kopia lustrzana https://github.com/evil-mad/EggBot
				
				
				
			Initial checkin
git-svn-id: https://eggbotcode.googlecode.com/svn/trunk@167 72233254-1b6c-9e9c-5072-401df62706fbpull/47/head
							rodzic
							
								
									cf8cdae71e
								
							
						
					
					
						commit
						2e109eb206
					
				|  | @ -0,0 +1,50 @@ | |||
| <?xml version="1.0" encoding="UTF-8"?> | ||||
| <inkscape-extension xmlns="http://www.inkscape.org/namespace/inkscape/extension"> | ||||
|   <_name>Twist</_name> | ||||
|   <id>twist.contributed.eggbot</id> | ||||
|   <dependency type="extension">org.inkscape.output.svg.inkscape</dependency> | ||||
|   <dependency type="executable" location="extensions">eggbot_twist.py</dependency> | ||||
|   <dependency type="executable" location="extensions">inkex.py</dependency> | ||||
|   <dependency type="executable" location="extensions">simplepath.py</dependency> | ||||
|   <dependency type="executable" location="extensions">simpletransform.py</dependency> | ||||
|   <dependency type="executable" location="extensions">simplestyle.py</dependency> | ||||
|   <dependency type="executable" location="extensions">cubicsuperpath.py</dependency> | ||||
|   <dependency type="executable" location="extensions">cspsubdiv.py</dependency> | ||||
|   <dependency type="executable" location="extensions">bezmisc.py</dependency> | ||||
| 
 | ||||
|   <_param name="Header" type="description" xml:space="preserve"> | ||||
| Iteratively twist and self-inscribe | ||||
| a polygon within itself. | ||||
| 
 | ||||
| The number of twists is how many | ||||
| iterations to perform. | ||||
| 
 | ||||
| The step ratio is the fractional | ||||
| distance along an edge to move each | ||||
| vertex. | ||||
| 
 | ||||
| *** | ||||
| This extension is intended as an | ||||
| example of how to write an Inkscape | ||||
| extension for use with the Eggbot. | ||||
| See the eggbot_twist.py file in the | ||||
| Inkscape extensions directory for | ||||
| this extensions' Python code. | ||||
| *** | ||||
|   </_param> | ||||
| 
 | ||||
|   <param name="nSteps" type="int" min="1" max="100" | ||||
| 	 _gui-text="   Number of twists">8</param> | ||||
|   <param name="fRatio" type="float" min="-10" max="10" precision="5" | ||||
| 	 _gui-text="   Step ratio">0.15</param> | ||||
| 
 | ||||
|   <effect needs-live-preview="false"> | ||||
|     <object-type>all</object-type> | ||||
|     <effects-menu> | ||||
|       <submenu _name="EggBot Contributed"/> | ||||
|     </effects-menu> | ||||
|   </effect> | ||||
|   <script> | ||||
|     <command reldir="extensions" interpreter="python">eggbot_twist.py</command> | ||||
|   </script> | ||||
| </inkscape-extension> | ||||
|  | @ -0,0 +1,536 @@ | |||
| #!/usr/bin/env python | ||||
| 
 | ||||
| # twist.py -- Primarily a simple example of writing an Inkscape extension | ||||
| #             which manipulates objects in a drawing. | ||||
| # | ||||
| # For a polygon with vertices V[0], V[1], V[2], ..., V[n-1] iteratively | ||||
| # move each vertex V[i] by a constant factor 0 < s < 1.0 along the edge | ||||
| # between V[i] and V[i+1 modulo n] for 0 <= i <= n-1. | ||||
| # | ||||
| # This extension operates on every selected closed path, or, if no paths | ||||
| # are selected, then every closed path in the document.  Since the "twisting" | ||||
| # effect only concerns itself with individual paths, no effort is made to | ||||
| # worry about the transforms applied to the paths.  That is, it is not | ||||
| # necessary to worry about tracking SVG transforms as all the work can be | ||||
| # done using the untransformed coordinates of each path. | ||||
| 
 | ||||
| # Written by Daniel C. Newman ( dan dot newman at mtbaldy dot us ) | ||||
| # 19 October 2010 | ||||
| 
 | ||||
| # This program is free software; you can redistribute it and/or modify | ||||
| # it under the terms of the GNU General Public License as published by | ||||
| # the Free Software Foundation; either version 2 of the License, or | ||||
| # (at your option) any later version. | ||||
| # | ||||
| # This program is distributed in the hope that it will be useful, | ||||
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
| # GNU General Public License for more details. | ||||
| # | ||||
| # You should have received a copy of the GNU General Public License | ||||
| # along with this program; if not, write to the Free Software | ||||
| # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | ||||
| 
 | ||||
| import inkex | ||||
| import simplepath | ||||
| import simplestyle | ||||
| import simpletransform | ||||
| import cubicsuperpath | ||||
| import cspsubdiv | ||||
| import bezmisc | ||||
| 
 | ||||
| def subdivideCubicPath( sp, flat, i=1 ): | ||||
| 
 | ||||
| 	''' | ||||
| 	[ Lifted from eggbot.py with impunity ] | ||||
| 
 | ||||
| 	Break up a bezier curve into smaller curves, each of which | ||||
| 	is approximately a straight line within a given tolerance | ||||
| 	(the "smoothness" defined by [flat]). | ||||
| 
 | ||||
| 	This is a modified version of cspsubdiv.cspsubdiv(): rewritten | ||||
| 	because recursion-depth errors on complicated line segments | ||||
| 	could occur with cspsubdiv.cspsubdiv(). | ||||
| 	''' | ||||
| 
 | ||||
| 	while True: | ||||
| 		while True: | ||||
| 			if i >= len( sp ): | ||||
| 				return | ||||
| 
 | ||||
| 			p0 = sp[i - 1][1] | ||||
| 			p1 = sp[i - 1][2] | ||||
| 			p2 = sp[i][0] | ||||
| 			p3 = sp[i][1] | ||||
| 
 | ||||
| 			b = ( p0, p1, p2, p3 ) | ||||
| 
 | ||||
| 			if cspsubdiv.maxdist( b ) > flat: | ||||
| 				break | ||||
| 
 | ||||
| 			i += 1 | ||||
| 
 | ||||
| 		one, two = bezmisc.beziersplitatt( b, 0.5 ) | ||||
| 		sp[i - 1][2] = one[1] | ||||
| 		sp[i][0] = two[2] | ||||
| 		p = [one[2], one[3], two[1]] | ||||
| 		sp[i:1] = [p] | ||||
| 
 | ||||
| def distanceSquared( P1, P2 ): | ||||
| 
 | ||||
| 	''' | ||||
| 	Pythagorean distance formula WITHOUT the square root.  Since | ||||
| 	we just want to know if the distance is less than some fixed | ||||
| 	fudge factor, we can just square the fudge factor once and run | ||||
| 	with it rather than compute square roots over and over. | ||||
| 	''' | ||||
| 
 | ||||
| 	dx = P2[0] - P1[0] | ||||
| 	dy = P2[1] - P1[1] | ||||
| 
 | ||||
| 	return ( dx * dx + dy * dy ) | ||||
| 
 | ||||
| class Twist( inkex.Effect ): | ||||
| 
 | ||||
| 	def __init__( self ): | ||||
| 
 | ||||
| 		inkex.Effect.__init__( self ) | ||||
| 		self.OptionParser.add_option( | ||||
| 			"--nSteps", action="store", type="int", | ||||
| 			dest="nSteps", default=8, | ||||
| 			help="Number of iterations to take" ) | ||||
| 		self.OptionParser.add_option( | ||||
| 			"--fRatio", action="store", type="float", | ||||
| 			dest="fRatio", default=float( 0.2 ), | ||||
| 			help="Some ratio" ) | ||||
| 
 | ||||
| 		''' | ||||
| 		Store each path in an associative array (dictionary) indexed | ||||
| 		by the lxml.etree pointer for the SVG document element | ||||
| 		containing the path.  Looking up the path in the dictionary | ||||
| 		yields a list of lists.  Each of these lists is a subpath | ||||
| 		# of the path.  E.g., for the SVG path | ||||
| 
 | ||||
| 			<path d="M 10,10 l 0,5 l 5,0 l 0,-5 Z M 30,30 L 30,60"/> | ||||
| 
 | ||||
| 		 we'd have two subpaths which will be reduced to absolute | ||||
| 		 coordinates. | ||||
| 
 | ||||
| 			subpath_1 = [ [10, 10], [10, 15], [15, 15], [15, 10], [10,10] ] | ||||
| 			subpath_2 = [ [30, 30], [30, 60] ] | ||||
| 			self.paths[<node pointer>] = [ subpath_1, subpath_2 ] | ||||
| 
 | ||||
| 		All of the paths and their subpaths could be drawn as follows: | ||||
| 
 | ||||
| 			for path in self.paths: | ||||
| 				for subpath in self.paths[path]: | ||||
| 					first = True | ||||
| 					for vertex in subpath: | ||||
| 						if first: | ||||
| 							moveto( vertex[0], vertex[1] ) | ||||
| 							first = False | ||||
| 						else: | ||||
| 							lineto( vertex[0], vertex[1] ) | ||||
| 
 | ||||
| 		NOTE: drawing all the paths like the above would not in general | ||||
| 		give the correct rendering of the document UNLESS path transforms | ||||
| 		were also tracked and applied. | ||||
| 		''' | ||||
| 
 | ||||
| 		self.paths = {} | ||||
| 
 | ||||
| 	def addPathVertices( self, path, node=None, transform=None ): | ||||
| 
 | ||||
| 		''' | ||||
| 		Decompose the path data from an SVG element into individual | ||||
| 		subpaths, each subpath consisting of absolute move to and line | ||||
| 		to coordinates.  Place these coordinates into a list of polygon | ||||
| 		vertices. | ||||
| 		''' | ||||
| 
 | ||||
| 		if ( not path ) or ( len( path ) == 0 ): | ||||
| 			# Nothing to do | ||||
| 			return | ||||
| 
 | ||||
| 		# parsePath() may raise an exception.  This is okay | ||||
| 		sp = simplepath.parsePath( path ) | ||||
| 		if ( not sp ) or ( len( sp ) == 0 ): | ||||
| 			# Path must have been devoid of any real content | ||||
| 			return | ||||
| 
 | ||||
| 		# Get a cubic super path | ||||
| 		p = cubicsuperpath.CubicSuperPath( sp ) | ||||
| 		if ( not p ) or ( len( p ) == 0 ): | ||||
| 			# Probably never happens, but... | ||||
| 			return | ||||
| 
 | ||||
| 		#if transform: | ||||
| 		#	simpletransform.applyTransformToPath( transform, p ) | ||||
| 
 | ||||
| 		# Now traverse the cubic super path | ||||
| 		subpath_list = [] | ||||
| 		subpath_vertices = [] | ||||
| 		for sp in p: | ||||
| 			if len( subpath_vertices ): | ||||
| 				# There's a prior subpath: see if it is closed and should be saved | ||||
| 				if distanceSquared( subpath_vertices[0], subpath_vertices[-1] ) < 1: | ||||
| 					# Keep the prior subpath: it appears to be a closed path | ||||
| 					subpath_list.append( subpath_vertices ) | ||||
| 			subpath_vertices = [] | ||||
| 			subdivideCubicPath( sp, float( 0.2 ) ) | ||||
| 			for csp in sp: | ||||
| 				# Add this vertex to the list of vetices | ||||
| 				subpath_vertices.append( csp[1] ) | ||||
| 
 | ||||
| 		# Handle final subpath | ||||
| 		if len( subpath_vertices ): | ||||
| 			if distanceSquared( subpath_vertices[0], subpath_vertices[-1] ) < 1: | ||||
| 				# Path appears to be closed so let's keep it | ||||
| 				subpath_list.append( subpath_vertices ) | ||||
| 
 | ||||
| 		# Empty path? | ||||
| 		if len( subpath_list ) == 0: | ||||
| 			return | ||||
| 
 | ||||
| 		# Store the list of subpaths in a dictionary keyed off of the path's node pointer | ||||
| 		self.paths[node] = subpath_list | ||||
| 
 | ||||
| 	def recursivelyTraverseSvg( self, aNodeList, | ||||
| 		matCurrent=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], | ||||
| 		parent_visibility='visible' ): | ||||
| 
 | ||||
| 		''' | ||||
| 		[ This too is largely lifted from eggbot.py ] | ||||
| 
 | ||||
| 		Recursively walk the SVG document, building polygon vertex lists | ||||
| 		for each graphical element we support. | ||||
| 
 | ||||
| 		Rendered SVG elements: | ||||
| 			<circle>, <ellipse>, <line>, <path>, <polygon>, <polyline>, <rect> | ||||
| 
 | ||||
| 		Supported SVG elements: | ||||
| 			<group>, <use> | ||||
| 
 | ||||
| 		Ignored SVG elements: | ||||
| 			<defs>, <eggbot>, <metadata>, <namedview>, <pattern>, | ||||
| 			processing directives | ||||
| 
 | ||||
| 		All other SVG elements trigger an error (including <text>) | ||||
| 		''' | ||||
| 
 | ||||
| 		for node in aNodeList: | ||||
| 
 | ||||
| 			# Ignore invisible nodes | ||||
| 			v = node.get( 'visibility', parent_visibility ) | ||||
| 			if v == 'inherit': | ||||
| 				v = parent_visibility | ||||
| 			if v == 'hidden' or v == 'collapse': | ||||
| 				pass | ||||
| 
 | ||||
| 			# First apply the current matrix transform to this node's tranform | ||||
| 			matNew = simpletransform.composeTransform( matCurrent, | ||||
| 				simpletransform.parseTransform( node.get( "transform" ) ) ) | ||||
| 
 | ||||
| 			if node.tag == inkex.addNS( 'g', 'svg' ) or node.tag == 'g': | ||||
| 
 | ||||
| 				self.recursivelyTraverseSvg( node, matNew, parent_visibility=v ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'use', 'svg' ) or node.tag == 'use': | ||||
| 
 | ||||
| 				# A <use> element refers to another SVG element via an xlink:href="#blah" | ||||
| 				# attribute.  We will handle the element by doing an XPath search through | ||||
| 				# the document, looking for the element with the matching id="blah" | ||||
| 				# attribute.  We then recursively process that element after applying | ||||
| 				# any necessary (x,y) translation. | ||||
| 				# | ||||
| 				# Notes: | ||||
| 				#  1. We ignore the height and width attributes as they do not apply to | ||||
| 				#     path-like elements, and | ||||
| 				#  2. Even if the use element has visibility="hidden", SVG still calls | ||||
| 				#     for processing the referenced element.  The referenced element is | ||||
| 				#     hidden only if its visibility is "inherit" or "hidden". | ||||
| 
 | ||||
| 				refid = node.get( inkex.addNS( 'href', 'xlink' ) ) | ||||
| 				if not refid: | ||||
| 					pass | ||||
| 
 | ||||
| 				# [1:] to ignore leading '#' in reference | ||||
| 				path = '//*[@id="%s"]' % refid[1:] | ||||
| 				refnode = node.xpath( path ) | ||||
| 				if refnode: | ||||
| 					x = float( node.get( 'x', '0' ) ) | ||||
| 					y = float( node.get( 'y', '0' ) ) | ||||
| 					tran = node.get( 'transform' ) | ||||
| 					if tran: | ||||
| 						tran += ' translate(%f,%f)' % ( x, y ) | ||||
| 					else: | ||||
| 						tran = 'translate(%f,%f)' % ( x, y ) | ||||
| 					matNew2 = simpletransform.composeTransform( matNew, | ||||
| 						simpletransform.parseTransform( tran ) ) | ||||
| 					v = node.get( 'visibility', v ) | ||||
| 					self.recursivelyTraverseSvg( refnode, matNew2, | ||||
| 						parent_visibility=v ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'path', 'svg' ): | ||||
| 
 | ||||
| 				path_data = node.get( 'd') | ||||
| 				if path_data: | ||||
| 					self.addPathVertices( path_data, node, matNew ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'rect', 'svg' ) or node.tag == 'rect': | ||||
| 
 | ||||
| 				# Manually transform | ||||
| 				# | ||||
| 				#    <rect x="X" y="Y" width="W" height="H"/> | ||||
| 				# | ||||
| 				# into | ||||
| 				# | ||||
| 				#    <path d="MX,Y lW,0 l0,H l-W,0 z"/> | ||||
| 				# | ||||
| 				# I.e., explicitly draw three sides of the rectangle and the | ||||
| 				# fourth side implicitly | ||||
| 
 | ||||
| 				# Create a path with the outline of the rectangle | ||||
| 				x = float( node.get( 'x' ) ) | ||||
| 				y = float( node.get( 'y' ) ) | ||||
| 				if ( not x ) or ( not y ): | ||||
| 					pass | ||||
| 				w = float( node.get( 'width', '0' ) ) | ||||
| 				h = float( node.get( 'height', '0' ) ) | ||||
| 				a = [] | ||||
| 				a.append( ['M ', [x, y]] ) | ||||
| 				a.append( [' l ', [w, 0]] ) | ||||
| 				a.append( [' l ', [0, h]] ) | ||||
| 				a.append( [' l ', [-w, 0]] ) | ||||
| 				a.append( [' Z', []] ) | ||||
| 				self.addPathVertices( simplepath.formatPath( a ), node, matNew ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'line', 'svg' ) or node.tag == 'line': | ||||
| 
 | ||||
| 				# Convert | ||||
| 				# | ||||
| 				#   <line x1="X1" y1="Y1" x2="X2" y2="Y2/> | ||||
| 				# | ||||
| 				# to | ||||
| 				# | ||||
| 				#   <path d="MX1,Y1 LX2,Y2"/> | ||||
| 
 | ||||
| 				x1 = float( node.get( 'x1' ) ) | ||||
| 				y1 = float( node.get( 'y1' ) ) | ||||
| 				x2 = float( node.get( 'x2' ) ) | ||||
| 				y2 = float( node.get( 'y2' ) ) | ||||
| 				if ( not x1 ) or ( not y1 ) or ( not x2 ) or ( not y2 ): | ||||
| 					pass | ||||
| 				a = [] | ||||
| 				a.append( ['M ', [x1, y1]] ) | ||||
| 				a.append( [' L ', [x2, y2]] ) | ||||
| 				self.addPathVertices( simplepath.formatPath( a ), node, matNew ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'polyline', 'svg' ) or node.tag == 'polyline': | ||||
| 
 | ||||
| 				# Convert | ||||
| 				# | ||||
| 				#  <polyline points="x1,y1 x2,y2 x3,y3 [...]"/> | ||||
| 				# | ||||
| 				# to | ||||
| 				# | ||||
| 				#   <path d="Mx1,y1 Lx2,y2 Lx3,y3 [...]"/> | ||||
| 				# | ||||
| 				# Note: we ignore polylines with no points | ||||
| 
 | ||||
| 				pl = node.get( 'points', '' ).strip() | ||||
| 				if pl == '': | ||||
| 					pass | ||||
| 
 | ||||
| 				pa = pl.split() | ||||
| 				d = "".join( ["M " + pa[i] if i == 0 else " L " + pa[i] for i in range( 0, len( pa ) )] ) | ||||
| 				self.addPathVertices( d, node, matNew ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'polygon', 'svg' ) or node.tag == 'polygon': | ||||
| 
 | ||||
| 				# Convert | ||||
| 				# | ||||
| 				#  <polygon points="x1,y1 x2,y2 x3,y3 [...]"/> | ||||
| 				# | ||||
| 				# to | ||||
| 				# | ||||
| 				#   <path d="Mx1,y1 Lx2,y2 Lx3,y3 [...] Z"/> | ||||
| 				# | ||||
| 				# Note: we ignore polygons with no points | ||||
| 
 | ||||
| 				pl = node.get( 'points', '' ).strip() | ||||
| 				if pl == '': | ||||
| 					pass | ||||
| 
 | ||||
| 				pa = pl.split() | ||||
| 				d = "".join( ["M " + pa[i] if i == 0 else " L " + pa[i] for i in range( 0, len( pa ) )] ) | ||||
| 				d += " Z" | ||||
| 				self.addPathVertices( d, node, matNew ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'ellipse', 'svg' ) or \ | ||||
| 				node.tag == 'ellipse' or \ | ||||
| 				node.tag == inkex.addNS( 'circle', 'svg' ) or \ | ||||
| 				node.tag == 'circle': | ||||
| 
 | ||||
| 					# Convert circles and ellipses to a path with two 180 degree arcs. | ||||
| 					# In general (an ellipse), we convert | ||||
| 					# | ||||
| 					#   <ellipse rx="RX" ry="RY" cx="X" cy="Y"/> | ||||
| 					# | ||||
| 					# to | ||||
| 					# | ||||
| 					#   <path d="MX1,CY A RX,RY 0 1 0 X2,CY A RX,RY 0 1 0 X1,CY"/> | ||||
| 					# | ||||
| 					# where | ||||
| 					# | ||||
| 					#   X1 = CX - RX | ||||
| 					#   X2 = CX + RX | ||||
| 					# | ||||
| 					# Note: ellipses or circles with a radius attribute of value 0 are ignored | ||||
| 
 | ||||
| 					if node.tag == inkex.addNS( 'ellipse', 'svg' ) or node.tag == 'ellipse': | ||||
| 						rx = float( node.get( 'rx', '0' ) ) | ||||
| 						ry = float( node.get( 'ry', '0' ) ) | ||||
| 					else: | ||||
| 						rx = float( node.get( 'r', '0' ) ) | ||||
| 						ry = rx | ||||
| 					if rx == 0 or ry == 0: | ||||
| 						pass | ||||
| 
 | ||||
| 					cx = float( node.get( 'cx', '0' ) ) | ||||
| 					cy = float( node.get( 'cy', '0' ) ) | ||||
| 					x1 = cx - rx | ||||
| 					x2 = cx + rx | ||||
| 					d = 'M %f,%f ' % ( x1, cy ) + \ | ||||
| 						'A %f,%f ' % ( rx, ry ) + \ | ||||
| 						'0 1 0 %f,%f ' % ( x2, cy ) + \ | ||||
| 						'A %f,%f ' % ( rx, ry ) + \ | ||||
| 						'0 1 0 %f,%f' % ( x1, cy ) | ||||
| 					self.addPathVertices( d, node, matNew ) | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'pattern', 'svg' ) or node.tag == 'pattern': | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'metadata', 'svg' ) or node.tag == 'metadata': | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'defs', 'svg' ) or node.tag == 'defs': | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'namedview', 'sodipodi' ) or node.tag == 'namedview': | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'eggbot', 'svg' ) or node.tag == 'eggbot': | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			elif node.tag == inkex.addNS( 'text', 'svg' ) or node.tag == 'text': | ||||
| 
 | ||||
| 				inkex.errormsg( 'Warning: unable to draw text, please convert it to a path first.' ) | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			elif not isinstance( node.tag, basestring ): | ||||
| 
 | ||||
| 				pass | ||||
| 
 | ||||
| 			else: | ||||
| 
 | ||||
| 				inkex.errormsg( 'Warning: unable to draw object <%s>, please convert it to a path first.' % node.tag ) | ||||
| 				pass | ||||
| 
 | ||||
| 	def joinWithNode ( self, node, path, makeGroup=False ): | ||||
| 
 | ||||
| 		''' | ||||
| 		Generate a SVG <path> element containing the path data "path". | ||||
| 		Then put this new <path> element into a <group> with the supplied | ||||
| 		node.  This means making a new <group> element and making the | ||||
| 		node a child of it with the new <path> as a sibling. | ||||
| 		''' | ||||
| 
 | ||||
| 		if ( not path ) or ( len( path ) == 0 ): | ||||
| 			return | ||||
| 
 | ||||
| 		if makeGroup: | ||||
| 			# Make a new SVG <group> element whose parent is the parent of node | ||||
| 			parent = node.getparent() | ||||
| 			if not parent: | ||||
| 				parent = self.document.getroot() | ||||
| 			g = inkex.etree.SubElement( parent, inkex.addNS( 'g', 'svg' ) ) | ||||
| 
 | ||||
| 			# Move node to be a child of this new <g> element | ||||
| 			g.append( node ) | ||||
| 
 | ||||
| 			# Promote the node's transform to the new parent group | ||||
| 			# This way, it will apply to the original paths and the | ||||
| 			# "twisted" paths | ||||
| 			transform = node.get( 'transform' ) | ||||
| 			if transform: | ||||
| 				g.set( 'transform', transform ) | ||||
| 				del node.attrib['transform'] | ||||
| 		else: | ||||
| 			g = node.getparent() | ||||
| 
 | ||||
| 		# Now make a <path> element which contains the hatches & is a child | ||||
| 		# of the new <g> element | ||||
| 		style = { 'stroke': '#000000', 'fill': 'none', 'stroke-width': '1' } | ||||
| 		line_attribs = { 'style':simplestyle.formatStyle( style ), 'd': path } | ||||
| 		inkex.etree.SubElement( g, inkex.addNS( 'path', 'svg' ), line_attribs ) | ||||
| 
 | ||||
| 	def twist( self, ratio ): | ||||
| 
 | ||||
| 		if not self.paths: | ||||
| 			return | ||||
| 
 | ||||
| 		# Now iterate over all of the polygons | ||||
| 		for path in self.paths: | ||||
| 			for subpath in self.paths[path]: | ||||
| 				for i in range( 0, len( subpath ) - 1 ): | ||||
| 					subpath[i][0] = subpath[i][0] + ratio * ( subpath[i+1][0] - subpath[i][0] ) | ||||
| 					subpath[i][1] = subpath[i][1] + ratio * ( subpath[i+1][1] - subpath[i][1] ) | ||||
| 				subpath[-1] = subpath[0] | ||||
| 
 | ||||
| 	def draw( self, makeGroup=False ): | ||||
| 
 | ||||
| 		''' | ||||
| 		Draw the edges of the current list of vertices | ||||
| 		''' | ||||
| 
 | ||||
| 		if not self.paths: | ||||
| 			return | ||||
| 
 | ||||
| 		# Now iterate over all of the polygons | ||||
| 		for path in self.paths: | ||||
| 			for subpath in self.paths[path]: | ||||
| 				pdata = '' | ||||
| 				for vertex in subpath: | ||||
| 					if pdata == '': | ||||
| 						pdata = 'M %f,%f' % ( vertex[0], vertex[1] ) | ||||
| 					else: | ||||
| 						pdata += ' L %f,%f' %  ( vertex[0], vertex[1] ) | ||||
| 				self.joinWithNode( path, pdata, makeGroup ) | ||||
| 
 | ||||
| 	def effect( self ): | ||||
| 
 | ||||
| 		# Build a list of the vertices for the document's graphical elements | ||||
| 		if self.options.ids: | ||||
| 			# Traverse the selected objects | ||||
| 			for id in self.options.ids: | ||||
| 				self.recursivelyTraverseSvg( [self.selected[id]] ) | ||||
| 		else: | ||||
| 			# Traverse the entire document | ||||
| 			self.recursivelyTraverseSvg( self.document.getroot() ) | ||||
| 
 | ||||
| 		# Now iterate over the vertices N times | ||||
| 		for n in range( 0, self.options.nSteps ): | ||||
| 			self.twist( self.options.fRatio ) | ||||
| 			self.draw( n == 0 ) | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
| 	e = Twist() | ||||
| 	e.affect() | ||||
		Ładowanie…
	
		Reference in New Issue
	
	 newman.daniel1
						newman.daniel1