esp-idf/examples/cxx/experimental/experimental_cpp_component/test/test_i2c.cpp

470 wiersze
15 KiB
C++

// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "unity.h"
#include "unity_cxx.hpp"
#include <limits>
#include <stdio.h>
#include <iostream>
#include "test_utils.h" // unity_send_signal
#ifdef __cpp_exceptions
#include "i2c_cxx.hpp"
using namespace std;
using namespace idf;
#define TAG "I2C Test"
#define ADDR 0x47
#define MAGIC_TEST_NUMBER 47
#define I2C_SLAVE_NUM I2C_NUM_0 /*!<I2C port number for slave dev */
#define I2C_SLAVE_SCL_IO 19 /*!<gpio number for i2c slave clock */
#define I2C_SLAVE_SDA_IO 18 /*!<gpio number for i2c slave data */
#define I2C_MASTER_NUM I2C_NUM_1 /*!< I2C port number for master dev */
#define I2C_MASTER_SCL_IO 19 /*!< gpio number for I2C master clock */
#define I2C_MASTER_SDA_IO 18 /*!< gpio number for I2C master data */
struct MasterFixture {
MasterFixture(const vector<uint8_t> &data_arg = {47u}) :
master(new I2CMaster(I2C_MASTER_NUM, I2C_MASTER_SCL_IO, I2C_MASTER_SDA_IO, 400000)),
data(data_arg) { }
std::shared_ptr<I2CMaster> master;
vector<uint8_t> data;
};
TEST_CASE("I2CMaster GPIO out of range", "[cxx i2c][leaks=300]")
{
TEST_THROW(I2CMaster(0, 255, 255, 400000), I2CException);
}
TEST_CASE("I2CMaster SDA and SCL equal", "[cxx i2c][leaks=300]")
{
TEST_THROW(I2CMaster(0, 0, 0, 400000), I2CException);
}
// TODO The I2C driver tests are disabled, so disable them here, too. Probably due to no runners.
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3, ESP32C3)
static void i2c_slave_read_raw_byte(void)
{
I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
uint8_t buffer = 0;
unity_send_signal("slave init");
unity_wait_for_signal("master write");
TEST_ASSERT_EQUAL(1, slave.read_raw(&buffer, 1, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, buffer);
}
static void i2c_slave_write_raw_byte(void)
{
I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
uint8_t WRITE_BUFFER = MAGIC_TEST_NUMBER;
unity_wait_for_signal("master init");
TEST_ASSERT_EQUAL(1, slave.write_raw(&WRITE_BUFFER, 1, chrono::milliseconds(1000)));
unity_send_signal("slave write");
// This last synchronization is necessary to prevent slave from going out of scope hence de-initializing already
// before master has read
unity_wait_for_signal("master read done");
}
static void i2c_slave_read_multiple_raw_bytes(void)
{
I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
uint8_t buffer [8] = {};
unity_send_signal("slave init");
unity_wait_for_signal("master write");
TEST_ASSERT_EQUAL(8, slave.read_raw(buffer, 8, chrono::milliseconds(1000)));
for (int i = 0; i < 8; i++) {
TEST_ASSERT_EQUAL(i, buffer[i]);
}
}
static void i2c_slave_write_multiple_raw_bytes(void)
{
I2CSlave slave(1, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
uint8_t WRITE_BUFFER [8] = {0, 1, 2, 3, 4, 5, 6, 7};
unity_wait_for_signal("master init");
TEST_ASSERT_EQUAL(8, slave.write_raw(WRITE_BUFFER, 8, chrono::milliseconds(1000)));
unity_send_signal("slave write");
unity_wait_for_signal("master read done");
}
static void i2c_slave_composed_trans(void)
{
I2CSlave slave(1, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
size_t BUF_SIZE = 2;
const uint8_t SLAVE_WRITE_BUFFER [BUF_SIZE] = {0xde, 0xad};
uint8_t slave_read_buffer = 0;
unity_send_signal("slave init");
TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
unity_wait_for_signal("master transfer");
TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
}
static void i2c_I2CRead(void)
{
// here only to install/uninstall driver
MasterFixture fix;
unity_send_signal("master init");
unity_wait_for_signal("slave write");
I2CRead reader(1);
vector<uint8_t> data = reader.do_transfer(I2C_MASTER_NUM, ADDR);
unity_send_signal("master read done");
TEST_ASSERT_EQUAL(1, data.size());
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
}
TEST_CASE_MULTIPLE_DEVICES("I2CRead do_transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_I2CRead, i2c_slave_write_raw_byte);
static void i2c_I2CWrite(void)
{
MasterFixture fix;
I2CWrite writer(fix.data);
unity_wait_for_signal("slave init");
writer.do_transfer(I2C_MASTER_NUM, ADDR);
unity_send_signal("master write");
}
TEST_CASE_MULTIPLE_DEVICES("I2CWrite do_transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_I2CWrite, i2c_slave_read_raw_byte);
static void i2c_master_read_raw_byte(void)
{
MasterFixture fix;
unity_send_signal("master init");
unity_wait_for_signal("slave write");
std::shared_ptr<I2CRead> reader(new I2CRead(1));
future<vector<uint8_t> > fut = fix.master->transfer(reader, ADDR);
vector<uint8_t> data;
data = fut.get();
unity_send_signal("master read done");
TEST_ASSERT_EQUAL(1, data.size());
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster read one byte", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_read_raw_byte, i2c_slave_write_raw_byte);
static void i2c_master_write_raw_byte(void)
{
MasterFixture fix;
unity_wait_for_signal("slave init");
std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
future<void> fut = fix.master->transfer(writer, ADDR);
fut.get();
unity_send_signal("master write");
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster write one byte", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_write_raw_byte, i2c_slave_read_raw_byte);
static void i2c_master_read_multiple_raw_bytes(void)
{
MasterFixture fix;
unity_send_signal("master init");
unity_wait_for_signal("slave write");
std::shared_ptr<I2CRead> reader(new I2CRead(8));
future<vector<uint8_t> > fut = fix.master->transfer(reader, ADDR);
vector<uint8_t> data = fut.get();
unity_send_signal("master read done");
TEST_ASSERT_EQUAL(8, data.size());
for (int i = 0; i < 8; i++) {
TEST_ASSERT_EQUAL(i, data[i]);
}
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster read multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_read_multiple_raw_bytes, i2c_slave_write_multiple_raw_bytes);
static void i2c_master_write_multiple_raw_bytes(void)
{
MasterFixture fix({0, 1, 2, 3, 4, 5, 6, 7});
unity_wait_for_signal("slave init");
std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
future<void> fut = fix.master->transfer(writer, ADDR);
fut.get();
unity_send_signal("master write");
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster write multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_write_multiple_raw_bytes, i2c_slave_read_multiple_raw_bytes);
static void i2c_master_sync_read(void)
{
MasterFixture fix;
unity_send_signal("master init");
unity_wait_for_signal("slave write");
vector<uint8_t> data = fix.master->sync_read(ADDR, 1);
unity_send_signal("master read done");
TEST_ASSERT_EQUAL(1, data.size());
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync read", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_sync_read, i2c_slave_write_raw_byte);
static void i2c_master_sync_write(void)
{
MasterFixture fix;
unity_wait_for_signal("slave init");
fix.master->sync_write(ADDR, fix.data);
unity_send_signal("master write");
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync write", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_sync_write, i2c_slave_read_raw_byte);
static void i2c_master_sync_transfer(void)
{
MasterFixture fix;
size_t READ_SIZE = 2;
const uint8_t DESIRED_READ [READ_SIZE] = {0xde, 0xad};
unity_wait_for_signal("slave init");
vector<uint8_t> read_data = fix.master->sync_transfer(ADDR, fix.data, READ_SIZE);
unity_send_signal("master transfer");
TEST_ASSERT_EQUAL(READ_SIZE, read_data.size());
for (int i = 0; i < READ_SIZE; i++) {
TEST_ASSERT_EQUAL(DESIRED_READ[i], read_data[i]);
}
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_sync_transfer, i2c_slave_composed_trans);
static void i2c_master_composed_trans(void)
{
MasterFixture fix;
size_t BUF_SIZE = 2;
const uint8_t SLAVE_WRITE_BUFFER [BUF_SIZE] = {0xde, 0xad};
std::shared_ptr<I2CComposed> composed_transfer(new I2CComposed);
composed_transfer->add_write({47u});
composed_transfer->add_read(BUF_SIZE);
unity_wait_for_signal("slave init");
future<vector<vector<uint8_t> > > result = fix.master->transfer(composed_transfer, ADDR);
unity_send_signal("master transfer");
vector<vector<uint8_t> > read_data = result.get();
TEST_ASSERT_EQUAL(1, read_data.size());
TEST_ASSERT_EQUAL(2, read_data[0].size());
for (int i = 0; i < BUF_SIZE; i++) {
TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER[i], read_data[0][i]);
}
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster Composed transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_composed_trans, i2c_slave_composed_trans);
static void i2c_slave_write_multiple_raw_bytes_twice(void)
{
I2CSlave slave(1, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
const size_t BUF_SIZE = 8;
uint8_t WRITE_BUFFER [BUF_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7};
unity_wait_for_signal("master init");
TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
unity_send_signal("slave write");
unity_wait_for_signal("master read done");
}
static void i2c_master_reuse_read_multiple_raw_bytes(void)
{
MasterFixture fix;
unity_send_signal("master init");
unity_wait_for_signal("slave write");
const size_t BUF_SIZE = 8;
std::shared_ptr<I2CRead> reader(new I2CRead(BUF_SIZE));
future<vector<uint8_t> > fut;
fut = fix.master->transfer(reader, ADDR);
vector<uint8_t> data1 = fut.get();
fut = fix.master->transfer(reader, ADDR);
vector<uint8_t> data2 = fut.get();
unity_send_signal("master read done");
TEST_ASSERT_EQUAL(BUF_SIZE, data1.size());
TEST_ASSERT_EQUAL(BUF_SIZE, data2.size());
for (int i = 0; i < BUF_SIZE; i++) {
TEST_ASSERT_EQUAL(i, data1[i]);
TEST_ASSERT_EQUAL(i, data2[i]);
}
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse read multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_reuse_read_multiple_raw_bytes, i2c_slave_write_multiple_raw_bytes_twice);
static void i2c_slave_read_multiple_raw_bytes_twice(void)
{
I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
const size_t BUF_SIZE = 8;
uint8_t buffer1 [BUF_SIZE] = {};
uint8_t buffer2 [BUF_SIZE] = {};
unity_send_signal("slave init");
unity_wait_for_signal("master write");
TEST_ASSERT_EQUAL(BUF_SIZE, slave.read_raw(buffer1, BUF_SIZE, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(BUF_SIZE, slave.read_raw(buffer2, BUF_SIZE, chrono::milliseconds(1000)));
for (int i = 0; i < BUF_SIZE; i++) {
TEST_ASSERT_EQUAL(i, buffer1[i]);
TEST_ASSERT_EQUAL(i, buffer2[i]);
}
}
static void i2c_master_reuse_write_multiple_raw_bytes(void)
{
MasterFixture fix({0, 1, 2, 3, 4, 5, 6, 7});
unity_wait_for_signal("slave init");
std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
future<void> fut;
fut = fix.master->transfer(writer, ADDR);
fut.get();
fut = fix.master->transfer(writer, ADDR);
fut.get();
unity_send_signal("master write");
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse write multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_reuse_write_multiple_raw_bytes, i2c_slave_read_multiple_raw_bytes_twice);
static void i2c_slave_composed_trans_twice(void)
{
I2CSlave slave(1, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
size_t BUF_SIZE = 2;
const uint8_t SLAVE_WRITE_BUFFER1 [BUF_SIZE] = {0xde, 0xad};
const uint8_t SLAVE_WRITE_BUFFER2 [BUF_SIZE] = {0xbe, 0xef};
uint8_t slave_read_buffer = 0;
unity_send_signal("slave init");
TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER1, BUF_SIZE, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER2, BUF_SIZE, chrono::milliseconds(1000)));
unity_wait_for_signal("master transfer");
TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
}
static void i2c_master_reuse_composed_trans(void)
{
MasterFixture fix;
size_t BUF_SIZE = 2;
const uint8_t SLAVE_WRITE_BUFFER1 [BUF_SIZE] = {0xde, 0xad};
const uint8_t SLAVE_WRITE_BUFFER2 [BUF_SIZE] = {0xbe, 0xef};
std::shared_ptr<I2CComposed> composed_transfer(new I2CComposed);
composed_transfer->add_write({47u});
composed_transfer->add_read(BUF_SIZE);
unity_wait_for_signal("slave init");
vector<vector<uint8_t> > read_data1 = fix.master->transfer(composed_transfer, ADDR).get();
vector<vector<uint8_t> > read_data2 = fix.master->transfer(composed_transfer, ADDR).get();
unity_send_signal("master transfer");
TEST_ASSERT_EQUAL(1, read_data1.size());
TEST_ASSERT_EQUAL(2, read_data1[0].size());
TEST_ASSERT_EQUAL(1, read_data2.size());
TEST_ASSERT_EQUAL(2, read_data2[0].size());
for (int i = 0; i < BUF_SIZE; i++) {
TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER1[i], read_data1[0][i]);
TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER2[i], read_data2[0][i]);
}
}
TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse composed transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
i2c_master_reuse_composed_trans, i2c_slave_composed_trans_twice);
#endif //TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3, ESP32C3)
#endif // __cpp_exceptions