a few active users, the memory footprin
funkwhale_postgres_1 22.73 MiB
funkwhale_redis_1 1.496 MiB
Some users have reported running Funkwhale on Raspberry Pis with a memory
consuption of less than 200MiB.
Thus, Funkwhale should run fine on commodity hardware, small hosting boxes and
Raspberry Pi. We lack real-world exemples of such deployments, so don't hesitate
do give us your feedback (either positive or negative).
Check out :doc:`optimization` for advices on how to tune your instance on small
configurations.
Software requirements
---------------------

Wyświetl plik

@ -0,0 +1,37 @@
Optimizing your Funkwhale instance
==================================
Depending on your requirements, you may want to reduce as much as possible
Funkwhale's footprint.
Reduce workers concurrency
--------------------------
Asynchronous tasks are handled by a celery worker, which will by default
spawn a worker process per CPU available. This can lead to a higher
memory usage.
You can control this behaviour using the ``--concurrency`` flag.
For instance, setting ``--concurrency=1`` will spawn only one worker.
This flag should be appended after the ``celery -A funkwhale_api.taskapp worker``
command in your :file:`docker-compose.yml` file if your using Docker, or in your
:file:`/etc/systemd/system/funkwhale-worker.service` otherwise.
.. note::
Reducing concurrency comes at a cost: asynchronous tasks will be processed
more slowly. However, on small instances, this should not be an issue.
Switch from prefork to solo pool
--------------------------------
Using a different pool implementation for Celery tasks may also help.
Using the ``solo`` pool type should reduce your memory consumption.
You can control this behaviour using the ``--pool=solo`` flag.
This flag should be appended after the ``celery -A funkwhale_api.taskapp worker``
command in your :file:`docker-compose.yml` file if your using Docker, or in your
:file:`/etc/systemd/system/funkwhale-worker.service` otherwise.