#include #include #include "format.h" #include "ognconv.h" // ============================================================================================== // Coordinate scales: // - uBlox GPS and FLARM: LSB = 1e-7 deg // - OGN-Tracker: LSB = 0.0001/60 deg // - FANET/ADS-L pseudo-cordic: LSB = // - True cordic: 2^32 = 360 deg int32_t Coord_FNTtoOGN(int32_t Coord) { return ((int64_t)Coord*27000219 +(1<<28))>>29; } // [FANET cordic] => [0.0001/60 deg] int32_t Coord_OGNtoFNT(int32_t Coord) { return ((int64_t)Coord*83399317 +(1<<21))>>22; } // [0.0001/60 deg] => [FANET cordic] int32_t Coord_FNTtoUBX(int32_t Coord) { return ((int64_t)Coord*900007296+(1<<29))>>30; } // [FANET cordic ] => [1e-7 deg] int32_t Coord_UBXtoFNT(int32_t Coord) { return ((int64_t)Coord*5003959 +(1<<21))>>22; } // [1e-7 deg] => [FANET cordic] int32_t Coord_CRDtoOGN(int32_t Coord) { return ((int64_t)Coord*421875 +(1<<22))>>23; } // [32-bit cordic] => [0.0001/60 deg] int32_t Coord_OGNtoCRD(int32_t Coord) { return ((int64_t)Coord*83399993 +(1<<21))>>22; } // [0.0001/60 deg] => [32-bit cordic] // ============================================================================================== int32_t FeetToMeters(int32_t Altitude) { return (Altitude*312+512)>>10; } // [feet] => [m] int32_t MetersToFeet(int32_t Altitude) { return (Altitude*3360+512)>>10; } // [m] => [feet] // ============================================================================================== uint8_t AcftType_OGNtoADSB(uint8_t AcftType) // no-inf0, glider, tow, heli, parachute, drop-plane, hang-glider, para-glider, powered, jet, UFO, balloon, Zeppelin, UAV, ground vehicle, fixed object { const uint8_t AcftCat[16] = { 0x00, 0xB1, 0xA1, 0xA7, 0xB3, 0xA1, 0xB4, 0xB4, 0xA1, 0xA2, 0x00, 0xB2, 0xB2, 0xB6, 0xC3, 0xC4 }; return AcftCat[AcftType]; } uint8_t AcftType_FNTtoADSB(uint8_t AcftType) // no-info, para-glider, hang-glider, balloon, glider, powered, heli, UAV { const uint8_t AcftCat[8] = { 0, 0xB4, 0xB4, 0xB2, 0xB1, 0xA1, 0xA7, 0xB6 } ; return AcftCat[AcftType]; } uint8_t AcftType_ADSBtoOGN(uint8_t AcftCat) { // if(AcftCat&0x38) return 0; uint8_t Upp = AcftCat>>4; uint8_t Low = AcftCat&7; if(Upp==0xA) { if(Low==1) return 8; if(Low==7) return 3; return 9; } if(Upp=0xB) { const uint8_t Map[8] = { 0, 0xB, 1, 4, 7, 0, 0xD, 0 }; return Map[Low]; } if(Upp==0xC) { if(Low>=4) return 0xF; if(Low==3) return 0xE; return 0; } return 0; } uint8_t AcftType_OGNtoGDL(uint8_t AcftType) // no-info, glider, tow, heli, parachute, drop-plane, hang-glider, para-glider, powered, jet, UFO, balloon, Zeppelin, UAV, ground vehicle, static-object { const uint8_t AcftCat[16] = { 0, 9, 1, 7, 11, 1, 12, 12, 1, 2, 0, 10, 10, 14, 18, 19 } ; return AcftCat[AcftType]; } uint8_t AcftType_OGNtoADSL(uint8_t AcftType) // OGN to ADS-L aircraft-type { const uint8_t Map[16] = { 0, 4, 1, 3, // unknown, glider, tow-plane, helicopter 8, 1, 7, 7, // sky-diver, drop plane, hang-glider, para-glider 1, 2, 0, 5, // motor airplane, jet, UFO, balloon 5,11, 0, 0 } ; // airship, UAV, ground vehicle, static object return Map[AcftType]; } uint8_t AcftType_ADSLtoOGN(uint8_t AcftCat) // ADS-L to OGN aircraft-type { const uint8_t Map[32] = { 0, 8, 9, 3, 1,12, 2, 7, 4,13, 3,13,13,13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } ; return Map[AcftCat]; } uint8_t AcftType_FNTtoOGN(uint8_t AcftType) // no-info, para-glider, hang-glider, balloon, glider, powered, heli, UAV { const uint8_t OGNtype[8] = { 0, 7, 6, 0xB, 1, 8, 3, 0xD } ; return OGNtype[AcftType]; } uint8_t AcftType_FNTtoADSL(uint8_t AcftType) // no-info, para-glider, hang-glider, balloon, glider, powered, heli, UAV { const uint8_t AcftCat[8] = { 0, 12, 12, 10, 9, 1, 7, 14 } ; return AcftCat[AcftType]; } // ============================================================================================== uint16_t EncodeUR2V8(uint16_t Value) // Encode unsigned 12bit (0..3832) as 10bit { if(Value<0x100) { } else if(Value<0x300) Value = 0x100 | ((Value-0x100)>>1); else if(Value<0x700) Value = 0x200 | ((Value-0x300)>>2); else if(Value<0xF00) Value = 0x300 | ((Value-0x700)>>3); else Value = 0x3FF; return Value; } uint16_t DecodeUR2V8(uint16_t Value) // Decode 10bit 0..0x3FF { uint16_t Range = Value>>8; Value &= 0x0FF; if(Range==0) return Value; // 000..0FF if(Range==1) return 0x101+(Value<<1); // 100..2FE if(Range==2) return 0x302+(Value<<2); // 300..6FC return 0x704+(Value<<3); } // 700..EF8 // in 12bit (0..3832) uint8_t EncodeUR2V5(uint16_t Value) // Encode unsigned 9bit (0..472) as 7bit { if(Value<0x020) { } else if(Value<0x060) Value = 0x020 | ((Value-0x020)>>1); else if(Value<0x0E0) Value = 0x040 | ((Value-0x060)>>2); else if(Value<0x1E0) Value = 0x060 | ((Value-0x0E0)>>3); else Value = 0x07F; return Value; } uint16_t DecodeUR2V5(uint16_t Value) // Decode 7bit as unsigned 9bit (0..472) { uint8_t Range = (Value>>5)&0x03; Value &= 0x1F; if(Range==0) { } // 000..01F else if(Range==1) { Value = 0x021+(Value<<1); } // 020..05E else if(Range==2) { Value = 0x062+(Value<<2); } // 060..0DC else { Value = 0x0E4+(Value<<3); } // 0E0..1D8 => max. Value = 472 return Value; } uint8_t EncodeSR2V5(int16_t Value) // Encode signed 10bit (-472..+472) as 8bit { uint8_t Sign=0; if(Value<0) { Value=(-Value); Sign=0x80; } Value = EncodeUR2V5(Value); return Value | Sign; } int16_t DecodeSR2V5( int16_t Value) // Decode { int16_t Sign = Value&0x80; Value = DecodeUR2V5(Value&0x7F); return Sign ? -Value: Value; } uint16_t EncodeUR2V6(uint16_t Value) // Encode unsigned 10bit (0..952) as 8 bit { if(Value<0x040) { } else if(Value<0x0C0) Value = 0x040 | ((Value-0x040)>>1); else if(Value<0x1C0) Value = 0x080 | ((Value-0x0C0)>>2); else if(Value<0x3C0) Value = 0x0C0 | ((Value-0x1C0)>>3); else Value = 0x0FF; return Value; } uint16_t DecodeUR2V6(uint16_t Value) // Decode 8bit as unsigned 10bit (0..952) { uint16_t Range = (Value>>6)&0x03; Value &= 0x3F; if(Range==0) { } // 000..03F else if(Range==1) { Value = 0x041+(Value<<1); } // 040..0BE else if(Range==2) { Value = 0x0C2+(Value<<2); } // 0C0..1BC else { Value = 0x1C4+(Value<<3); } // 1C0..3B8 => max. Value = 952 return Value; } uint16_t EncodeSR2V6(int16_t Value) // Encode signed 11bit (-952..+952) as 9bit { uint16_t Sign=0; if(Value<0) { Value=(-Value); Sign=0x100; } Value = EncodeUR2V6(Value); return Value | Sign; } int16_t DecodeSR2V6( int16_t Value) // Decode 9bit as signed 11bit (-952..+952) { int16_t Sign = Value&0x100; Value = DecodeUR2V6(Value&0x00FF); return Sign ? -Value: Value; } uint8_t EncodeUR2V4(uint8_t DOP) { if(DOP<0x10) { } else if(DOP<0x30) DOP = 0x10 | ((DOP-0x10)>>1); else if(DOP<0x70) DOP = 0x20 | ((DOP-0x30)>>2); else if(DOP<0xF0) DOP = 0x30 | ((DOP-0x70)>>3); else DOP = 0x3F; return DOP; } uint8_t DecodeUR2V4(uint8_t DOP) { uint8_t Range = DOP>>4; DOP &= 0x0F; if(Range==0) return DOP; // 00..0F if(Range==1) return 0x11+(DOP<<1); // 10..2E if(Range==2) return 0x32+(DOP<<2); // 30..6C return 0x74+(DOP<<3); } // 70..E8 => max. DOP = 232*0.1=23.2 uint16_t EncodeUR2V12(uint16_t Value) // encode unsigned 16-bit (0..61432) as 14-bit { if(Value<0x1000) { } else if(Value<0x3000) Value = 0x1000 | ((Value-0x1000)>>1); else if(Value<0x7000) Value = 0x2000 | ((Value-0x3000)>>2); else if(Value<0xF000) Value = 0x3000 | ((Value-0x7000)>>3); else Value = 0x3FFF; return Value; } uint16_t DecodeUR2V12(uint16_t Value) { uint16_t Range = Value>>12; Value &=0x0FFF; if(Range==0) return Value; // 0000..0FFF if(Range==1) return 0x1001+(Value<<1); // 1000..2FFE if(Range==2) return 0x3002+(Value<<2); // 3000..6FFC return 0x7004+(Value<<3); } // 7000..EFF8 => max: 61432 // ============================================================================================== uint8_t EncodeGray(uint8_t Binary) { return Binary ^ (Binary>>1); } uint8_t DecodeGray(uint8_t Gray) { Gray ^= (Gray >> 4); Gray ^= (Gray >> 2); Gray ^= (Gray >> 1); return Gray; } uint16_t EncodeGray(uint16_t Binary) { return Binary ^ (Binary>>1); } uint16_t DecodeGray(uint16_t Gray) { Gray ^= (Gray >> 8); Gray ^= (Gray >> 4); Gray ^= (Gray >> 2); Gray ^= (Gray >> 1); return Gray; } uint32_t EncodeGray(uint32_t Binary) { return Binary ^ (Binary>>1); } uint32_t DecodeGray(uint32_t Gray) { Gray ^= (Gray >>16); Gray ^= (Gray >> 8); Gray ^= (Gray >> 4); Gray ^= (Gray >> 2); Gray ^= (Gray >> 1); return Gray; } // ============================================================================================== // TEA encryption/decryption // Data is 2 x 32-bit word // Key is 4 x 32-bit word void TEA_Encrypt (uint32_t* Data, const uint32_t *Key, int Loops) { uint32_t v0=Data[0], v1=Data[1]; // set up const uint32_t delta=0x9e3779b9; uint32_t sum=0; // a key schedule constant uint32_t k0=Key[0], k1=Key[1], k2=Key[2], k3=Key[3]; // cache key for (int i=0; i < Loops; i++) // basic cycle start { sum += delta; v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1); v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3); } // end cycle Data[0]=v0; Data[1]=v1; } void TEA_Decrypt (uint32_t* Data, const uint32_t *Key, int Loops) { uint32_t v0=Data[0], v1=Data[1]; // set up const uint32_t delta=0x9e3779b9; uint32_t sum=delta*Loops; // a key schedule constant uint32_t k0=Key[0], k1=Key[1], k2=Key[2], k3=Key[3]; // cache key for (int i=0; i < Loops; i++) // basic cycle start */ { v1 -= ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3); v0 -= ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1); sum -= delta; } // end cycle Data[0]=v0; Data[1]=v1; } void TEA_Encrypt_Key0 (uint32_t* Data, int Loops) { uint32_t v0=Data[0], v1=Data[1]; // set up const uint32_t delta=0x9e3779b9; uint32_t sum=0; // a key schedule constant for (int i=0; i < Loops; i++) // basic cycle start { sum += delta; v0 += (v1<<4) ^ (v1 + sum) ^ (v1>>5); v1 += (v0<<4) ^ (v0 + sum) ^ (v0>>5); } // end cycle Data[0]=v0; Data[1]=v1; } void TEA_Decrypt_Key0 (uint32_t* Data, int Loops) { uint32_t v0=Data[0], v1=Data[1]; // set up const uint32_t delta=0x9e3779b9; uint32_t sum=delta*Loops; // a key schedule constant for (int i=0; i < Loops; i++) // basic cycle start { v1 -= (v0<<4) ^ (v0 + sum) ^ (v0>>5); v0 -= (v1<<4) ^ (v1 + sum) ^ (v1>>5); sum -= delta; } // end cycle Data[0]=v0; Data[1]=v1; } // ============================================================================================== // XXTEA encryption/decryption static uint32_t XXTEA_MX(uint8_t E, uint32_t Y, uint32_t Z, uint8_t P, uint32_t Sum, const uint32_t Key[4]) { return ((((Z>>5) ^ (Y<<2)) + ((Y>>3) ^ (Z<<4))) ^ ((Sum^Y) + (Key[(P&3)^E] ^ Z))); } void XXTEA_Encrypt(uint32_t *Data, uint8_t Words, const uint32_t Key[4], uint8_t Loops) { const uint32_t Delta = 0x9e3779b9; uint32_t Sum = 0; uint32_t Z = Data[Words-1]; uint32_t Y; for( ; Loops; Loops--) { Sum += Delta; uint8_t E = (Sum>>2)&3; for (uint8_t P=0; P<(Words-1); P++) { Y = Data[P+1]; Z = Data[P] += XXTEA_MX(E, Y, Z, P, Sum, Key); } Y = Data[0]; Z = Data[Words-1] += XXTEA_MX(E, Y, Z, Words-1, Sum, Key); } } void XXTEA_Decrypt(uint32_t *Data, uint8_t Words, const uint32_t Key[4], uint8_t Loops) { const uint32_t Delta = 0x9e3779b9; uint32_t Sum = Loops*Delta; uint32_t Y = Data[0]; uint32_t Z; for( ; Loops; Loops--) { uint8_t E = (Sum>>2)&3; for (uint8_t P=Words-1; P; P--) { Z = Data[P-1]; Y = Data[P] -= XXTEA_MX(E, Y, Z, P, Sum, Key); } Z = Data[Words-1]; Y = Data[0] -= XXTEA_MX(E, Y, Z, 0, Sum, Key); Sum -= Delta; } } static uint32_t XXTEA_MX_KEY0(uint32_t Y, uint32_t Z, uint32_t Sum) { return ((((Z>>5) ^ (Y<<2)) + ((Y>>3) ^ (Z<<4))) ^ ((Sum^Y) + Z)); } void XXTEA_Encrypt_Key0(uint32_t *Data, uint8_t Words, uint8_t Loops) { const uint32_t Delta = 0x9e3779b9; uint32_t Sum = 0; uint32_t Z = Data[Words-1]; uint32_t Y; for( ; Loops; Loops--) { Sum += Delta; for (uint8_t P=0; P<(Words-1); P++) { Y = Data[P+1]; Z = Data[P] += XXTEA_MX_KEY0(Y, Z, Sum); } Y = Data[0]; Z = Data[Words-1] += XXTEA_MX_KEY0(Y, Z, Sum); } } void XXTEA_Decrypt_Key0(uint32_t *Data, uint8_t Words, uint8_t Loops) { const uint32_t Delta = 0x9e3779b9; uint32_t Sum = Loops*Delta; uint32_t Y = Data[0]; uint32_t Z; for( ; Loops; Loops--) { for (uint8_t P=Words-1; P; P--) { Z = Data[P-1]; Y = Data[P] -= XXTEA_MX_KEY0(Y, Z, Sum); } Z = Data[Words-1]; Y = Data[0] -= XXTEA_MX_KEY0(Y, Z, Sum); Sum -= Delta; } } // ============================================================================================== void XorShift32(uint32_t &Seed) // simple random number generator { Seed ^= Seed << 13; Seed ^= Seed >> 17; Seed ^= Seed << 5; } void XorShift64(uint64_t &Seed) { Seed ^= Seed >> 12; Seed ^= Seed << 25; Seed ^= Seed >> 27; } // ============================================================================================== const static unsigned char MapAscii85[86] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~"; const static uint8_t UnmapAscii85[128] = { 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 62, 85, 63, 64, 65, 66, 85, 67, 68, 69, 70, 85, 71, 85, 85, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 85, 72, 73, 74, 75, 76, 77, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 85, 85, 85, 78, 79, 80, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 81, 82, 83, 84, 85 }; uint8_t EncodeAscii85(char *Ascii, uint32_t Word) { for( uint8_t Idx=5; Idx; ) { uint32_t Div = Word/85; Idx--; Ascii[Idx]=MapAscii85[Word-Div*85]; Word=Div; } Ascii[5]=0; return 5; } uint8_t DecodeAscii85(uint32_t &Word, const char *Ascii) { Word=0; for( uint8_t Idx=0; Idx<5; Idx++) { char Char = Ascii[Idx]; if(Char<=0) return 0; uint8_t Dig = UnmapAscii85[(uint8_t)Char]; if(Dig>=85) return 0; Word = Word*85+Dig; } return 5; } // ============================================================================================== int APRS2IGC(char *Out, const char *Inp, int GeoidSepar) // convert APRS positon message into IGC B-record { int Len=0; const char *Msg = strchr(Inp, ':'); if(Msg==0) return 0; // colon: separates header and message Msg++; // where message starts if(Msg[0]!='/' || Msg[7]!='h') return 0; const char *Pos = Msg+8; if(Pos[4]!='.' || Pos[14]!='.') return 0; // where position starts const char *ExtPos = strstr(Pos+18, " !W"); if(ExtPos[5]=='!') ExtPos+=3; else ExtPos=0; Out[Len++]='B'; // B-record memcpy(Out+Len, Msg+1, 6); Len+=6; // copy UTC time memcpy(Out+Len, Pos, 4); Len+=4; // copy DDMM memcpy(Out+Len, Pos+5, 2); Len+=2; // copy fractional MM Out[Len++] = ExtPos?ExtPos[0]:'0'; // extended precision Out[Len++] = Pos[7]; // copy N/S sign memcpy(Out+Len, Pos+9, 5); Len+=5; // copy DDMM memcpy(Out+Len, Pos+15,2); Len+=2; // copy fractional MM Out[Len++] = ExtPos?ExtPos[1]:'0'; // extended precision Out[Len++] = Pos[17]; // copy E/W sign Out[Len++] = 'A'; // GPS-valid flag memcpy(Out+Len, " ", 10); // prefill pressure and GNSS altitude with spaces const char *FL = strstr(Pos+18, " FL"); // search pressure altitude int32_t AltH=0; int32_t AltL=0; if(FL && FL[6]=='.' && Read_Int(AltH, FL+3)==3 && Read_Int(AltL, FL+7)==2) // pressure altitude { int Alt = AltH*100+AltL; Alt=FeetToMeters(Alt); if(Alt<0) { Alt = (-Alt); Out[Len] = '-'; Format_UnsDec(Out+Len+1, (uint32_t)Alt, 4); } else { Format_UnsDec(Out+Len, (uint32_t)Alt, 5); } } Len+=5; int32_t Alt=0; // if(Pos[27]=='A' && Pos[28]=='=' && Read_Int(Alt, Pos+29)==6) // geometrical altitude { Alt=FeetToMeters(Alt); Alt+=GeoidSepar; // convert to meters and add GeoidSepar for HAE if(Alt<0) { Alt = (-Alt); Out[Len] = '-'; Format_UnsDec(Out+Len+1, (uint32_t)Alt, 4); } else { Format_UnsDec(Out+Len, (uint32_t)Alt, 5); } } Len+=5; Out[Len++]='\n'; Out[Len]=0; return Len; } // add NL, terminator and return length og the string // ==============================================================================================