#!/usr/bin/env python # # ESP8266 & ESP32 ROM Bootloader Utility # Copyright (C) 2014-2016 Fredrik Ahlberg, Angus Gratton, Espressif Systems (Shanghai) PTE LTD, other contributors as noted. # https://github.com/espressif/esptool # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 Franklin # Street, Fifth Floor, Boston, MA 02110-1301 USA. from __future__ import division, print_function import argparse import base64 import binascii import copy import hashlib import inspect import io import os import shlex import struct import sys import time import zlib import string try: import serial except ImportError: print("Pyserial is not installed for %s. Check the README for installation instructions." % (sys.executable)) raise # check 'serial' is 'pyserial' and not 'serial' https://github.com/espressif/esptool/issues/269 try: if "serialization" in serial.__doc__ and "deserialization" in serial.__doc__: raise ImportError(""" esptool.py depends on pyserial, but there is a conflict with a currently installed package named 'serial'. You may be able to work around this by 'pip uninstall serial; pip install pyserial' \ but this may break other installed Python software that depends on 'serial'. There is no good fix for this right now, apart from configuring virtualenvs. \ See https://github.com/espressif/esptool/issues/269#issuecomment-385298196 for discussion of the underlying issue(s).""") except TypeError: pass # __doc__ returns None for pyserial try: import serial.tools.list_ports as list_ports except ImportError: print("The installed version (%s) of pyserial appears to be too old for esptool.py (Python interpreter %s). " "Check the README for installation instructions." % (sys.VERSION, sys.executable)) raise __version__ = "2.7-dev" MAX_UINT32 = 0xffffffff MAX_UINT24 = 0xffffff DEFAULT_TIMEOUT = 3 # timeout for most flash operations START_FLASH_TIMEOUT = 20 # timeout for starting flash (may perform erase) CHIP_ERASE_TIMEOUT = 120 # timeout for full chip erase MAX_TIMEOUT = CHIP_ERASE_TIMEOUT * 2 # longest any command can run SYNC_TIMEOUT = 0.1 # timeout for syncing with bootloader MD5_TIMEOUT_PER_MB = 8 # timeout (per megabyte) for calculating md5sum ERASE_REGION_TIMEOUT_PER_MB = 30 # timeout (per megabyte) for erasing a region MEM_END_ROM_TIMEOUT = 0.05 # special short timeout for ESP_MEM_END, as it may never respond DEFAULT_SERIAL_WRITE_TIMEOUT = 10 # timeout for serial port write def timeout_per_mb(seconds_per_mb, size_bytes): """ Scales timeouts which are size-specific """ result = seconds_per_mb * (size_bytes / 1e6) if result < DEFAULT_TIMEOUT: return DEFAULT_TIMEOUT return result DETECTED_FLASH_SIZES = {0x12: '256KB', 0x13: '512KB', 0x14: '1MB', 0x15: '2MB', 0x16: '4MB', 0x17: '8MB', 0x18: '16MB'} def check_supported_function(func, check_func): """ Decorator implementation that wraps a check around an ESPLoader bootloader function to check if it's supported. This is used to capture the multidimensional differences in functionality between the ESP8266 & ESP32 ROM loaders, and the software stub that runs on both. Not possible to do this cleanly via inheritance alone. """ def inner(*args, **kwargs): obj = args[0] if check_func(obj): return func(*args, **kwargs) else: raise NotImplementedInROMError(obj, func) return inner def stub_function_only(func): """ Attribute for a function only supported in the software stub loader """ return check_supported_function(func, lambda o: o.IS_STUB) def stub_and_esp32_function_only(func): """ Attribute for a function only supported by software stubs or ESP32 ROM """ return check_supported_function(func, lambda o: o.IS_STUB or o.CHIP_NAME == "ESP32") PYTHON2 = sys.version_info[0] < 3 # True if on pre-Python 3 # Function to return nth byte of a bitstring # Different behaviour on Python 2 vs 3 if PYTHON2: def byte(bitstr, index): return ord(bitstr[index]) else: def byte(bitstr, index): return bitstr[index] # Provide a 'basestring' class on Python 3 try: basestring except NameError: basestring = str def esp8266_function_only(func): """ Attribute for a function only supported on ESP8266 """ return check_supported_function(func, lambda o: o.CHIP_NAME == "ESP8266") class ESPLoader(object): """ Base class providing access to ESP ROM & software stub bootloaders. Subclasses provide ESP8266 & ESP32 specific functionality. Don't instantiate this base class directly, either instantiate a subclass or call ESPLoader.detect_chip() which will interrogate the chip and return the appropriate subclass instance. """ CHIP_NAME = "Espressif device" IS_STUB = False DEFAULT_PORT = "/dev/ttyUSB0" # Commands supported by ESP8266 ROM bootloader ESP_FLASH_BEGIN = 0x02 ESP_FLASH_DATA = 0x03 ESP_FLASH_END = 0x04 ESP_MEM_BEGIN = 0x05 ESP_MEM_END = 0x06 ESP_MEM_DATA = 0x07 ESP_SYNC = 0x08 ESP_WRITE_REG = 0x09 ESP_READ_REG = 0x0a # Some comands supported by ESP32 ROM bootloader (or -8266 w/ stub) ESP_SPI_SET_PARAMS = 0x0B ESP_SPI_ATTACH = 0x0D ESP_CHANGE_BAUDRATE = 0x0F ESP_FLASH_DEFL_BEGIN = 0x10 ESP_FLASH_DEFL_DATA = 0x11 ESP_FLASH_DEFL_END = 0x12 ESP_SPI_FLASH_MD5 = 0x13 # Some commands supported by stub only ESP_ERASE_FLASH = 0xD0 ESP_ERASE_REGION = 0xD1 ESP_READ_FLASH = 0xD2 ESP_RUN_USER_CODE = 0xD3 # Flash encryption debug more command ESP_FLASH_ENCRYPT_DATA = 0xD4 # Maximum block sized for RAM and Flash writes, respectively. ESP_RAM_BLOCK = 0x1800 FLASH_WRITE_SIZE = 0x400 # Default baudrate. The ROM auto-bauds, so we can use more or less whatever we want. ESP_ROM_BAUD = 115200 # First byte of the application image ESP_IMAGE_MAGIC = 0xe9 # Initial state for the checksum routine ESP_CHECKSUM_MAGIC = 0xef # Flash sector size, minimum unit of erase. FLASH_SECTOR_SIZE = 0x1000 UART_DATA_REG_ADDR = 0x60000078 # Memory addresses IROM_MAP_START = 0x40200000 IROM_MAP_END = 0x40300000 # The number of bytes in the UART response that signify command status STATUS_BYTES_LENGTH = 2 def __init__(self, port=DEFAULT_PORT, baud=ESP_ROM_BAUD, trace_enabled=False): """Base constructor for ESPLoader bootloader interaction Don't call this constructor, either instantiate ESP8266ROM or ESP32ROM, or use ESPLoader.detect_chip(). This base class has all of the instance methods for bootloader functionality supported across various chips & stub loaders. Subclasses replace the functions they don't support with ones which throw NotImplementedInROMError(). """ if isinstance(port, basestring): self._port = serial.serial_for_url(port) else: self._port = port self._slip_reader = slip_reader(self._port, self.trace) # setting baud rate in a separate step is a workaround for # CH341 driver on some Linux versions (this opens at 9600 then # sets), shouldn't matter for other platforms/drivers. See # https://github.com/espressif/esptool/issues/44#issuecomment-107094446 self._set_port_baudrate(baud) self._trace_enabled = trace_enabled # set write timeout, to prevent esptool blocked at write forever. try: self._port.write_timeout = DEFAULT_SERIAL_WRITE_TIMEOUT except NotImplementedError: # no write timeout for RFC2217 ports # need to set the property back to None or it will continue to fail self._port.write_timeout = None def _set_port_baudrate(self, baud): try: self._port.baudrate = baud except IOError: raise FatalError("Failed to set baud rate %d. The driver may not support this rate." % baud) @staticmethod def detect_chip(port=DEFAULT_PORT, baud=ESP_ROM_BAUD, connect_mode='default_reset', trace_enabled=False): """ Use serial access to detect the chip type. We use the UART's datecode register for this, it's mapped at the same address on ESP8266 & ESP32 so we can use one memory read and compare to the datecode register for each chip type. This routine automatically performs ESPLoader.connect() (passing connect_mode parameter) as part of querying the chip. """ detect_port = ESPLoader(port, baud, trace_enabled=trace_enabled) detect_port.connect(connect_mode) try: print('Detecting chip type...', end='') sys.stdout.flush() date_reg = detect_port.read_reg(ESPLoader.UART_DATA_REG_ADDR) for cls in [ESP8266ROM, ESP32ROM]: if date_reg == cls.DATE_REG_VALUE: # don't connect a second time inst = cls(detect_port._port, baud, trace_enabled=trace_enabled) print(' %s' % inst.CHIP_NAME, end='') return inst finally: print('') # end line raise FatalError("Unexpected UART datecode value 0x%08x. Failed to autodetect chip type." % date_reg) """ Read a SLIP packet from the serial port """ def read(self): return next(self._slip_reader) """ Write bytes to the serial port while performing SLIP escaping """ def write(self, packet): buf = b'\xc0' \ + (packet.replace(b'\xdb',b'\xdb\xdd').replace(b'\xc0',b'\xdb\xdc')) \ + b'\xc0' self.trace("Write %d bytes: %s", len(buf), HexFormatter(buf)) self._port.write(buf) def trace(self, message, *format_args): if self._trace_enabled: now = time.time() try: delta = now - self._last_trace except AttributeError: delta = 0.0 self._last_trace = now prefix = "TRACE +%.3f " % delta print(prefix + (message % format_args)) """ Calculate checksum of a blob, as it is defined by the ROM """ @staticmethod def checksum(data, state=ESP_CHECKSUM_MAGIC): for b in data: if type(b) is int: # python 2/3 compat state ^= b else: state ^= ord(b) return state """ Send a request and read the response """ def command(self, op=None, data=b"", chk=0, wait_response=True, timeout=DEFAULT_TIMEOUT): saved_timeout = self._port.timeout new_timeout = min(timeout, MAX_TIMEOUT) if new_timeout != saved_timeout: self._port.timeout = new_timeout try: if op is not None: self.trace("command op=0x%02x data len=%s wait_response=%d timeout=%.3f data=%s", op, len(data), 1 if wait_response else 0, timeout, HexFormatter(data)) pkt = struct.pack(b' self.STATUS_BYTES_LENGTH: return data[:-self.STATUS_BYTES_LENGTH] else: # otherwise, just return the 'val' field which comes from the reply header (this is used by read_reg) return val def flush_input(self): self._port.flushInput() self._slip_reader = slip_reader(self._port, self.trace) def sync(self): self.command(self.ESP_SYNC, b'\x07\x07\x12\x20' + 32 * b'\x55', timeout=SYNC_TIMEOUT) for i in range(7): self.command() def _setDTR(self, state): self._port.setDTR(state) def _setRTS(self, state): self._port.setRTS(state) # Work-around for adapters on Windows using the usbser.sys driver: # generate a dummy change to DTR so that the set-control-line-state # request is sent with the updated RTS state and the same DTR state self._port.setDTR(self._port.dtr) def _connect_attempt(self, mode='default_reset', esp32r0_delay=False): """ A single connection attempt, with esp32r0 workaround options """ # esp32r0_delay is a workaround for bugs with the most common auto reset # circuit and Windows, if the EN pin on the dev board does not have # enough capacitance. # # Newer dev boards shouldn't have this problem (higher value capacitor # on the EN pin), and ESP32 revision 1 can't use this workaround as it # relies on a silicon bug. # # Details: https://github.com/espressif/esptool/issues/136 last_error = None # If we're doing no_sync, we're likely communicating as a pass through # with an intermediate device to the ESP32 if mode == "no_reset_no_sync": return last_error # issue reset-to-bootloader: # RTS = either CH_PD/EN or nRESET (both active low = chip in reset # DTR = GPIO0 (active low = boot to flasher) # # DTR & RTS are active low signals, # ie True = pin @ 0V, False = pin @ VCC. if mode != 'no_reset': self._setDTR(False) # IO0=HIGH self._setRTS(True) # EN=LOW, chip in reset time.sleep(0.1) if esp32r0_delay: # Some chips are more likely to trigger the esp32r0 # watchdog reset silicon bug if they're held with EN=LOW # for a longer period time.sleep(1.2) self._setDTR(True) # IO0=LOW self._setRTS(False) # EN=HIGH, chip out of reset if esp32r0_delay: # Sleep longer after reset. # This workaround only works on revision 0 ESP32 chips, # it exploits a silicon bug spurious watchdog reset. time.sleep(0.4) # allow watchdog reset to occur time.sleep(0.05) self._setDTR(False) # IO0=HIGH, done for _ in range(5): try: self.flush_input() self._port.flushOutput() self.sync() return None except FatalError as e: if esp32r0_delay: print('_', end='') else: print('.', end='') sys.stdout.flush() time.sleep(0.05) last_error = e return last_error def connect(self, mode='default_reset'): """ Try connecting repeatedly until successful, or giving up """ print('Connecting...', end='') sys.stdout.flush() last_error = None try: for _ in range(7): last_error = self._connect_attempt(mode=mode, esp32r0_delay=False) if last_error is None: return last_error = self._connect_attempt(mode=mode, esp32r0_delay=True) if last_error is None: return finally: print('') # end 'Connecting...' line raise FatalError('Failed to connect to %s: %s' % (self.CHIP_NAME, last_error)) """ Read memory address in target """ def read_reg(self, addr): # we don't call check_command here because read_reg() function is called # when detecting chip type, and the way we check for success (STATUS_BYTES_LENGTH) is different # for different chip types (!) val, data = self.command(self.ESP_READ_REG, struct.pack(' start: raise FatalError(("Software loader is resident at 0x%08x-0x%08x. " + "Can't load binary at overlapping address range 0x%08x-0x%08x. " + "Either change binary loading address, or use the --no-stub " + "option to disable the software loader.") % (start, end, load_start, load_end)) return self.check_command("enter RAM download mode", self.ESP_MEM_BEGIN, struct.pack(' length: raise FatalError('Read more than expected') digest_frame = self.read() if len(digest_frame) != 16: raise FatalError('Expected digest, got: %s' % hexify(digest_frame)) expected_digest = hexify(digest_frame).upper() digest = hashlib.md5(data).hexdigest().upper() if digest != expected_digest: raise FatalError('Digest mismatch: expected %s, got %s' % (expected_digest, digest)) return data def flash_spi_attach(self, hspi_arg): """Send SPI attach command to enable the SPI flash pins ESP8266 ROM does this when you send flash_begin, ESP32 ROM has it as a SPI command. """ # last 3 bytes in ESP_SPI_ATTACH argument are reserved values arg = struct.pack(' 0: self.write_reg(SPI_MOSI_DLEN_REG, mosi_bits - 1) if miso_bits > 0: self.write_reg(SPI_MISO_DLEN_REG, miso_bits - 1) else: def set_data_lengths(mosi_bits, miso_bits): SPI_DATA_LEN_REG = SPI_USR1_REG SPI_MOSI_BITLEN_S = 17 SPI_MISO_BITLEN_S = 8 mosi_mask = 0 if (mosi_bits == 0) else (mosi_bits - 1) miso_mask = 0 if (miso_bits == 0) else (miso_bits - 1) self.write_reg(SPI_DATA_LEN_REG, (miso_mask << SPI_MISO_BITLEN_S) | ( mosi_mask << SPI_MOSI_BITLEN_S)) # SPI peripheral "command" bitmasks for SPI_CMD_REG SPI_CMD_USR = (1 << 18) # shift values SPI_USR2_DLEN_SHIFT = 28 if read_bits > 32: raise FatalError("Reading more than 32 bits back from a SPI flash operation is unsupported") if len(data) > 64: raise FatalError("Writing more than 64 bytes of data with one SPI command is unsupported") data_bits = len(data) * 8 old_spi_usr = self.read_reg(SPI_USR_REG) old_spi_usr2 = self.read_reg(SPI_USR2_REG) flags = SPI_USR_COMMAND if read_bits > 0: flags |= SPI_USR_MISO if data_bits > 0: flags |= SPI_USR_MOSI set_data_lengths(data_bits, read_bits) self.write_reg(SPI_USR_REG, flags) self.write_reg(SPI_USR2_REG, (7 << SPI_USR2_DLEN_SHIFT) | spiflash_command) if data_bits == 0: self.write_reg(SPI_W0_REG, 0) # clear data register before we read it else: data = pad_to(data, 4, b'\00') # pad to 32-bit multiple words = struct.unpack("I" * (len(data) // 4), data) next_reg = SPI_W0_REG for word in words: self.write_reg(next_reg, word) next_reg += 4 self.write_reg(SPI_CMD_REG, SPI_CMD_USR) def wait_done(): for _ in range(10): if (self.read_reg(SPI_CMD_REG) & SPI_CMD_USR) == 0: return raise FatalError("SPI command did not complete in time") wait_done() status = self.read_reg(SPI_W0_REG) # restore some SPI controller registers self.write_reg(SPI_USR_REG, old_spi_usr) self.write_reg(SPI_USR2_REG, old_spi_usr2) return status def read_status(self, num_bytes=2): """Read up to 24 bits (num_bytes) of SPI flash status register contents via RDSR, RDSR2, RDSR3 commands Not all SPI flash supports all three commands. The upper 1 or 2 bytes may be 0xFF. """ SPIFLASH_RDSR = 0x05 SPIFLASH_RDSR2 = 0x35 SPIFLASH_RDSR3 = 0x15 status = 0 shift = 0 for cmd in [SPIFLASH_RDSR, SPIFLASH_RDSR2, SPIFLASH_RDSR3][0:num_bytes]: status += self.run_spiflash_command(cmd, read_bits=8) << shift shift += 8 return status def write_status(self, new_status, num_bytes=2, set_non_volatile=False): """Write up to 24 bits (num_bytes) of new status register num_bytes can be 1, 2 or 3. Not all flash supports the additional commands to write the second and third byte of the status register. When writing 2 bytes, esptool also sends a 16-byte WRSR command (as some flash types use this instead of WRSR2.) If the set_non_volatile flag is set, non-volatile bits will be set as well as volatile ones (WREN used instead of WEVSR). """ SPIFLASH_WRSR = 0x01 SPIFLASH_WRSR2 = 0x31 SPIFLASH_WRSR3 = 0x11 SPIFLASH_WEVSR = 0x50 SPIFLASH_WREN = 0x06 SPIFLASH_WRDI = 0x04 enable_cmd = SPIFLASH_WREN if set_non_volatile else SPIFLASH_WEVSR # try using a 16-bit WRSR (not supported by all chips) # this may be redundant, but shouldn't hurt if num_bytes == 2: self.run_spiflash_command(enable_cmd) self.run_spiflash_command(SPIFLASH_WRSR, struct.pack(">= 8 self.run_spiflash_command(SPIFLASH_WRDI) def hard_reset(self): self._setRTS(True) # EN->LOW time.sleep(0.1) self._setRTS(False) def soft_reset(self, stay_in_bootloader): if not self.IS_STUB: if stay_in_bootloader: return # ROM bootloader is already in bootloader! else: # 'run user code' is as close to a soft reset as we can do self.flash_begin(0, 0) self.flash_finish(False) else: if stay_in_bootloader: # soft resetting from the stub loader # will re-load the ROM bootloader self.flash_begin(0, 0) self.flash_finish(True) elif self.CHIP_NAME != "ESP8266": raise FatalError("Soft resetting is currently only supported on ESP8266") else: # running user code from stub loader requires some hacks # in the stub loader self.command(self.ESP_RUN_USER_CODE, wait_response=False) class ESP8266ROM(ESPLoader): """ Access class for ESP8266 ROM bootloader """ CHIP_NAME = "ESP8266" IS_STUB = False DATE_REG_VALUE = 0x00062000 # OTP ROM addresses ESP_OTP_MAC0 = 0x3ff00050 ESP_OTP_MAC1 = 0x3ff00054 ESP_OTP_MAC3 = 0x3ff0005c SPI_REG_BASE = 0x60000200 SPI_W0_OFFS = 0x40 SPI_HAS_MOSI_DLEN_REG = False FLASH_SIZES = { '512KB':0x00, '256KB':0x10, '1MB':0x20, '2MB':0x30, '4MB':0x40, '2MB-c1': 0x50, '4MB-c1':0x60, '8MB':0x80, '16MB':0x90, } BOOTLOADER_FLASH_OFFSET = 0 def get_efuses(self): # Return the 128 bits of ESP8266 efuse as a single Python integer return (self.read_reg(0x3ff0005c) << 96 | self.read_reg(0x3ff00058) << 64 | self.read_reg(0x3ff00054) << 32 | self.read_reg(0x3ff00050)) def get_chip_description(self): efuses = self.get_efuses() is_8285 = (efuses & ((1 << 4) | 1 << 80)) != 0 # One or the other efuse bit is set for ESP8285 return "ESP8285" if is_8285 else "ESP8266EX" def get_chip_features(self): features = ["WiFi"] if self.get_chip_description() == "ESP8285": features += ["Embedded Flash"] return features def flash_spi_attach(self, hspi_arg): if self.IS_STUB: super(ESP8266ROM, self).flash_spi_attach(hspi_arg) else: # ESP8266 ROM has no flash_spi_attach command in serial protocol, # but flash_begin will do it self.flash_begin(0, 0) def flash_set_parameters(self, size): # not implemented in ROM, but OK to silently skip for ROM if self.IS_STUB: super(ESP8266ROM, self).flash_set_parameters(size) def chip_id(self): """ Read Chip ID from efuse - the equivalent of the SDK system_get_chip_id() function """ id0 = self.read_reg(self.ESP_OTP_MAC0) id1 = self.read_reg(self.ESP_OTP_MAC1) return (id0 >> 24) | ((id1 & MAX_UINT24) << 8) def read_mac(self): """ Read MAC from OTP ROM """ mac0 = self.read_reg(self.ESP_OTP_MAC0) mac1 = self.read_reg(self.ESP_OTP_MAC1) mac3 = self.read_reg(self.ESP_OTP_MAC3) if (mac3 != 0): oui = ((mac3 >> 16) & 0xff, (mac3 >> 8) & 0xff, mac3 & 0xff) elif ((mac1 >> 16) & 0xff) == 0: oui = (0x18, 0xfe, 0x34) elif ((mac1 >> 16) & 0xff) == 1: oui = (0xac, 0xd0, 0x74) else: raise FatalError("Unknown OUI") return oui + ((mac1 >> 8) & 0xff, mac1 & 0xff, (mac0 >> 24) & 0xff) def get_erase_size(self, offset, size): """ Calculate an erase size given a specific size in bytes. Provides a workaround for the bootloader erase bug.""" sectors_per_block = 16 sector_size = self.FLASH_SECTOR_SIZE num_sectors = (size + sector_size - 1) // sector_size start_sector = offset // sector_size head_sectors = sectors_per_block - (start_sector % sectors_per_block) if num_sectors < head_sectors: head_sectors = num_sectors if num_sectors < 2 * head_sectors: return (num_sectors + 1) // 2 * sector_size else: return (num_sectors - head_sectors) * sector_size def override_vddsdio(self, new_voltage): raise NotImplementedInROMError("Overriding VDDSDIO setting only applies to ESP32") class ESP8266StubLoader(ESP8266ROM): """ Access class for ESP8266 stub loader, runs on top of ROM. """ FLASH_WRITE_SIZE = 0x4000 # matches MAX_WRITE_BLOCK in stub_loader.c IS_STUB = True def __init__(self, rom_loader): self._port = rom_loader._port self._trace_enabled = rom_loader._trace_enabled self.flush_input() # resets _slip_reader def get_erase_size(self, offset, size): return size # stub doesn't have same size bug as ROM loader ESP8266ROM.STUB_CLASS = ESP8266StubLoader class ESP32ROM(ESPLoader): """Access class for ESP32 ROM bootloader """ CHIP_NAME = "ESP32" IS_STUB = False DATE_REG_VALUE = 0x15122500 IROM_MAP_START = 0x400d0000 IROM_MAP_END = 0x40400000 DROM_MAP_START = 0x3F400000 DROM_MAP_END = 0x3F800000 # ESP32 uses a 4 byte status reply STATUS_BYTES_LENGTH = 4 SPI_REG_BASE = 0x60002000 EFUSE_REG_BASE = 0x6001a000 SPI_W0_OFFS = 0x80 SPI_HAS_MOSI_DLEN_REG = True FLASH_SIZES = { '1MB':0x00, '2MB':0x10, '4MB':0x20, '8MB':0x30, '16MB':0x40 } BOOTLOADER_FLASH_OFFSET = 0x1000 OVERRIDE_VDDSDIO_CHOICES = ["1.8V", "1.9V", "OFF"] """ Try to read the BLOCK1 (encryption key) and check if it is valid """ def is_flash_encryption_key_valid(self): """ Bit 0 of efuse_rd_disable[3:0] is mapped to BLOCK1 this bit is at position 16 in EFUSE_BLK0_RDATA0_REG """ word0 = self.read_efuse(0) rd_disable = (word0 >> 16) & 0x1 # reading of BLOCK1 is NOT ALLOWED so we assume valid key is programmed if rd_disable: return True else: """ reading of BLOCK1 is ALLOWED so we will read and verify for non-zero. When ESP32 has not generated AES/encryption key in BLOCK1, the contents will be readable and 0. If the flash encryption is enabled it is expected to have a valid non-zero key. We break out on first occurance of non-zero value """ key_word = [0] * 7 for i in range(len(key_word)): key_word[i] = self.read_efuse(14 + i) # key is non-zero so break & return if key_word[i] != 0: return True return False """ For flash encryption related commands we need to make sure user has programmed all the relevant efuse correctly so at the end of write_flash_encrypt esptool will verify the values of flash_crypt_config to be non zero if they are not read protected. If the values are zero a warning will be printed """ def get_flash_crypt_config(self): """ bit 3 in efuse_rd_disable[3:0] is mapped to flash_crypt_config this bit is at position 19 in EFUSE_BLK0_RDATA0_REG """ word0 = self.read_efuse(0) rd_disable = (word0 >> 19) & 0x1 if rd_disable == 0: """ we can read the flash_crypt_config efuse value so go & read it (EFUSE_BLK0_RDATA5_REG[31:28]) """ word5 = self.read_efuse(5) word5 = (word5 >> 28) & 0xF return word5 else: # if read of the efuse is disabled we assume it is set correctly return 0xF def get_chip_description(self): word3 = self.read_efuse(3) chip_ver_rev1 = (word3 >> 15) & 0x1 pkg_version = (word3 >> 9) & 0x07 chip_name = { 0: "ESP32D0WDQ6", 1: "ESP32D0WDQ5", 2: "ESP32D2WDQ5", 5: "ESP32-PICO-D4", }.get(pkg_version, "unknown ESP32") return "%s (revision %d)" % (chip_name, chip_ver_rev1) def get_chip_features(self): features = ["WiFi"] word3 = self.read_efuse(3) # names of variables in this section are lowercase # versions of EFUSE names as documented in TRM and # ESP-IDF efuse_reg.h chip_ver_dis_bt = word3 & (1 << 1) if chip_ver_dis_bt == 0: features += ["BT"] chip_ver_dis_app_cpu = word3 & (1 << 0) if chip_ver_dis_app_cpu: features += ["Single Core"] else: features += ["Dual Core"] chip_cpu_freq_rated = word3 & (1 << 13) if chip_cpu_freq_rated: chip_cpu_freq_low = word3 & (1 << 12) if chip_cpu_freq_low: features += ["160MHz"] else: features += ["240MHz"] pkg_version = (word3 >> 9) & 0x07 if pkg_version in [2, 4, 5]: features += ["Embedded Flash"] word4 = self.read_efuse(4) adc_vref = (word4 >> 8) & 0x1F if adc_vref: features += ["VRef calibration in efuse"] blk3_part_res = word3 >> 14 & 0x1 if blk3_part_res: features += ["BLK3 partially reserved"] word6 = self.read_efuse(6) coding_scheme = word6 & 0x3 features += ["Coding Scheme %s" % { 0: "None", 1: "3/4", 2: "Repeat (UNSUPPORTED)", 3: "Invalid"}[coding_scheme]] return features def read_efuse(self, n): """ Read the nth word of the ESP3x EFUSE region. """ return self.read_reg(self.EFUSE_REG_BASE + (4 * n)) def chip_id(self): raise NotSupportedError(self, "chip_id") def read_mac(self): """ Read MAC from EFUSE region """ words = [self.read_efuse(2), self.read_efuse(1)] bitstring = struct.pack(">II", *words) bitstring = bitstring[2:8] # trim the 2 byte CRC try: return tuple(ord(b) for b in bitstring) except TypeError: # Python 3, bitstring elements are already bytes return tuple(bitstring) def get_erase_size(self, offset, size): return size def override_vddsdio(self, new_voltage): new_voltage = new_voltage.upper() if new_voltage not in self.OVERRIDE_VDDSDIO_CHOICES: raise FatalError("The only accepted VDDSDIO overrides are '1.8V', '1.9V' and 'OFF'") RTC_CNTL_SDIO_CONF_REG = 0x3ff48074 RTC_CNTL_XPD_SDIO_REG = (1 << 31) RTC_CNTL_DREFH_SDIO_M = (3 << 29) RTC_CNTL_DREFM_SDIO_M = (3 << 27) RTC_CNTL_DREFL_SDIO_M = (3 << 25) # RTC_CNTL_SDIO_TIEH = (1 << 23) # not used here, setting TIEH=1 would set 3.3V output, not safe for esptool.py to do RTC_CNTL_SDIO_FORCE = (1 << 22) RTC_CNTL_SDIO_PD_EN = (1 << 21) reg_val = RTC_CNTL_SDIO_FORCE # override efuse setting reg_val |= RTC_CNTL_SDIO_PD_EN if new_voltage != "OFF": reg_val |= RTC_CNTL_XPD_SDIO_REG # enable internal LDO if new_voltage == "1.9V": reg_val |= (RTC_CNTL_DREFH_SDIO_M | RTC_CNTL_DREFM_SDIO_M | RTC_CNTL_DREFL_SDIO_M) # boost voltage self.write_reg(RTC_CNTL_SDIO_CONF_REG, reg_val) print("VDDSDIO regulator set to %s" % new_voltage) class ESP32StubLoader(ESP32ROM): """ Access class for ESP32 stub loader, runs on top of ROM. """ FLASH_WRITE_SIZE = 0x4000 # matches MAX_WRITE_BLOCK in stub_loader.c STATUS_BYTES_LENGTH = 2 # same as ESP8266, different to ESP32 ROM IS_STUB = True def __init__(self, rom_loader): self._port = rom_loader._port self._trace_enabled = rom_loader._trace_enabled self.flush_input() # resets _slip_reader ESP32ROM.STUB_CLASS = ESP32StubLoader class ESPBOOTLOADER(object): """ These are constants related to software ESP bootloader, working with 'v2' image files """ # First byte of the "v2" application image IMAGE_V2_MAGIC = 0xea # First 'segment' value in a "v2" application image, appears to be a constant version value? IMAGE_V2_SEGMENT = 4 def LoadFirmwareImage(chip, filename): """ Load a firmware image. Can be for ESP8266 or ESP32. ESP8266 images will be examined to determine if they are original ROM firmware images (ESP8266ROMFirmwareImage) or "v2" OTA bootloader images. Returns a BaseFirmwareImage subclass, either ESP8266ROMFirmwareImage (v1) or ESP8266V2FirmwareImage (v2). """ with open(filename, 'rb') as f: if chip.lower() == 'esp32': return ESP32FirmwareImage(f) else: # Otherwise, ESP8266 so look at magic to determine the image type magic = ord(f.read(1)) f.seek(0) if magic == ESPLoader.ESP_IMAGE_MAGIC: return ESP8266ROMFirmwareImage(f) elif magic == ESPBOOTLOADER.IMAGE_V2_MAGIC: return ESP8266V2FirmwareImage(f) else: raise FatalError("Invalid image magic number: %d" % magic) class ImageSegment(object): """ Wrapper class for a segment in an ESP image (very similar to a section in an ELFImage also) """ def __init__(self, addr, data, file_offs=None): self.addr = addr self.data = data self.file_offs = file_offs self.include_in_checksum = True if self.addr != 0: self.pad_to_alignment(4) # pad all "real" ImageSegments 4 byte aligned length def copy_with_new_addr(self, new_addr): """ Return a new ImageSegment with same data, but mapped at a new address. """ return ImageSegment(new_addr, self.data, 0) def split_image(self, split_len): """ Return a new ImageSegment which splits "split_len" bytes from the beginning of the data. Remaining bytes are kept in this segment object (and the start address is adjusted to match.) """ result = copy.copy(self) result.data = self.data[:split_len] self.data = self.data[split_len:] self.addr += split_len self.file_offs = None result.file_offs = None return result def __repr__(self): r = "len 0x%05x load 0x%08x" % (len(self.data), self.addr) if self.file_offs is not None: r += " file_offs 0x%08x" % (self.file_offs) return r def pad_to_alignment(self, alignment): self.data = pad_to(self.data, alignment, b'\x00') class ELFSection(ImageSegment): """ Wrapper class for a section in an ELF image, has a section name as well as the common properties of an ImageSegment. """ def __init__(self, name, addr, data): super(ELFSection, self).__init__(addr, data) self.name = name.decode("utf-8") def __repr__(self): return "%s %s" % (self.name, super(ELFSection, self).__repr__()) class BaseFirmwareImage(object): SEG_HEADER_LEN = 8 SHA256_DIGEST_LEN = 32 """ Base class with common firmware image functions """ def __init__(self): self.segments = [] self.entrypoint = 0 self.elf_sha256 = None self.elf_sha256_offset = 0 def load_common_header(self, load_file, expected_magic): (magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack(' 16: raise FatalError('Invalid segment count %d (max 16). Usually this indicates a linker script problem.' % len(self.segments)) def load_segment(self, f, is_irom_segment=False): """ Load the next segment from the image file """ file_offs = f.tell() (offset, size) = struct.unpack(' 0x40200000 or offset < 0x3ffe0000 or size > 65536: print('WARNING: Suspicious segment 0x%x, length %d' % (offset, size)) def maybe_patch_segment_data(self, f, segment_data): """If SHA256 digest of the ELF file needs to be inserted into this segment, do so. Returns segment data.""" segment_len = len(segment_data) file_pos = f.tell() # file_pos is position in the .bin file if self.elf_sha256_offset >= file_pos and self.elf_sha256_offset < file_pos + segment_len: # SHA256 digest needs to be patched into this binary segment, # calculate offset of the digest inside the binary segment. patch_offset = self.elf_sha256_offset - file_pos # Sanity checks if patch_offset < self.SEG_HEADER_LEN or patch_offset + self.SHA256_DIGEST_LEN > segment_len: raise FatalError('Cannot place SHA256 digest on segment boundary' + '(elf_sha256_offset=%d, file_pos=%d, segment_size=%d)' % (self.elf_sha256_offset, file_pos, segment_len)) if segment_data[patch_offset:patch_offset + self.SHA256_DIGEST_LEN] != b'\x00' * self.SHA256_DIGEST_LEN: raise FatalError('Contents of segment at SHA256 digest offset 0x%x are not all zero. Refusing to overwrite.' % self.elf_sha256_offset) assert(len(self.elf_sha256) == self.SHA256_DIGEST_LEN) # offset relative to the data part patch_offset -= self.SEG_HEADER_LEN segment_data = segment_data[0:patch_offset] + self.elf_sha256 + \ segment_data[patch_offset + self.SHA256_DIGEST_LEN:] return segment_data def save_segment(self, f, segment, checksum=None): """ Save the next segment to the image file, return next checksum value if provided """ segment_data = self.maybe_patch_segment_data(f, segment.data) f.write(struct.pack(' 0: if len(irom_segments) != 1: raise FatalError('Found %d segments that could be irom0. Bad ELF file?' % len(irom_segments)) return irom_segments[0] return None def get_non_irom_segments(self): irom_segment = self.get_irom_segment() return [s for s in self.segments if s != irom_segment] class ESP8266ROMFirmwareImage(BaseFirmwareImage): """ 'Version 1' firmware image, segments loaded directly by the ROM bootloader. """ ROM_LOADER = ESP8266ROM def __init__(self, load_file=None): super(ESP8266ROMFirmwareImage, self).__init__() self.flash_mode = 0 self.flash_size_freq = 0 self.version = 1 if load_file is not None: segments = self.load_common_header(load_file, ESPLoader.ESP_IMAGE_MAGIC) for _ in range(segments): self.load_segment(load_file) self.checksum = self.read_checksum(load_file) self.verify() def default_output_name(self, input_file): """ Derive a default output name from the ELF name. """ return input_file + '-' def save(self, basename): """ Save a set of V1 images for flashing. Parameter is a base filename. """ # IROM data goes in its own plain binary file irom_segment = self.get_irom_segment() if irom_segment is not None: with open("%s0x%05x.bin" % (basename, irom_segment.addr - ESP8266ROM.IROM_MAP_START), "wb") as f: f.write(irom_segment.data) # everything but IROM goes at 0x00000 in an image file normal_segments = self.get_non_irom_segments() with open("%s0x00000.bin" % basename, 'wb') as f: self.write_common_header(f, normal_segments) checksum = ESPLoader.ESP_CHECKSUM_MAGIC for segment in normal_segments: checksum = self.save_segment(f, segment, checksum) self.append_checksum(f, checksum) class ESP8266V2FirmwareImage(BaseFirmwareImage): """ 'Version 2' firmware image, segments loaded by software bootloader stub (ie Espressif bootloader or rboot) """ ROM_LOADER = ESP8266ROM def __init__(self, load_file=None): super(ESP8266V2FirmwareImage, self).__init__() self.version = 2 if load_file is not None: segments = self.load_common_header(load_file, ESPBOOTLOADER.IMAGE_V2_MAGIC) if segments != ESPBOOTLOADER.IMAGE_V2_SEGMENT: # segment count is not really segment count here, but we expect to see '4' print('Warning: V2 header has unexpected "segment" count %d (usually 4)' % segments) # irom segment comes before the second header # # the file is saved in the image with a zero load address # in the header, so we need to calculate a load address irom_segment = self.load_segment(load_file, True) irom_segment.addr = 0 # for actual mapped addr, add ESP8266ROM.IROM_MAP_START + flashing_addr + 8 irom_segment.include_in_checksum = False first_flash_mode = self.flash_mode first_flash_size_freq = self.flash_size_freq first_entrypoint = self.entrypoint # load the second header segments = self.load_common_header(load_file, ESPLoader.ESP_IMAGE_MAGIC) if first_flash_mode != self.flash_mode: print('WARNING: Flash mode value in first header (0x%02x) disagrees with second (0x%02x). Using second value.' % (first_flash_mode, self.flash_mode)) if first_flash_size_freq != self.flash_size_freq: print('WARNING: Flash size/freq value in first header (0x%02x) disagrees with second (0x%02x). Using second value.' % (first_flash_size_freq, self.flash_size_freq)) if first_entrypoint != self.entrypoint: print('WARNING: Entrypoint address in first header (0x%08x) disagrees with second header (0x%08x). Using second value.' % (first_entrypoint, self.entrypoint)) # load all the usual segments for _ in range(segments): self.load_segment(load_file) self.checksum = self.read_checksum(load_file) self.verify() def default_output_name(self, input_file): """ Derive a default output name from the ELF name. """ irom_segment = self.get_irom_segment() if irom_segment is not None: irom_offs = irom_segment.addr - ESP8266ROM.IROM_MAP_START else: irom_offs = 0 return "%s-0x%05x.bin" % (os.path.splitext(input_file)[0], irom_offs & ~(ESPLoader.FLASH_SECTOR_SIZE - 1)) def save(self, filename): with open(filename, 'wb') as f: # Save first header for irom0 segment f.write(struct.pack(b' 0: last_addr = flash_segments[0].addr for segment in flash_segments[1:]: if segment.addr // self.IROM_ALIGN == last_addr // self.IROM_ALIGN: raise FatalError(("Segment loaded at 0x%08x lands in same 64KB flash mapping as segment loaded at 0x%08x. " + "Can't generate binary. Suggest changing linker script or ELF to merge sections.") % (segment.addr, last_addr)) last_addr = segment.addr def get_alignment_data_needed(segment): # Actual alignment (in data bytes) required for a segment header: positioned so that # after we write the next 8 byte header, file_offs % IROM_ALIGN == segment.addr % IROM_ALIGN # # (this is because the segment's vaddr may not be IROM_ALIGNed, more likely is aligned # IROM_ALIGN+0x18 to account for the binary file header align_past = (segment.addr % self.IROM_ALIGN) - self.SEG_HEADER_LEN pad_len = (self.IROM_ALIGN - (f.tell() % self.IROM_ALIGN)) + align_past if pad_len == 0 or pad_len == self.IROM_ALIGN: return 0 # already aligned # subtract SEG_HEADER_LEN a second time, as the padding block has a header as well pad_len -= self.SEG_HEADER_LEN if pad_len < 0: pad_len += self.IROM_ALIGN return pad_len # try to fit each flash segment on a 64kB aligned boundary # by padding with parts of the non-flash segments... while len(flash_segments) > 0: segment = flash_segments[0] pad_len = get_alignment_data_needed(segment) if pad_len > 0: # need to pad if len(ram_segments) > 0 and pad_len > self.SEG_HEADER_LEN: pad_segment = ram_segments[0].split_image(pad_len) if len(ram_segments[0].data) == 0: ram_segments.pop(0) else: pad_segment = ImageSegment(0, b'\x00' * pad_len, f.tell()) checksum = self.save_segment(f, pad_segment, checksum) total_segments += 1 else: # write the flash segment assert (f.tell() + 8) % self.IROM_ALIGN == segment.addr % self.IROM_ALIGN checksum = self.save_flash_segment(f, segment, checksum) flash_segments.pop(0) total_segments += 1 # flash segments all written, so write any remaining RAM segments for segment in ram_segments: checksum = self.save_segment(f, segment, checksum) total_segments += 1 if self.secure_pad: # pad the image so that after signing it will end on a a 64KB boundary. # This ensures all mapped flash content will be verified. if not self.append_digest: raise FatalError("secure_pad only applies if a SHA-256 digest is also appended to the image") align_past = (f.tell() + self.SEG_HEADER_LEN) % self.IROM_ALIGN # 16 byte aligned checksum (force the alignment to simplify calculations) checksum_space = 16 # after checksum: SHA-256 digest + (to be added by signing process) version, signature + 12 trailing bytes due to alignment space_after_checksum = 32 + 4 + 64 + 12 pad_len = (self.IROM_ALIGN - align_past - checksum_space - space_after_checksum) % self.IROM_ALIGN pad_segment = ImageSegment(0, b'\x00' * pad_len, f.tell()) checksum = self.save_segment(f, pad_segment, checksum) total_segments += 1 # done writing segments self.append_checksum(f, checksum) image_length = f.tell() if self.secure_pad: assert ((image_length + space_after_checksum) % self.IROM_ALIGN) == 0 # kinda hacky: go back to the initial header and write the new segment count # that includes padding segments. This header is not checksummed f.seek(1) try: f.write(chr(total_segments)) except TypeError: # Python 3 f.write(bytes([total_segments])) if self.append_digest: # calculate the SHA256 of the whole file and append it f.seek(0) digest = hashlib.sha256() digest.update(f.read(image_length)) f.write(digest.digest()) with open(filename, 'wb') as real_file: real_file.write(f.getvalue()) def save_flash_segment(self, f, segment, checksum=None): """ Save the next segment to the image file, return next checksum value if provided """ segment_end_pos = f.tell() + len(segment.data) + self.SEG_HEADER_LEN segment_len_remainder = segment_end_pos % self.IROM_ALIGN if segment_len_remainder < 0x24: # Work around a bug in ESP-IDF 2nd stage bootloader, that it didn't map the # last MMU page, if an IROM/DROM segment was < 0x24 bytes over the page boundary. segment.data += b'\x00' * (0x24 - segment_len_remainder) return self.save_segment(f, segment, checksum) def load_extended_header(self, load_file): def split_byte(n): return (n & 0x0F, (n >> 4) & 0x0F) fields = list(struct.unpack(self.EXTENDED_HEADER_STRUCT_FMT, load_file.read(16))) self.wp_pin = fields[0] # SPI pin drive stengths are two per byte self.clk_drv, self.q_drv = split_byte(fields[1]) self.d_drv, self.cs_drv = split_byte(fields[2]) self.hd_drv, self.wp_drv = split_byte(fields[3]) if fields[15] in [0, 1]: self.append_digest = (fields[15] == 1) else: raise RuntimeError("Invalid value for append_digest field (0x%02x). Should be 0 or 1.", fields[15]) # remaining fields in the middle should all be zero if any(f for f in fields[4:15] if f != 0): print("Warning: some reserved header fields have non-zero values. This image may be from a newer esptool.py?") def save_extended_header(self, save_file): def join_byte(ln,hn): return (ln & 0x0F) + ((hn & 0x0F) << 4) append_digest = 1 if self.append_digest else 0 fields = [self.wp_pin, join_byte(self.clk_drv, self.q_drv), join_byte(self.d_drv, self.cs_drv), join_byte(self.hd_drv, self.wp_drv)] fields += [0] * 11 fields += [append_digest] packed = struct.pack(self.EXTENDED_HEADER_STRUCT_FMT, *fields) save_file.write(packed) class ELFFile(object): SEC_TYPE_PROGBITS = 0x01 SEC_TYPE_STRTAB = 0x03 LEN_SEC_HEADER = 0x28 def __init__(self, name): # Load sections from the ELF file self.name = name with open(self.name, 'rb') as f: self._read_elf_file(f) def get_section(self, section_name): for s in self.sections: if s.name == section_name: return s raise ValueError("No section %s in ELF file" % section_name) def _read_elf_file(self, f): # read the ELF file header LEN_FILE_HEADER = 0x34 try: (ident,_type,machine,_version, self.entrypoint,_phoff,shoff,_flags, _ehsize, _phentsize,_phnum, shentsize, shnum,shstrndx) = struct.unpack("<16sHHLLLLLHHHHHH", f.read(LEN_FILE_HEADER)) except struct.error as e: raise FatalError("Failed to read a valid ELF header from %s: %s" % (self.name, e)) if byte(ident, 0) != 0x7f or ident[1:4] != b'ELF': raise FatalError("%s has invalid ELF magic header" % self.name) if machine != 0x5e: raise FatalError("%s does not appear to be an Xtensa ELF file. e_machine=%04x" % (self.name, machine)) if shentsize != self.LEN_SEC_HEADER: raise FatalError("%s has unexpected section header entry size 0x%x (not 0x28)" % (self.name, shentsize, self.LEN_SEC_HEADER)) if shnum == 0: raise FatalError("%s has 0 section headers" % (self.name)) self._read_sections(f, shoff, shnum, shstrndx) def _read_sections(self, f, section_header_offs, section_header_count, shstrndx): f.seek(section_header_offs) len_bytes = section_header_count * self.LEN_SEC_HEADER section_header = f.read(len_bytes) if len(section_header) == 0: raise FatalError("No section header found at offset %04x in ELF file." % section_header_offs) if len(section_header) != (len_bytes): raise FatalError("Only read 0x%x bytes from section header (expected 0x%x.) Truncated ELF file?" % (len(section_header), len_bytes)) # walk through the section header and extract all sections section_header_offsets = range(0, len(section_header), self.LEN_SEC_HEADER) def read_section_header(offs): name_offs,sec_type,_flags,lma,sec_offs,size = struct.unpack_from(" 0] self.sections = prog_sections def sha256(self): # return SHA256 hash of the input ELF file sha256 = hashlib.sha256() with open(self.name, 'rb') as f: sha256.update(f.read()) return sha256.digest() def slip_reader(port, trace_function): """Generator to read SLIP packets from a serial port. Yields one full SLIP packet at a time, raises exception on timeout or invalid data. Designed to avoid too many calls to serial.read(1), which can bog down on slow systems. """ partial_packet = None in_escape = False while True: waiting = port.inWaiting() read_bytes = port.read(1 if waiting == 0 else waiting) if read_bytes == b'': waiting_for = "header" if partial_packet is None else "content" trace_function("Timed out waiting for packet %s", waiting_for) raise FatalError("Timed out waiting for packet %s" % waiting_for) trace_function("Read %d bytes: %s", len(read_bytes), HexFormatter(read_bytes)) for b in read_bytes: if type(b) is int: b = bytes([b]) # python 2/3 compat if partial_packet is None: # waiting for packet header if b == b'\xc0': partial_packet = b"" else: trace_function("Read invalid data: %s", HexFormatter(read_bytes)) trace_function("Remaining data in serial buffer: %s", HexFormatter(port.read(port.inWaiting()))) raise FatalError('Invalid head of packet (0x%s)' % hexify(b)) elif in_escape: # part-way through escape sequence in_escape = False if b == b'\xdc': partial_packet += b'\xc0' elif b == b'\xdd': partial_packet += b'\xdb' else: trace_function("Read invalid data: %s", HexFormatter(read_bytes)) trace_function("Remaining data in serial buffer: %s", HexFormatter(port.read(port.inWaiting()))) raise FatalError('Invalid SLIP escape (0xdb, 0x%s)' % (hexify(b))) elif b == b'\xdb': # start of escape sequence in_escape = True elif b == b'\xc0': # end of packet trace_function("Received full packet: %s", HexFormatter(partial_packet)) yield partial_packet partial_packet = None else: # normal byte in packet partial_packet += b def arg_auto_int(x): return int(x, 0) def div_roundup(a, b): """ Return a/b rounded up to nearest integer, equivalent result to int(math.ceil(float(int(a)) / float(int(b))), only without possible floating point accuracy errors. """ return (int(a) + int(b) - 1) // int(b) def align_file_position(f, size): """ Align the position in the file to the next block of specified size """ align = (size - 1) - (f.tell() % size) f.seek(align, 1) def flash_size_bytes(size): """ Given a flash size of the type passed in args.flash_size (ie 512KB or 1MB) then return the size in bytes. """ if "MB" in size: return int(size[:size.index("MB")]) * 1024 * 1024 elif "KB" in size: return int(size[:size.index("KB")]) * 1024 else: raise FatalError("Unknown size %s" % size) def hexify(s, uppercase=True): format_str = '%02X' if uppercase else '%02x' if not PYTHON2: return ''.join(format_str % c for c in s) else: return ''.join(format_str % ord(c) for c in s) class HexFormatter(object): """ Wrapper class which takes binary data in its constructor and returns a hex string as it's __str__ method. This is intended for "lazy formatting" of trace() output in hex format. Avoids overhead (significant on slow computers) of generating long hex strings even if tracing is disabled. Note that this doesn't save any overhead if passed as an argument to "%", only when passed to trace() If auto_split is set (default), any long line (> 16 bytes) will be printed as separately indented lines, with ASCII decoding at the end of each line. """ def __init__(self, binary_string, auto_split=True): self._s = binary_string self._auto_split = auto_split def __str__(self): if self._auto_split and len(self._s) > 16: result = "" s = self._s while len(s) > 0: line = s[:16] ascii_line = "".join(c if (c == ' ' or (c in string.printable and c not in string.whitespace)) else '.' for c in line.decode('ascii', 'replace')) s = s[16:] result += "\n %-16s %-16s | %s" % (hexify(line[:8], False), hexify(line[8:], False), ascii_line) return result else: return hexify(self._s, False) def pad_to(data, alignment, pad_character=b'\xFF'): """ Pad to the next alignment boundary """ pad_mod = len(data) % alignment if pad_mod != 0: data += pad_character * (alignment - pad_mod) return data class FatalError(RuntimeError): """ Wrapper class for runtime errors that aren't caused by internal bugs, but by ESP8266 responses or input content. """ def __init__(self, message): RuntimeError.__init__(self, message) @staticmethod def WithResult(message, result): """ Return a fatal error object that appends the hex values of 'result' as a string formatted argument. """ message += " (result was %s)" % hexify(result) return FatalError(message) class NotImplementedInROMError(FatalError): """ Wrapper class for the error thrown when a particular ESP bootloader function is not implemented in the ROM bootloader. """ def __init__(self, bootloader, func): FatalError.__init__(self, "%s ROM does not support function %s." % (bootloader.CHIP_NAME, func.__name__)) class NotSupportedError(FatalError): def __init__(self, esp, function_name): FatalError.__init__(self, "Function %s is not supported for %s." % (function_name, esp.CHIP_NAME)) # "Operation" commands, executable at command line. One function each # # Each function takes either two args (, ) or a single # argument. def load_ram(esp, args): image = LoadFirmwareImage(esp.CHIP_NAME, args.filename) print('RAM boot...') for seg in image.segments: size = len(seg.data) print('Downloading %d bytes at %08x...' % (size, seg.addr), end=' ') sys.stdout.flush() esp.mem_begin(size, div_roundup(size, esp.ESP_RAM_BLOCK), esp.ESP_RAM_BLOCK, seg.addr) seq = 0 while len(seg.data) > 0: esp.mem_block(seg.data[0:esp.ESP_RAM_BLOCK], seq) seg.data = seg.data[esp.ESP_RAM_BLOCK:] seq += 1 print('done!') print('All segments done, executing at %08x' % image.entrypoint) esp.mem_finish(image.entrypoint) def read_mem(esp, args): print('0x%08x = 0x%08x' % (args.address, esp.read_reg(args.address))) def write_mem(esp, args): esp.write_reg(args.address, args.value, args.mask, 0) print('Wrote %08x, mask %08x to %08x' % (args.value, args.mask, args.address)) def dump_mem(esp, args): with open(args.filename, 'wb') as f: for i in range(args.size // 4): d = esp.read_reg(args.address + (i * 4)) f.write(struct.pack(b'> 16 args.flash_size = DETECTED_FLASH_SIZES.get(size_id) if args.flash_size is None: print('Warning: Could not auto-detect Flash size (FlashID=0x%x, SizeID=0x%x), defaulting to 4MB' % (flash_id, size_id)) args.flash_size = '4MB' else: print('Auto-detected Flash size:', args.flash_size) def _update_image_flash_params(esp, address, args, image): """ Modify the flash mode & size bytes if this looks like an executable bootloader image """ if len(image) < 8: return image # not long enough to be a bootloader image # unpack the (potential) image header magic, _, flash_mode, flash_size_freq = struct.unpack("BBBB", image[:4]) if address != esp.BOOTLOADER_FLASH_OFFSET or magic != esp.ESP_IMAGE_MAGIC: return image # not flashing a bootloader, so don't modify this if args.flash_mode != 'keep': flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode] flash_freq = flash_size_freq & 0x0F if args.flash_freq != 'keep': flash_freq = {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq] flash_size = flash_size_freq & 0xF0 if args.flash_size != 'keep': flash_size = esp.parse_flash_size_arg(args.flash_size) flash_params = struct.pack(b'BB', flash_mode, flash_size + flash_freq) if flash_params != image[2:4]: print('Flash params set to 0x%04x' % struct.unpack(">H", flash_params)) image = image[0:2] + flash_params + image[4:] return image def write_flash(esp, args): # set args.compress based on default behaviour: # -> if either --compress or --no-compress is set, honour that # -> otherwise, set --compress unless --no-stub is set if args.compress is None and not args.no_compress: args.compress = not args.no_stub # For encrypt option we do few sanity checks before actual flash write if args.encrypt: do_write = True crypt_cfg_efuse = esp.get_flash_crypt_config() if crypt_cfg_efuse != 0xF: print('\nWARNING: Unexpected FLASH_CRYPT_CONFIG value', hex(crypt_cfg_efuse)) print('\nMake sure flash encryption is enabled correctly, refer to Flash Encryption documentation') do_write = False enc_key_valid = esp.is_flash_encryption_key_valid() if not enc_key_valid: print('\nFlash encryption key is not programmed') print('\nMake sure flash encryption is enabled correctly, refer to Flash Encryption documentation') do_write = False if (esp.FLASH_WRITE_SIZE % 32) != 0: print('\nWARNING - Flash write address is not aligned to the recommeded 32 bytes') do_write = False if not do_write and not args.ignore_flash_encryption_efuse_setting: raise FatalError("Incorrect efuse setting: aborting flash write") # verify file sizes fit in flash flash_end = flash_size_bytes(args.flash_size) for address, argfile in args.addr_filename: argfile.seek(0,2) # seek to end if address + argfile.tell() > flash_end: raise FatalError(("File %s (length %d) at offset %d will not fit in %d bytes of flash. " + "Use --flash-size argument, or change flashing address.") % (argfile.name, argfile.tell(), address, flash_end)) argfile.seek(0) if args.erase_all: erase_flash(esp, args) if args.encrypt and args.compress: print('\nWARNING: - compress and encrypt options are mutually exclusive ') print('Will flash uncompressed') args.compress = False for address, argfile in args.addr_filename: if args.no_stub: print('Erasing flash...') image = pad_to(argfile.read(), 32 if args.encrypt else 4) if len(image) == 0: print('WARNING: File %s is empty' % argfile.name) continue image = _update_image_flash_params(esp, address, args, image) calcmd5 = hashlib.md5(image).hexdigest() uncsize = len(image) if args.compress: uncimage = image image = zlib.compress(uncimage, 9) ratio = uncsize / len(image) blocks = esp.flash_defl_begin(uncsize, len(image), address) else: ratio = 1.0 blocks = esp.flash_begin(uncsize, address) argfile.seek(0) # in case we need it again seq = 0 written = 0 t = time.time() while len(image) > 0: print('\rWriting at 0x%08x... (%d %%)' % (address + seq * esp.FLASH_WRITE_SIZE, 100 * (seq + 1) // blocks), end='') sys.stdout.flush() block = image[0:esp.FLASH_WRITE_SIZE] if args.compress: esp.flash_defl_block(block, seq, timeout=DEFAULT_TIMEOUT * ratio * 2) else: # Pad the last block block = block + b'\xff' * (esp.FLASH_WRITE_SIZE - len(block)) if args.encrypt: esp.flash_encrypt_block(block, seq) else: esp.flash_block(block, seq) image = image[esp.FLASH_WRITE_SIZE:] seq += 1 written += len(block) t = time.time() - t speed_msg = "" if args.compress: if t > 0.0: speed_msg = " (effective %.1f kbit/s)" % (uncsize / t * 8 / 1000) print('\rWrote %d bytes (%d compressed) at 0x%08x in %.1f seconds%s...' % (uncsize, written, address, t, speed_msg)) else: if t > 0.0: speed_msg = " (%.1f kbit/s)" % (written / t * 8 / 1000) print('\rWrote %d bytes at 0x%08x in %.1f seconds%s...' % (written, address, t, speed_msg)) if not args.encrypt: try: res = esp.flash_md5sum(address, uncsize) if res != calcmd5: print('File md5: %s' % calcmd5) print('Flash md5: %s' % res) print('MD5 of 0xFF is %s' % (hashlib.md5(b'\xFF' * uncsize).hexdigest())) raise FatalError("MD5 of file does not match data in flash!") else: print('Hash of data verified.') except NotImplementedInROMError: pass print('\nLeaving...') if esp.IS_STUB: # skip sending flash_finish to ROM loader here, # as it causes the loader to exit and run user code esp.flash_begin(0, 0) if args.compress: esp.flash_defl_finish(False) else: esp.flash_finish(False) if args.verify: print('Verifying just-written flash...') print('(This option is deprecated, flash contents are now always read back after flashing.)') verify_flash(esp, args) def image_info(args): image = LoadFirmwareImage(args.chip, args.filename) print('Image version: %d' % image.version) print('Entry point: %08x' % image.entrypoint if image.entrypoint != 0 else 'Entry point not set') print('%d segments' % len(image.segments)) print idx = 0 for seg in image.segments: idx += 1 print('Segment %d: %r' % (idx, seg)) calc_checksum = image.calculate_checksum() print('Checksum: %02x (%s)' % (image.checksum, 'valid' if image.checksum == calc_checksum else 'invalid - calculated %02x' % calc_checksum)) try: digest_msg = 'Not appended' if image.append_digest: is_valid = image.stored_digest == image.calc_digest digest_msg = "%s (%s)" % (hexify(image.calc_digest).lower(), "valid" if is_valid else "invalid") print('Validation Hash: %s' % digest_msg) except AttributeError: pass # ESP8266 image has no append_digest field def make_image(args): image = ESP8266ROMFirmwareImage() if len(args.segfile) == 0: raise FatalError('No segments specified') if len(args.segfile) != len(args.segaddr): raise FatalError('Number of specified files does not match number of specified addresses') for (seg, addr) in zip(args.segfile, args.segaddr): with open(seg, 'rb') as f: data = f.read() image.segments.append(ImageSegment(addr, data)) image.entrypoint = args.entrypoint image.save(args.output) def elf2image(args): e = ELFFile(args.input) if args.chip == 'auto': # Default to ESP8266 for backwards compatibility print("Creating image for ESP8266...") args.chip = 'esp8266' if args.chip == 'esp32': image = ESP32FirmwareImage() image.secure_pad = args.secure_pad elif args.version == '1': # ESP8266 image = ESP8266ROMFirmwareImage() else: image = ESP8266V2FirmwareImage() image.entrypoint = e.entrypoint image.segments = e.sections # ELFSection is a subclass of ImageSegment image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode] image.flash_size_freq = image.ROM_LOADER.FLASH_SIZES[args.flash_size] image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq] if args.elf_sha256_offset: image.elf_sha256 = e.sha256() image.elf_sha256_offset = args.elf_sha256_offset image.verify() if args.output is None: args.output = image.default_output_name(args.input) image.save(args.output) def read_mac(esp, args): mac = esp.read_mac() def print_mac(label, mac): print('%s: %s' % (label, ':'.join(map(lambda x: '%02x' % x, mac)))) print_mac("MAC", mac) def chip_id(esp, args): try: chipid = esp.chip_id() print('Chip ID: 0x%08x' % chipid) except NotSupportedError: print('Warning: %s has no Chip ID. Reading MAC instead.' % esp.CHIP_NAME) read_mac(esp, args) def erase_flash(esp, args): print('Erasing flash (this may take a while)...') t = time.time() esp.erase_flash() print('Chip erase completed successfully in %.1fs' % (time.time() - t)) def erase_region(esp, args): print('Erasing region (may be slow depending on size)...') t = time.time() esp.erase_region(args.address, args.size) print('Erase completed successfully in %.1f seconds.' % (time.time() - t)) def run(esp, args): esp.run() def flash_id(esp, args): flash_id = esp.flash_id() print('Manufacturer: %02x' % (flash_id & 0xff)) flid_lowbyte = (flash_id >> 16) & 0xFF print('Device: %02x%02x' % ((flash_id >> 8) & 0xff, flid_lowbyte)) print('Detected flash size: %s' % (DETECTED_FLASH_SIZES.get(flid_lowbyte, "Unknown"))) def read_flash(esp, args): if args.no_progress: flash_progress = None else: def flash_progress(progress, length): msg = '%d (%d %%)' % (progress, progress * 100.0 / length) padding = '\b' * len(msg) if progress == length: padding = '\n' sys.stdout.write(msg + padding) sys.stdout.flush() t = time.time() data = esp.read_flash(args.address, args.size, flash_progress) t = time.time() - t print('\rRead %d bytes at 0x%x in %.1f seconds (%.1f kbit/s)...' % (len(data), args.address, t, len(data) / t * 8 / 1000)) with open(args.filename, 'wb') as f: f.write(data) def verify_flash(esp, args): differences = False for address, argfile in args.addr_filename: image = pad_to(argfile.read(), 4) argfile.seek(0) # rewind in case we need it again image = _update_image_flash_params(esp, address, args, image) image_size = len(image) print('Verifying 0x%x (%d) bytes @ 0x%08x in flash against %s...' % (image_size, image_size, address, argfile.name)) # Try digest first, only read if there are differences. digest = esp.flash_md5sum(address, image_size) expected_digest = hashlib.md5(image).hexdigest() if digest == expected_digest: print('-- verify OK (digest matched)') continue else: differences = True if getattr(args, 'diff', 'no') != 'yes': print('-- verify FAILED (digest mismatch)') continue flash = esp.read_flash(address, image_size) assert flash != image diff = [i for i in range(image_size) if flash[i] != image[i]] print('-- verify FAILED: %d differences, first @ 0x%08x' % (len(diff), address + diff[0])) for d in diff: flash_byte = flash[d] image_byte = image[d] if PYTHON2: flash_byte = ord(flash_byte) image_byte = ord(image_byte) print(' %08x %02x %02x' % (address + d, flash_byte, image_byte)) if differences: raise FatalError("Verify failed.") def read_flash_status(esp, args): print('Status value: 0x%04x' % esp.read_status(args.bytes)) def write_flash_status(esp, args): fmt = "0x%%0%dx" % (args.bytes * 2) args.value = args.value & ((1 << (args.bytes * 8)) - 1) print(('Initial flash status: ' + fmt) % esp.read_status(args.bytes)) print(('Setting flash status: ' + fmt) % args.value) esp.write_status(args.value, args.bytes, args.non_volatile) print(('After flash status: ' + fmt) % esp.read_status(args.bytes)) def version(args): print(__version__) # # End of operations functions # def main(custom_commandline=None): """ Main function for esptool custom_commandline - Optional override for default arguments parsing (that uses sys.argv), can be a list of custom arguments as strings. """ parser = argparse.ArgumentParser(description='esptool.py v%s - ESP8266 ROM Bootloader Utility' % __version__, prog='esptool') parser.add_argument('--chip', '-c', help='Target chip type', choices=['auto', 'esp8266', 'esp32'], default=os.environ.get('ESPTOOL_CHIP', 'auto')) parser.add_argument( '--port', '-p', help='Serial port device', default=os.environ.get('ESPTOOL_PORT', None)) parser.add_argument( '--baud', '-b', help='Serial port baud rate used when flashing/reading', type=arg_auto_int, default=os.environ.get('ESPTOOL_BAUD', ESPLoader.ESP_ROM_BAUD)) parser.add_argument( '--before', help='What to do before connecting to the chip', choices=['default_reset', 'no_reset', 'no_reset_no_sync'], default=os.environ.get('ESPTOOL_BEFORE', 'default_reset')) parser.add_argument( '--after', '-a', help='What to do after esptool.py is finished', choices=['hard_reset', 'soft_reset', 'no_reset'], default=os.environ.get('ESPTOOL_AFTER', 'hard_reset')) parser.add_argument( '--no-stub', help="Disable launching the flasher stub, only talk to ROM bootloader. Some features will not be available.", action='store_true') parser.add_argument( '--trace', '-t', help="Enable trace-level output of esptool.py interactions.", action='store_true') parser.add_argument( '--override-vddsdio', help="Override ESP32 VDDSDIO internal voltage regulator (use with care)", choices=ESP32ROM.OVERRIDE_VDDSDIO_CHOICES, nargs='?') subparsers = parser.add_subparsers( dest='operation', help='Run esptool {command} -h for additional help') def add_spi_connection_arg(parent): parent.add_argument('--spi-connection', '-sc', help='ESP32-only argument. Override default SPI Flash connection. ' + 'Value can be SPI, HSPI or a comma-separated list of 5 I/O numbers to use for SPI flash (CLK,Q,D,HD,CS).', action=SpiConnectionAction) parser_load_ram = subparsers.add_parser( 'load_ram', help='Download an image to RAM and execute') parser_load_ram.add_argument('filename', help='Firmware image') parser_dump_mem = subparsers.add_parser( 'dump_mem', help='Dump arbitrary memory to disk') parser_dump_mem.add_argument('address', help='Base address', type=arg_auto_int) parser_dump_mem.add_argument('size', help='Size of region to dump', type=arg_auto_int) parser_dump_mem.add_argument('filename', help='Name of binary dump') parser_read_mem = subparsers.add_parser( 'read_mem', help='Read arbitrary memory location') parser_read_mem.add_argument('address', help='Address to read', type=arg_auto_int) parser_write_mem = subparsers.add_parser( 'write_mem', help='Read-modify-write to arbitrary memory location') parser_write_mem.add_argument('address', help='Address to write', type=arg_auto_int) parser_write_mem.add_argument('value', help='Value', type=arg_auto_int) parser_write_mem.add_argument('mask', help='Mask of bits to write', type=arg_auto_int) def add_spi_flash_subparsers(parent, is_elf2image): """ Add common parser arguments for SPI flash properties """ extra_keep_args = [] if is_elf2image else ['keep'] auto_detect = not is_elf2image parent.add_argument('--flash_freq', '-ff', help='SPI Flash frequency', choices=extra_keep_args + ['40m', '26m', '20m', '80m'], default=os.environ.get('ESPTOOL_FF', '40m' if is_elf2image else 'keep')) parent.add_argument('--flash_mode', '-fm', help='SPI Flash mode', choices=extra_keep_args + ['qio', 'qout', 'dio', 'dout'], default=os.environ.get('ESPTOOL_FM', 'qio' if is_elf2image else 'keep')) parent.add_argument('--flash_size', '-fs', help='SPI Flash size in MegaBytes (1MB, 2MB, 4MB, 8MB, 16M)' ' plus ESP8266-only (256KB, 512KB, 2MB-c1, 4MB-c1)', action=FlashSizeAction, auto_detect=auto_detect, default=os.environ.get('ESPTOOL_FS', 'detect' if auto_detect else '1MB')) add_spi_connection_arg(parent) parser_write_flash = subparsers.add_parser( 'write_flash', help='Write a binary blob to flash') parser_write_flash.add_argument('addr_filename', metavar='
', help='Address followed by binary filename, separated by space', action=AddrFilenamePairAction) parser_write_flash.add_argument('--erase-all', '-e', help='Erase all regions of flash (not just write areas) before programming', action="store_true") add_spi_flash_subparsers(parser_write_flash, is_elf2image=False) parser_write_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true") parser_write_flash.add_argument('--verify', help='Verify just-written data on flash ' + '(mostly superfluous, data is read back during flashing)', action='store_true') parser_write_flash.add_argument('--encrypt', help='Encrypt before write ', action='store_true') parser_write_flash.add_argument('--ignore-flash-encryption-efuse-setting', help='Ignore flash encryption efuse settings ', action='store_true') compress_args = parser_write_flash.add_mutually_exclusive_group(required=False) compress_args.add_argument('--compress', '-z', help='Compress data in transfer (default unless --no-stub is specified)',action="store_true", default=None) compress_args.add_argument('--no-compress', '-u', help='Disable data compression during transfer (default if --no-stub is specified)',action="store_true") subparsers.add_parser( 'run', help='Run application code in flash') parser_image_info = subparsers.add_parser( 'image_info', help='Dump headers from an application image') parser_image_info.add_argument('filename', help='Image file to parse') parser_make_image = subparsers.add_parser( 'make_image', help='Create an application image from binary files') parser_make_image.add_argument('output', help='Output image file') parser_make_image.add_argument('--segfile', '-f', action='append', help='Segment input file') parser_make_image.add_argument('--segaddr', '-a', action='append', help='Segment base address', type=arg_auto_int) parser_make_image.add_argument('--entrypoint', '-e', help='Address of entry point', type=arg_auto_int, default=0) parser_elf2image = subparsers.add_parser( 'elf2image', help='Create an application image from ELF file') parser_elf2image.add_argument('input', help='Input ELF file') parser_elf2image.add_argument('--output', '-o', help='Output filename prefix (for version 1 image), or filename (for version 2 single image)', type=str) parser_elf2image.add_argument('--version', '-e', help='Output image version', choices=['1','2'], default='1') parser_elf2image.add_argument('--secure-pad', action='store_true', help='Pad image so once signed it will end on a 64KB boundary. For ESP32 images only.') parser_elf2image.add_argument('--elf-sha256-offset', help='If set, insert SHA256 hash (32 bytes) of the input ELF file at specified offset in the binary.', type=arg_auto_int, default=None) add_spi_flash_subparsers(parser_elf2image, is_elf2image=True) subparsers.add_parser( 'read_mac', help='Read MAC address from OTP ROM') subparsers.add_parser( 'chip_id', help='Read Chip ID from OTP ROM') parser_flash_id = subparsers.add_parser( 'flash_id', help='Read SPI flash manufacturer and device ID') add_spi_connection_arg(parser_flash_id) parser_read_status = subparsers.add_parser( 'read_flash_status', help='Read SPI flash status register') add_spi_connection_arg(parser_read_status) parser_read_status.add_argument('--bytes', help='Number of bytes to read (1-3)', type=int, choices=[1,2,3], default=2) parser_write_status = subparsers.add_parser( 'write_flash_status', help='Write SPI flash status register') add_spi_connection_arg(parser_write_status) parser_write_status.add_argument('--non-volatile', help='Write non-volatile bits (use with caution)', action='store_true') parser_write_status.add_argument('--bytes', help='Number of status bytes to write (1-3)', type=int, choices=[1,2,3], default=2) parser_write_status.add_argument('value', help='New value', type=arg_auto_int) parser_read_flash = subparsers.add_parser( 'read_flash', help='Read SPI flash content') add_spi_connection_arg(parser_read_flash) parser_read_flash.add_argument('address', help='Start address', type=arg_auto_int) parser_read_flash.add_argument('size', help='Size of region to dump', type=arg_auto_int) parser_read_flash.add_argument('filename', help='Name of binary dump') parser_read_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true") parser_verify_flash = subparsers.add_parser( 'verify_flash', help='Verify a binary blob against flash') parser_verify_flash.add_argument('addr_filename', help='Address and binary file to verify there, separated by space', action=AddrFilenamePairAction) parser_verify_flash.add_argument('--diff', '-d', help='Show differences', choices=['no', 'yes'], default='no') add_spi_flash_subparsers(parser_verify_flash, is_elf2image=False) parser_erase_flash = subparsers.add_parser( 'erase_flash', help='Perform Chip Erase on SPI flash') add_spi_connection_arg(parser_erase_flash) parser_erase_region = subparsers.add_parser( 'erase_region', help='Erase a region of the flash') add_spi_connection_arg(parser_erase_region) parser_erase_region.add_argument('address', help='Start address (must be multiple of 4096)', type=arg_auto_int) parser_erase_region.add_argument('size', help='Size of region to erase (must be multiple of 4096)', type=arg_auto_int) subparsers.add_parser( 'version', help='Print esptool version') # internal sanity check - every operation matches a module function of the same name for operation in subparsers.choices.keys(): assert operation in globals(), "%s should be a module function" % operation expand_file_arguments() args = parser.parse_args(custom_commandline) print('esptool.py v%s' % __version__) # operation function can take 1 arg (args), 2 args (esp, arg) # or be a member function of the ESPLoader class. if args.operation is None: parser.print_help() sys.exit(1) operation_func = globals()[args.operation] if PYTHON2: # This function is depreciated in Python3 operation_args = inspect.getargspec(operation_func).args else: operation_args = inspect.getfullargspec(operation_func).args if operation_args[0] == 'esp': # operation function takes an ESPLoader connection object if args.before != "no_reset_no_sync": initial_baud = min(ESPLoader.ESP_ROM_BAUD, args.baud) # don't sync faster than the default baud rate else: initial_baud = args.baud if args.port is None: ser_list = sorted(ports.device for ports in list_ports.comports()) print("Found %d serial ports" % len(ser_list)) else: ser_list = [args.port] esp = None for each_port in reversed(ser_list): print("Serial port %s" % each_port) try: if args.chip == 'auto': esp = ESPLoader.detect_chip(each_port, initial_baud, args.before, args.trace) else: chip_class = { 'esp8266': ESP8266ROM, 'esp32': ESP32ROM, }[args.chip] esp = chip_class(each_port, initial_baud, args.trace) esp.connect(args.before) break except (FatalError, OSError) as err: if args.port is not None: raise print("%s failed to connect: %s" % (each_port, err)) esp = None if esp is None: raise FatalError("All of the %d available serial ports could not connect to a Espressif device." % len(ser_list)) print("Chip is %s" % (esp.get_chip_description())) print("Features: %s" % ", ".join(esp.get_chip_features())) read_mac(esp, args) if not args.no_stub: esp = esp.run_stub() if args.override_vddsdio: esp.override_vddsdio(args.override_vddsdio) if args.baud > initial_baud: try: esp.change_baud(args.baud) except NotImplementedInROMError: print("WARNING: ROM doesn't support changing baud rate. Keeping initial baud rate %d" % initial_baud) # override common SPI flash parameter stuff if configured to do so if hasattr(args, "spi_connection") and args.spi_connection is not None: if esp.CHIP_NAME != "ESP32": raise FatalError("Chip %s does not support --spi-connection option." % esp.CHIP_NAME) print("Configuring SPI flash mode...") esp.flash_spi_attach(args.spi_connection) elif args.no_stub: print("Enabling default SPI flash mode...") # ROM loader doesn't enable flash unless we explicitly do it esp.flash_spi_attach(0) if hasattr(args, "flash_size"): print("Configuring flash size...") detect_flash_size(esp, args) esp.flash_set_parameters(flash_size_bytes(args.flash_size)) try: operation_func(esp, args) finally: try: # Clean up AddrFilenamePairAction files for address, argfile in args.addr_filename: argfile.close() except AttributeError: pass # Handle post-operation behaviour (reset or other) if operation_func == load_ram: # the ESP is now running the loaded image, so let it run print('Exiting immediately.') elif args.after == 'hard_reset': print('Hard resetting via RTS pin...') esp.hard_reset() elif args.after == 'soft_reset': print('Soft resetting...') # flash_finish will trigger a soft reset esp.soft_reset(False) else: print('Staying in bootloader.') if esp.IS_STUB: esp.soft_reset(True) # exit stub back to ROM loader esp._port.close() else: operation_func(args) def expand_file_arguments(): """ Any argument starting with "@" gets replaced with all values read from a text file. Text file arguments can be split by newline or by space. Values are added "as-is", as if they were specified in this order on the command line. """ new_args = [] expanded = False for arg in sys.argv: if arg.startswith("@"): expanded = True with open(arg[1:],"r") as f: for line in f.readlines(): new_args += shlex.split(line) else: new_args.append(arg) if expanded: print("esptool.py %s" % (" ".join(new_args[1:]))) sys.argv = new_args class FlashSizeAction(argparse.Action): """ Custom flash size parser class to support backwards compatibility with megabit size arguments. (At next major relase, remove deprecated sizes and this can become a 'normal' choices= argument again.) """ def __init__(self, option_strings, dest, nargs=1, auto_detect=False, **kwargs): super(FlashSizeAction, self).__init__(option_strings, dest, nargs, **kwargs) self._auto_detect = auto_detect def __call__(self, parser, namespace, values, option_string=None): try: value = { '2m': '256KB', '4m': '512KB', '8m': '1MB', '16m': '2MB', '32m': '4MB', '16m-c1': '2MB-c1', '32m-c1': '4MB-c1', }[values[0]] print("WARNING: Flash size arguments in megabits like '%s' are deprecated." % (values[0])) print("Please use the equivalent size '%s'." % (value)) print("Megabit arguments may be removed in a future release.") except KeyError: value = values[0] known_sizes = dict(ESP8266ROM.FLASH_SIZES) known_sizes.update(ESP32ROM.FLASH_SIZES) if self._auto_detect: known_sizes['detect'] = 'detect' if value not in known_sizes: raise argparse.ArgumentError(self, '%s is not a known flash size. Known sizes: %s' % (value, ", ".join(known_sizes.keys()))) setattr(namespace, self.dest, value) class SpiConnectionAction(argparse.Action): """ Custom action to parse 'spi connection' override. Values are SPI, HSPI, or a sequence of 5 pin numbers separated by commas. """ def __call__(self, parser, namespace, value, option_string=None): if value.upper() == "SPI": value = 0 elif value.upper() == "HSPI": value = 1 elif "," in value: values = value.split(",") if len(values) != 5: raise argparse.ArgumentError(self, '%s is not a valid list of comma-separate pin numbers. Must be 5 numbers - CLK,Q,D,HD,CS.' % value) try: values = tuple(int(v,0) for v in values) except ValueError: raise argparse.ArgumentError(self, '%s is not a valid argument. All pins must be numeric values' % values) if any([v for v in values if v > 33 or v < 0]): raise argparse.ArgumentError(self, 'Pin numbers must be in the range 0-33.') # encode the pin numbers as a 32-bit integer with packed 6-bit values, the same way ESP32 ROM takes them # TODO: make this less ESP32 ROM specific somehow... clk,q,d,hd,cs = values value = (hd << 24) | (cs << 18) | (d << 12) | (q << 6) | clk else: raise argparse.ArgumentError(self, '%s is not a valid spi-connection value. ' + 'Values are SPI, HSPI, or a sequence of 5 pin numbers CLK,Q,D,HD,CS).' % value) setattr(namespace, self.dest, value) class AddrFilenamePairAction(argparse.Action): """ Custom parser class for the address/filename pairs passed as arguments """ def __init__(self, option_strings, dest, nargs='+', **kwargs): super(AddrFilenamePairAction, self).__init__(option_strings, dest, nargs, **kwargs) def __call__(self, parser, namespace, values, option_string=None): # validate pair arguments pairs = [] for i in range(0,len(values),2): try: address = int(values[i],0) except ValueError: raise argparse.ArgumentError(self,'Address "%s" must be a number' % values[i]) try: argfile = open(values[i + 1], 'rb') except IOError as e: raise argparse.ArgumentError(self, e) except IndexError: raise argparse.ArgumentError(self,'Must be pairs of an address and the binary filename to write there') pairs.append((address, argfile)) # Sort the addresses and check for overlapping end = 0 for address, argfile in sorted(pairs): argfile.seek(0,2) # seek to end size = argfile.tell() argfile.seek(0) sector_start = address & ~(ESPLoader.FLASH_SECTOR_SIZE - 1) sector_end = ((address + size + ESPLoader.FLASH_SECTOR_SIZE - 1) & ~(ESPLoader.FLASH_SECTOR_SIZE - 1)) - 1 if sector_start < end: message = 'Detected overlap at address: 0x%x for file: %s' % (address, argfile.name) raise argparse.ArgumentError(self, message) end = sector_end setattr(namespace, self.dest, pairs) # Binary stub code (see flasher_stub dir for source & details) ESP8266ROM.STUB_CODE = eval(zlib.decompress(base64.b64decode(b""" eNrNPXt/00a2X8WSQ0iCoRpJ1iMNxXaCeRS2ATYBdtNtpJEE5ZZuYvzbUJZ+96vzmhnJDoG+7v0j1CNpZs6c9zlzZvrf68v6/fL67qC8fvK+yE7eq+DkfRBM2n/Uyfumgb/5HB51/7L2r6nvfHd/+qDtF7d/JXx6\ p32ruVHfoc8yp1vTftnkMMuEvqQXp70J1Prfyh2poT8DkO7ORDP0oLadJmuXc/I+1zd4HUUgv9pprzsDxw7UZkCGpIOJXkOGKzvY6iBosO3A2hIjqxCsFw6AQCPTO4dG7TRyg/jYeQOdVWmHLoKTRQ85mQHhZCk/\ D9t/aqehQmcI7YBRBk5DNWYRe+3jnAEKXFCBWEXlQBc40AWdl5rmMvOosYMi1eWBIHBYDxsye6mFRi3hs8xpFLbxAntNDpDdJ6NH+J/ga/zP+/uGax7yrzJ+wL+0vsW/VDtPHXKjynL89do8awepZOK8ha9G5p48\ 2hTIeEivHb2kteVtz0IR70MX1f7WgV8MfaQjrTss9tunYTFrxw+LKcxXtMM1YXGHJKhOaDRtMAVTIPraf8qQ8QhYiuc9AQwApvBbP4WvMp420zsedIB5W4qUEXTyhHDtQyUsoeThzgjmH9CoGlATypSyljFNXeVr\ oAVCNQ1jI1BmLCBMGMQD8wBHxhEHPFzUH46fh5/7vH2Yo6RPCdCmeSI/zuUHryUsGUIeTFdr1pLXjJl8jJgZGuAzQotK3kk3QVjmICzqLpaeqtCfAgv5/BEAoTfw2Xj2ZD8s/E1kpyWwaZRCB0Ba4ko//En/SGYL\ QUZ9YL3AHzQz6LhlabmF6C58wzZMzBacJ/v8WzMyQPV1kSHsFAOH+zBRyLyQ3SUNinbILNx3YaLBlBrAj0GL15TVcZMSU6uUmArwHSieq65p0KK4BBiBljiuyx9ZAnLNnGjRjEzTGok8ItgAqxlqqjR80gjACUMC\ gCfvhg1+PP9enuyf/NwM5dNHPCf0qVzyNPvY6xx/P3Omi5hREjIFrjrNO8AFyQeCDLDcvHOGcBaJH4NipF7z93a00hlt/haet7TPWA8r3UNETnNtNawlcHUT+RgetID8TCM3PThvWSRkqe2iXABm8tx3Hr4UqEKH\ rpWCL1Q0aidcyrOAnrV/GUD7a48XumTNkmvuu6j7rv0NwjR2caUqMA9gFeGLU9ZxibGxDWMunBfy7tzVRotVFqzbL+sKXBUyyVny1hjv0RQ6/bvf6ZjsiCpIuVWgk3Dxt+irTD8eoHd2/AwMZvumIKGr1Zh1G6ws\ dvlwAFKHCvvVynRPCZ11QHNpnOsr/pF+Q2uAOdAurg5Ny/jhsmUka5dxzIamBjo+tyQAH6YKRbQ3DcJfCLM3jHkhSNkIRSuhydcrr/bplU7+5hJ7Uz6ZP0Zt/sjzHNvgAhIK3zniPr/D88FYMU+nwnYU8t8+Z6C5\ aIFvaCxAUmvTpy5+PcKhHS5kgQuccdsP6tQVZPSOshHov6fEHbohAjRkkIz65GFysCDI/OI11M3czlQX+zNLeVhfXU98GC69BeM/ZejGpbgJM/6BquoINL8o4fT0CI3RATw8PBjAB+iSTKIBwKXFrGglax6QY5BH\ 8xsOXhrmIIsGBzcqiU6WoFLM2+yYtVoWsh5C5OhkYLVVRiqE2GLDUhh9a+Sa+cBw33f41ZbwHclsh/WCZFtYr++oUW/ggq3uNJb9SU+ptNPNMO2mMy+OPCUmAIxYgr8nqmmddtml0f8GV3Pcw2D+mjyWJk1G0H1A\ MZQLU24YhTz+nPVpgHDutI2c3fbsW59awXjn+YC+0sgzoK2alwQafhDNOWIcGyXLq88cMassllYRSgpK3GyBGOSmCgagw8dL9q+xqcfvHD9D3IgmZ6Vk9VirsHVh/DSZokGfrDVSEYr/TOhNMwdxU1pTXaHS3BTm\ THwM1IVdgPGGKeGxJSshN4hDsWk40QM2puQK2qFF0+jEDoeygXhm56ku+4uCgKKWh9aXhccoU4MIXbwRUGYwBLEIRwy9wzV2vNvw8iYGqvA+6r8HLLcP64yd9qb/ARO0dGNEnJ4mjmbwb/zi5ARctf8w6ZnpqMd6\ rzNClzMaALoAKtQvyLx3/8k+f2LTDZ/rV/uoykmdWrVZ3GA2rdnBALaNPQoxmnpqcV5CyBOQl0NcCiRCvop80DrhwrtRFtcoimarfD1lBSyyF+IHYQHTjB+z0x5643PyKWGiPPRunH3Ltrw4IAyD/14V/1MW2zjI\ aPKCI9aWf4qGhFqN5+DmxRcU3BK7/UwAwOC1XoyoVwYEUuOtn2C2YnNRbOCoO3vPQL9+BKmED+LXoHNAuZaRlRVMdMSK9EVTk1XaoveIDlTm3kfmZVcRAzvlJDXw3yzMQVjafwrom97ZxcB64y11aX9uso8DxqTF\ CziHehhgfst7x+jSbEPRpj8ovyeEQViIzl8ixg1mIEVcg6BSTsJ7S6PAonSTs0Ob8F/AD2iwuetGhTYn1em7Aj/6BzVMvjdicFwJwpEXtLJrhymu7NSuLIhemhWJt26WkdhlgJB11pHLOqJ+lk6kI/BeOH009vGO\ +RHEChGkxcLXbC2CayBIb/xZETwt4rL4CqgGCoK5GRhCraoIovvMC556celhJy8inichrElLDRpiTa3/cziIRVizAQZeh3+HILs8kjj8/DEzF+arMNbBrMCr1FIlGE8mkAUSfySZgBhFQQOspOc8VDLv08LbhbFH\ +znhvX1fxX00MkWa5PYdJOy2VUnmpWFAZlt/sMUiq2lxgY4AH02dl8K9NIwuaD5D51Do6svyeI4gcXICku0lcvLvaiKqHIL4GuQoK5kpwQHFeP78GqGzNbIb7VLKdOBNYUkpSV8dTclCYqqlOvaHaJ43UDFUe4iB\ a5/AQG4wsM0Og352DPa04E5xL8No+PtPWPdcFs3KHNbBOb4JLxdopD4C5QaEKRVYv1glj8m5aYAzIZHWrn546eoXsnQMInAcfUwWqIkdhWLWnP0ptAa1g5avARccWBesGC6jfuPv+sBkMzJRhtAcX9bZVFbeJ9Pe\ 9PP5XjEAHFdTdmexrWkENLKNq6E9sFfw/ZSyTU1llN0b/6EvWCKoeWrr0U4ZxdWb6GHk78M3BtkeOzswMqSqaGQtIwseBLUK4GmSeddZxMwx50nBEVjmfhu5gJqkhFnT+hvLr8OT5a7rgyjyHpoq8DEtkrOhQadZ\ ryBx9G4umW1JYQHPXSVxPZ7bi47JwII8/eXyRp0bx1mrcUdmiR7HpsNjlvGcGDYI9vbnxAFBuKpXWoWSA/TAyMHCg/CqbBZ3BcAj6wiSHXpMjSrYB6fhdIiuw3VyryABhoSonLxeRM9qvWb+DOfPzPxz4T5H5Y3A\ fVpKaPTBOv5r6DaiHCPMV2aXSBXSCrKh9cLbPgTQNUZCH+CfC0rKBgqSbCG0EmklN0HcweXXgIOUTPgC/a6eFdc1iam14gsvFOtNdhtsOMyoPxydNZwawh2QjPMaAG3YSuBiZa+jtx7ci4o4qYoMsmmDpSzxLFf5\ r0CIRuye56gSZvAsFL9z/IlFlfmaRUnSJNu5AO+F122X2K64XTdgLp1J0ny2L8wVXRB/YGSswzPaTQzYFc3jmSROS58jxSb1Ze9CNp2AznrZD41n901XkrMskyHGIW3z1dkuR+yQAUllvGbn/uLAdmbXHdOIGAoo\ J22XeL+givR9I2+fadFXfBrMWoue0bqrZ662bdlKYuC3+jO16BnvFVGT5N5Z45TJjMOFOBz4WmoyZxIDwmoMQoOBTa+ucRHuIy9+B8M9jAab0B02pyCxg0ajTEBdK++fFpI2KEbQn+LWdYdH/9tnUKFSy4JdrzmQ\ FIuxCrd/kxMGdvCYDIwO/x+YBm8frbLqM2WL7mBjZ2M6IQxZT9Qaa+Omtoj3dtCm+5h54T0DpSMkDQgn5u7UeeZS5WwBTI1CPjl7D/ZpAf7vC4hD1IHEO63BUi7ZFgXWLajDVd1ycn0KOdaKlr1zct1JcwXq234H\ ghmphEMiUDvbM9qhw20jNV9lkFYOVcseW5AoRfWM5SA8VRaCcCq/uImQ37K20GUmFL2xS3UAfgf3riJXC6GUBLOhMPjBTNPPFohbZAYxro9lHuAzBalU9dg1wewAYJJngehtWwVp9DwDWwktCCVzyOA15Dyhwt0m\ YufFAe91QVJLloueWLLBlsOgW3FNjMb5l7u+wDEg7Y0WHsQZkwofyW9UsKmm1OWWOvJY1+i85K29XGZGCuZFxrkEQWLygiRHYaEG7qpHklyfFShfB1AIEC2K7CwdcNJfqbBIQy+ZeSnCES+8JCy2JtFg5mVn58jx\ B4simRXZPcryVJzwANHN0lSd3ael5MGBzeBPJmpWbNmwEyHMeNMQS1uA3Qj2WbugyTsYYOZtAXWi2XNoLchyN7gXnFLGMktMph26BWdgCCcX2JlJDL5ChlP6OMxgZlJzdZBPBSWsWVCJhO3iz2DxZwfA/wtKeTXN\ 5B4yKzzF8dtAfdkuC2aKJZsAEtTC7f8d9bkzV4tIQN5Fi7z2Z6CmLaJB9LUxZyk7l8XCS4ExsjOkAKbmgyALWDpzBGKCfHQWURFJHj6zmjDPXSFRuc0El1pqULybm9s2gV6kdp84c9xRUNUVb73Tt7InDTl8gLxI\ fHm1LUnjjNi/Rsc0Pufcpt4ZnvmMOLPNw9yB9RiyR60mD5QIzT1KNsuevOFgke50Qju2KT/DiOmaXYwpQ9LkKtBitimWwnIW/ZHcSMfeYhYHpEYHkNEJ4oeA5SIiZIc2/QesX0eSpZzdaP0f8HjRg4s5CE4k0Nzb\ cI3X1YE7xmcRx+75Xxi7W8KHTgyaOqFEupLam9naiay82ZkjsuUz7P5s4KzDAU18g6ASK6uAhYBvXRb6t8s/ocs/qLKCAfMPVQcEuYKxUegTrEQIiOBYTaKZG2ImvCrFB4kt9cHPNNT30TTQ5D5nOpH6yFyPuXwn\ 4byB3ZqAaLOVw01TCkEvoo5T5+yoo1etIu8lQIkZUU25EvQUlOQGNG1e27/czGGt3owqspoAQzNQp1l0Goqo8AYRslj2VgwJwHupP6e0uDP/xLROSaikuVv0mO0O40f5BWfs7gj7f27OSunhMXFEFq36iYb90/Xs\ P1/D+5rDhID8h41VKbAcGGRGItLbMJX3N1or0TKn7po2XbOCd2lUjmNdwFiruAC4LoDkF7DCnQsPdeR0hHy9+ZDGWHYYgxQ78QYPqLSowQbV7FJNkEkOdg9CwpG6Itp+RiuxPl3rxVG0/aFx/bR5Pyg4J1eo0TMk\ ksJQT4U7ROJEKoea5pWzFZDI8ld46RkH202joIpWe7wFoFdT/biKQH3Th7wF2yNnouGSCTVjoKIP4C8pRa9wUw9Rp9L+IKvRN5d3NGDFMGteRjn9wt0GiAPKLareQwVQok/7TCoY2SzWyYyr8DSZCDQ8kYhQ0hHe\ 7cNcjOlQNO53dsOzya1WccwteFPBOdfMlphMB13ZsbHln2Jj51cbWNatWOsa0w7lbzWwzWcb2GtfomHe8R4me0boWVbrjGzyFxrZ7I83sqxSwlU7O6XiGYd3JmLiLO9gMDQ4FfuaUFG7Oj3lHGZiqssxsfaRjGDm\ 0F2Vw47hQ+V2+gp9WrS6u5DgKZoJ+KWA1zwR4s9N2cAa+9rNjQwcVUklHa/EbZ0/sEWHpvBHW9uCEWRwRa61dHO8yHeumwzbyimEcLkpInV4QioMhoPL+GKFNhxOloGhzZTPApS7fodMgUOmQLWkIakpIivBQAlV\ bnwkYem7OkHiyuHCEk5MUFN+QLlcFc5n4v8IfaS2MHjr7GBeQiiuADXVaBv9sAMMXj5bi0/UaIONz8fnbAWf57/Cyh76l8Yk8FhhvUIbbD1gtDZOeXaRmvyJKu99dDy8FFd8JijEcrUzDCg/wGwKtHZpMP3BOJbW\ u/Qx01OhFUEXDvx/zCs0fjtjeNexz3EHv5Mefk0RxdFbSygSg1BGUjdg4yJ5JdQj6W6YX6DcqCwEw5jw3Gm8D6I5Gtqm56rxDe89vHgDNjJISnCVVLLJo5fVAQMh2woBynh2mcIeoqfKe9gFm/E8gvK6pvqURxj2\ dLVNd4d9XW1cnZu8N9Z3D1m3kuYOOq5h0XEHo44nKCrZSe+6Lt0aj09yRa6/QBSLJere7TkKOtlBN2BXqIHxkrGjUA8ZNJKI1FwbqNTphBU61eOf/ijOQPyKnYFw5uQPHa9ApadYQ3rPim6G9HWqs6w5kHXswPIe\ AoxutE324BS59j4sDPguiN8cYMrNZFnyWPTNAYcupb4RAf5pgynpOgKkfDo85lrUK9ksYzYroNyw5jDHcFj+B3BYn7eCdb4B4s45fFCNP+kblK5v8PhS3yCecB19gYW065XlOYnk5Qw1cxmq613SoYVWX0piz3oI\ oAxVReMieyQmAhcMJZYjyD1kjrjUPdwXesdrPIRLFOOUdD0tDy3z7gFurcyKjSnxAbwDPbAbZ1jfB5GxSl7bgwtlNft8LlspJesyWskOLjoafyyvlVerslegx/RiRYmlnQ6UYXBUmWwGWnMneD5zDBAiDuiOxw+K\ EuPngKoedRvBwbEAzCwVpxgCneHYGA2ExU6wP3guWvDw7oCcsp2De3CQCGtZQ6ljxSFGzyg3jmdP957B85iKfgK9kZfzH9YTxtnSr/MFbIyYOH+EqXrc81Z2NHK9gp2hE92r8sJHm7wodtDYiqiX5TGzWxtcmDOa\ M3GPSs4UVLO77nOFTSXN8OsIH4RfH4HYJBICieZjpi+4aAbPXdH4BFSDZeDyUOFD9eaI/XRlozk8QVW7Z/SAJyFxj650ytUh6FP8RNxqC7NuYxCG20mfneYcEUwUic3fcJ7lsoTP+E8JxbSzj/sbyrPkRIZUy3zz\ OWhY2dIe8c4QIeLo/wQRWdKtVaMa+DX1WXNr579sF3hEToENvGew0D8q6lZvSUBV2dznidg64fQY4idcNIMmtZC1dqDGnfxiNMxLW8mbXU5KMGIxpkMLLAgi/7Fd+A6ce12AyIADFv8Cv36kKCHDR5j9gR9jrl3G\ s0+cn4JQRY85m5SyF4Q4QwK+AMIo8LWLQ6JLgypBH8Lm8JiKZju1sqy9bO7rV3bfZFNa/0JVs3bbf4uJ4mwr4lm1wnmm/vEv0hsgQuYpbMwWR2teRJe9iC97Mb7sRXLZi7T3AhsZeqFFdIEu9NkQKu2BhUrGdYF3\ FtjYyNXt/q4ZaGd3APgZXMBCavWckFoHtwYtyjFVSZv2rf36itD/lHzsoo/+FtPqO+5e0dEIPi/9ff/ThUcbvVy7f0a2l87ZeF+d34PvW9p9zwTVr28Tg5bBtj0iVEfC7XjQCs+xITGPXpKQ16zGgANhTwS2l4rw\ I+l8lHxhR970B4WFnbK5E+5rqxz7Z29M0bMcY4PNt6pWu+Qc3NjCQt9Gzhf6ciaBdbOizcym2B5mJ4tzaVEBs47O9uxmqhqXctICa2QqVAan19hBLf91+K/B4Q987Co/WRz6oAf1guFLb7IjN47N6Xas2PBu8Imz\ Mc+s71NiIKu5ZILwsLUHpmHm2OVaxFeTe4neKq5MThel21BUr50aeixsqmEsbY6GQg19IV0y1kymeBG+Fe0aJEfutzkOH0DSBn2iAI5822+fwGOPw6icD/932RAebq4+xLOO+DATSLEg66HM7hzqwaNIvf5CM4oA\ 7jF4io7Ydj8e0LGgjMUfC3v5QFNNBxn3gD1vDmD/D3g4M3jjTTjGfI7iuDVCiMeImMBNjXRKw+wRI+CWce/wmD10YA4g2iOwjbkGg/r7fEKq4hNLVEf4FReOYIyXt5Isjgack8o1xl03wJoMB39zajZTWcP9Ry9O\ Tl7/9P4jQrKQ2hQiZOekceXeLsBnXUILcpNY7GOdVL5SILZwqqiYjRCJK7cX4DFFPotiSv+Bw9Dhze+fnGSjB3ygDA+i5blNV1EwL6ehcpHkF86hN51BwQHkRSEN0+SHvF1IhwDxXWA3EVEDCswhVH6593Do0MOb\ Njy8acPDmza8O8QmLREWtF65xIVY5JQdwdC97yZcd/kNbhzpzvUPW3hobrBxPON7I2iTZyo6wXwI64DNLPHx+fED1ibOjRnHy84XmZOzCSkcHgwDs5TMufNGrb+2B8Jwc8dNFrvX2kzMbTuP5OTgHfc2H+iaUVcH\ dnT5mLMqKXiS6zAqQuwSnuVonKL+hRlyII4qkOHWi+QjdpBrY/hTf8jyRM7sALzYbPydlMHyucI8AVaOsA4yn+K/7ZeTfVonD/WCWazGnZmHkWQ+EAMN5tUryFE0selSYlb84V0LzgHPTD09uiWmafj6JNxb2/Mg\ nMoV/jtlVm12LYnxyO0TMs7tUqWWnxNCcmuRwzQWoJd8dFY0m/M47vKZuSpl11+5lwRPb/PFPnikBC/x4V1eTI3DUY9KiiuzDm2lBCnziNBYX8fcoAJXvtz7m7pqeGKXaTM8rjA63KXDgmdUeFAN58dTTqiAY4rb\ 0GFM7zIHN2yxMToYk5dLD7kSujF31kiNX9PXe+452WO88GXrERue6OT6kJ0KFMnpPYbL2Put0WAQy1kdOAlqICDdNyrYbjWTo47whJh/DYKN44ihw8O3DTp65ixu02UIRSGF83imO/yBBYOkVLJHA2SE/FE22vW3\ R0JfIOdlZHwktyrJBzU6IWDO8QoK2DLLn9wHe90y/PIc2d9aKLQcsOWM1TkQi1dwI5BKvmfDmnHFQMGb8gEWVHQPPMKFLaRGgAw1pYx+pudV0ydv35diH+k6qYyaKwQbc/wY4nYNnnb92Bxq1msumNFS96/j1gXD\ Xjs3IRzW4K1VbKTQ0833ALXngFq4TyN7wkdVmswIzEDQ7N5ShgeQ0BvOO4LA2lR84qeoiYKTk+nLjSdiaqBHvB1jLUT8D9+IvsZLO3T+923ohT563xvI1G1zNRN6Rnyi5JOM4QIo966UCGmgVH8S+QBT27fWgvB5\ M7UTmOsJ5Bz9+C7zjlyHMhYTgTDJZ+i6XrsMMqycGH4xZD3oiEpsFJd8y1QQ7jJvfCqrg0zOTAm5VHSKY1dEr9a4qzJauYRtsXceFvYKrFU6IY5uEnDaANS9N2GxDknC6z3mpg9euD7Fa7dx5jaWbuO92/jYvWIw\ 6105mPfb7j1yWPmdmWvgvsVfsXlWfe3cOpjncgecsvU6Fql89w5qBsAuaDxUd6D2Wi3oXgQHVzTghXuJZ9OSGAKwr6oKH60NK8um4ZBCYX7LCUoonn/K7NKEP/HtD2v1lFxQl5GmswW/j2QzgXeX6nVXuVU1e6+U\ ZNh5AlMdiIeR7MmnBd/x0+AqX9tQokrkLiFy+TEawuDB3B5nnR9Y6hZZTVUc/SL7gMqo4WpleYWtYG0nfs+5c20vovmJLAFuK0SsUMkXusk8XxzATPHtEzjuR54loqU39cpVc08oTkfxFINeHL3gLEhRP2GJoec/\ wvOCtzQcaD2+mwIf0WY7Zt2hEBCiGNQjzdlXwkJRJvYztGXeVW33EGtBqhyFbSef1c41d+EaHJZmARgH8Z1odLPME678buxGUjvkfVpniXu35uQcnnsYD44CzMHEfKlbgIlFyx8PE98cfjtw09OQk4pYPZf55gGE\ CwW6oLd5cqzKVHIjYv/iwcjxqxBM2BEhJ8m5wQT3PrKVC0hwNxMvtijMSZALuXDHLHAqdwLaYLvloBluLtxLHeUaBHB3CmqhtHRIFfP9L3VlD//mcoVkwUj/TFcB+6q+VvosZVSLIRD1o+XMoTOmi6EGb/nKLKrs\ nrbm5L4RbhSguitA2RoXqqHLEAWI2zxE8Jjvg8zy1T4VJ38ryaMFx5CmqrBwpenqUx5lvMIrFyuMQsJKuoS1ovU4kaRQoaKWv41Q1jt4KqYT3fDn7IqUlptyOMVpDj4FEeVpcZxNPmMz3tzgE1OmMGMmzg0c3gl3\ cGtmW+LDzqWR8qW+J3dM0sz4NaWqO0DL99W6762fZ/pQvRQ2r48GeGnxD++WxQKuLlZBGmdxmsZx+6b+ebn4xX2YtQ+rYlnIHccmR4E6ZOxsmTkbAlRwwn+IiuccEeA1rdppVKHTwBx3yg081CtvIGjkN3t8FgM7\ hE6j0wFSKLW5Kjmm+A4bKI/Fuj5O4weasv94j9gcH0N9c41HvibfmV+Xj0je7/rPMF8lty6jwlTUWFJIRZgqnQZeBRpfOeXljZoPDq++wajboDEl/6VtfG8ocMPpCsd6DJ5xi0PIUSjzJnVHDL4c2N/ZGBpAXppf\ U2cNKzsn/ax0/5ad3jna7glLt2KI6s46rd7V0ao3Nx4gc+1n4F6jaxudGwmLXjqnN6ZWay4IV73v+5eGh7121GvHvXbSa2e9tu62VQ8e1fl+4DY6X7o3j6vT1R2vP+1PXdEOv5CHruKpq3is306uaKdXtLNPtpef\ aP38iVb3avJ1bf3J9uJTsnPl35fKbfJFOFp+wbr7kDdXaIEe5KoHiephUXXGG7qNG26jM2znYNu+23jmNjoEedfTND04i15b99p1tEZK1F8oxX+2Fvi9WuL3apHfq2V+rxa6qv2FfyqwyTQjgSlKHp01HbOkxWYL\ ZcFY47yGkTR1+f8YY3Wl19nrdZ3kKA3bkDP79X8BZBZfEg==\ """))) ESP32ROM.STUB_CODE = eval(zlib.decompress(base64.b64decode(b""" eNqNWntX3DYW/yrGCQxQ6JFsj0dmT8uj6YQk3d2QbghJZ0/Hlm0I27ApnRPIabqffXVfkjwzbPcPQNbz6j5+9yF+Hy26+8XoIGlGs/veJO5XcQgtha3yeHavXLPS7rN1P/3s3qqEOo2ZLdxvaKnH56c0ijPr/2em\ hv0UTZAfrYQCFbWiHyMUdWM3bGknA2c21FauT2X+7B1YE1O1sUJe+p525M/t2eL8dpV+3AY215ncxH0XybZafxOljojULtCpS0dJHWju2ohndunMqqIzQwcScf75Ye75Hx3aRoXVFoTaH9IG8qPoHpG4N4SaLIUh\ oPs71xjDTUy4SVfTaD0W7l+cEIt6YVV+DNvC0Bs3D3qbixRoeg2idgTZMczIeFMQXQ7cTo8u3KfedP15JGLFbbjWGHY4C51BVsC3Ma1os8HgydVA0qfIzwVvak5OUxa1VQcFbHRSpUuMNvQX9RLJVUtKih+Vinit\ zBG3TCQOpLSIv4+OpHVK3bhGD/Yt/L5BUshe4M4EGsfS8Le8AHt4/h2onR4MbLtfZZIsWJoZmKgtH8GQm9x1NLnRoe15XGdb3MCfhRNUI3rm9rKsGaDXXazvTbRnEwmzor+wR8Ntf5Zl26ucLHUzOJY4TVBFg6Dl\ 0FdxXzCe7CdmuqPH2MFdTnkkOgAp1xGFvF81gTO+jZcbuiveTwV7btG2J2TwupoSKin1xU1zS4wb0cBmN7IYWi9vvWL+0FH4fR5GiioQ1GoPigu+ej5gygUf26RbvDFApxNhW7HIoV0IUjh9s0NdeEtLhmj0ch9U\ i/HP/apxg4tCjS0rWw6WDjZevPvx5Wzm5phSVnfEITLKJ261G9HCZfOYeIegk5EbELbH8Api0QVwKU8coU2WMIYwInSRNRt7kJJO2WLnH0jVweu38AdIhquC4Q1xYOic0HQ/ohE573J4+hjvD/NT4kQdnJZwtm4J\ qE0E/oGqb2Y3wd10luwIPYAmTa2zgO9gP1qgTxNz2i7yLVkEovmyLQffXCcxjmbsF5tsg2eCivereBzzslaPSMmW/RMqkLgbJV681vcRmewO8XpKrvocZmbX8ImyOk6hnSNlYJE1OJRqd5eONTQnxAGmer7zjvUF\ tWp/dsP72zHTWw3o3SOs8Q48EATYi2LLSAlxWkeygPG2GcYiA8bIHMu6ng/3xrWyp+F9Jv9jn5bnFKtzVmMDuskB7F0GBJH95Fs3KQdWjYBXxti6NlaT9kX84QCuBXUfO/1vzddsCZWNusFzwn3dR7mxQTQAVKGA\ o/hxYKRlwElw+yW7ErSil98Borccj4iEdJgW7wTWBCfI/IYNcYWKfHnt8/QI4fPckrKiQbDpNtFqAPa6Zp/QrZEh9FdR0NPIms2gpaghxHdEJ7ssBW9DkXbCibb9M424iuX1Mf5YxB/38QeA1CVjHeA5mwgcccXG\ sgFiqyJ8kCvWPd3PmGegDreBU2il5d7sBvyIaS553gOSw9shAD11DIfObMpuA4U+iafES/8Kp5wJeoHsGyHt9TUtkrBRlftRhOYFdWSJwXSNkBGQ8syvRP/KBATCzgYAZtXZMJZHEQZyYfwKbl9+IDKq+mw6uxVK\ NoUfc3ciHsE6i+6PNRAhjk8kWojHjU6cjOsJE9WsGNd1ev1kQmhqLQcOeNrLdv2lzcQN1zkd0cV5BPOsLdYLT+IRzYE2Bn3ZNnr9P1jLJsgfyMDK6ewGLjymiXX2QmCqp6MJH79QMNlwrNVOtqazERkZsqT/CIPJ\ 0CzrFWjtwlVwqVpnn8zxceA42fceuGsUef6Q8b0CojScCxdq9RviuOkoyPJJ0BqkxZi/O/z76fEzMj4Kng8LjOkXR6xBlCZgulEcLiV4a7JD0EQzwPOjQfq6lgaCTP/hBDmKdiiiZMUfzyREdEu4yps0IV36csVH\ dww2FxIZHv2yi67EZOxRrN3D1g/0p6CcEBeDFld0iXtyQIqE6xzOhYeuH8j54gpd0C6QvGiOdNveW+dNCq7LnHBcoh6C9g1ycpiPtVKQKIXlJ5hcvEgnIOrJJoeLeMILgnGrEw4S0Ql0AhHHTE0nZHWURLV5BCB2\ F8JO+87HcM+CHxSkCaR6nExJ37EjZIy50+hkMxnUUXJGyvwB467XsMOaQbhpOMOwhENgXDZLHoEipdCMawcJYQwcp9gITXTn+Hjgt+UrtvqMj4w6gVmYhXTE9VoqJNYbbreGQ3B+372CQ7865t0AvBuU7fVjf68r\ ToPKT4Pr3nNsZUkNuPd96NVZesyXB++FemK3sQ+D37PZ4v3ZVogKtS0vKSfQ/TTcX/kN8oYbWKWC8oWep0l/Ao1tsNUo+c92zqbDYpG2aeqO3IxyPgCJRrSTkBsU1NasO3Qqm9LwYI7Gs2SDGI5xwYRCJa3jwGWT\ MbAPnWBceFCEteQ+ppJcNzHTsNgzovqD4ji3whj7Mvsb3oQz24bv25efkr6U/kvpRK72W9IPkYOaSnmjl/S7RG/Vn/N9S8EbatfWaxdIbokq9KKOKjzoUyDMtNEOE9w/LMQJ47BtE207/Z2JrHMR4+BQW/6FTtwG\ S/Cd38tk6HDkcMLZLxEsPgDu2IQlejDNEKNQgyLCOiYMPxUn2bGcpnueF50Mo0uBXF630qWp6xExx/TxbvmQjiegEDJWDMcOmRxTB0aiLZUX30vesI+A4Lm9xfJiKRvmMIhDj2PjcSpcI57Op8k8JdXX5S5nseV/\ oowLfiBFNfrfy5hzTjCquxM2QQy3M/KP1j4mKnQXTq7VHBzuObHModMbNrQox6z5p8ey6OWaQ7FIZedP4CB/4lMu8q5sRcTP1+wDUZJuVok/F/idckCgBRWl8hI4Pb0OduDnKraHJgjjVng7XR0jN4KCmkfKovRW\ mKbKn6UMhkEM1syOGVhqFS2znO/rSmznn1waMVTXHhE+1VHRbG1tHvStQEr3YN1TONFELrxcPrBGhryWV4hJdGRC/NKcu1iollNUu0GRGPg6rGbr95DXt9lXMBNPABvI9/nO5bNQ81QcXIjHqjPKuoUuwMmqFjaf\ kusbbb8l/EdnjzWpnjS28gg/3wE4doy1E6rmVZyhNIL3zDev15nk+1jXrWhW04C6A58x253sku/3zmfMBQ1oF+IfSnZEzK0aX0MSVhrowSpymcj8SUS45tsoaiRzcod4utphF4PMmubDHAgTtjawUlz4EjO9Sn0t\ 7zRGxs1lUDlIkt14gyzfhggNsYXB2BCkkvkQdUqFownnplvejk5lYiHgnizZEIYrJeMlyYRWxUMrNsxJZzfYbHAOl3KZtVj3jNXNSCzL72yRUonC1KxXVO0D1IBIsao4jIo4+4qcPQqi+wDq1OITlMyCl4bJN9+T\ dnSSvwxvBBt1B15v96ngZ30RbZf8i2P94kWKZNy8oEQR71Al9MpH2prRhy7ffkVKDHOgvoCxLdytiQGjH/qeuh96LR9VlsMgTqll/Or7hN9LIKKqxlxJwJ7a93QSpZ1DKD5Ziq56ebQojy7BkMYhFvoNifUh1j36\ zZJFr8chDSLFWBMowPAHHwnYdRGGKqvgelUXp7aDuEKXTwfeX5fkz2/CCrilZc3DjMJwYuA9Wc0BLk/AalE3CPYBuYAdhh2VlgIcgsy8BU8LAmsUF7Qb8hJcm8SXrpKBXlKxbk2lN+fnoojkeA5WQZg65XmAjxbe\ qVGoCA48eCr/Cl2KfUitXyL6NA7nKePRkJ02TULTkClMpoB6Pf6dI3R8G+iWlHLNzojASQ8pAlRCesiaxX0a4FvV+qn4eLRFmSPyOeM3LQT4H46Hxe0qq2e38spYZRsQL9TZDteIS3au0DY75DmlQlGP3z3woJTN\ gTphAF8ay0ndqmyMPbiVZ6XPr6CYml3ffYY/99n8EtTlPRgIltq65qFMqpdMqk9SOTPiEaHMNLatYzbo7tfwrNJlj1EGNW3dqTs4/xY+y/tN2Ka6K4Oxg9cBRG25/ml19xMz0kDvr5St9PxUB1AORmVYQxuWWcXv\ Ub0kj4ZSNyDBSh9XHKtilYNO9jdgORDZmF8lAiBDayrolUCj4ffBGl6DasO1OpiLYMjRQw1w3PD7KHZgTehj2BUrRzVRhy8ywuI2vP7g61bJIB+Vnolhm7/EjPrMMRZkbOU9CNfeUbwx6THwuONAqbyjciZoA5ai\ vS+b7PwIUvpWxHsO4Vq/jUS8khvLO/mKK/C+bufHKddDO//uNzqnl5AatfjTGgjSraDgxzUKrn9b7QTFrHDV1YTtFUvPXBS/+TOcu1qd0DHQSVJQRYBFoS8svF5DoOgmv7NBsIbSMo4XHe6yPRtdTeZYpQgv/U1B\ EgaWgrrY8so/8giUUivbvJMaWhzjY5gCZZt8yo8xvbmDG16Ct3kDOz9lB0KY7AMeLF4NrvGBE/ObOT9xqnLuIWkU18ZerPEPVrznW/F/eON1tSh6+QA+lxeYRlSSQ7y5goNQLbMNSDG69yEUlIeaSo+jYM5czRZe\ MefbQPkHXK550wpfnau4FEbTYNdnnlhU8xSi/Om/aOX6RzDvJnzGsc1oypaJYZvNAqsxjojDWPQN+RcqENIpWxxpjbdSbpWh1j54uVU7j+Qs2MamXDDFBXHU31qMaqr4H8pw7j5X+KLr+RPaLwSi/jLNYGkaCAnL\ ecmQXaO9BP/h7+ffFvUt/NufVpMir3JljBvpbha3n31nUUwy19nWi5r/PzCq2o94JN4on+RlqbM//gt1kVkF\ """))) def _main(): try: main() except FatalError as e: print('\nA fatal error occurred: %s' % e) sys.exit(2) if __name__ == '__main__': _main()