kopia lustrzana https://github.com/espressif/esp-idf
388 wiersze
18 KiB
C
388 wiersze
18 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <rom/ets_sys.h>
|
|
|
|
#include <freertos/heap_regions.h>
|
|
|
|
#include "esp_heap_alloc_caps.h"
|
|
#include "spiram.h"
|
|
#include "esp_log.h"
|
|
#include <stdbool.h>
|
|
|
|
static const char* TAG = "heap_alloc_caps";
|
|
|
|
/*
|
|
This file, combined with a region allocator that supports tags, solves the problem that the ESP32 has RAM that's
|
|
slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
|
|
some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible
|
|
memory allocation possible, this code makes it possible to request memory that has certain capabilities. The
|
|
code will then use its knowledge of how the memory is configured along with a priority scheme to allocate that
|
|
memory in the most sane way possible. This should optimize the amount of RAM accessible to the code without
|
|
hardwiring addresses.
|
|
*/
|
|
|
|
|
|
//Amount of priority slots for the tag descriptors.
|
|
#define NO_PRIOS 3
|
|
|
|
typedef struct {
|
|
const char *name;
|
|
uint32_t prio[NO_PRIOS];
|
|
bool aliasedIram;
|
|
} tag_desc_t;
|
|
|
|
/*
|
|
Tag descriptors. These describe the capabilities of a bit of memory that's tagged with the index into this table.
|
|
Each tag contains NO_PRIOS entries; later entries are only taken if earlier ones can't fulfill the memory request.
|
|
Make sure there are never more than HEAPREGIONS_MAX_TAGCOUNT (in heap_regions.h) tags (ex the last empty marker)
|
|
*/
|
|
static const tag_desc_t tag_desc[]={
|
|
{ "DRAM", { MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT, 0 }, false}, //Tag 0: Plain ole D-port RAM
|
|
{ "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true}, //Tag 1: Plain ole D-port RAM which has an alias on the I-port
|
|
{ "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT, 0, 0 }, false}, //Tag 2: IRAM
|
|
{ "PID2IRAM", { MALLOC_CAP_PID2, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //Tag 3-8: PID 2-7 IRAM
|
|
{ "PID3IRAM", { MALLOC_CAP_PID3, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID4IRAM", { MALLOC_CAP_PID4, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID5IRAM", { MALLOC_CAP_PID5, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID6IRAM", { MALLOC_CAP_PID6, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID7IRAM", { MALLOC_CAP_PID7, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID2DRAM", { MALLOC_CAP_PID2, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //Tag 9-14: PID 2-7 DRAM
|
|
{ "PID3DRAM", { MALLOC_CAP_PID3, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID4DRAM", { MALLOC_CAP_PID4, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID5DRAM", { MALLOC_CAP_PID5, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID6DRAM", { MALLOC_CAP_PID6, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
|
|
{ "PID7DRAM", { MALLOC_CAP_PID7, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT }, false}, //
|
|
{ "SPISRAM", { MALLOC_CAP_SPISRAM, 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false}, //Tag 15: SPI SRAM data
|
|
{ "", { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID }, false} //End
|
|
};
|
|
|
|
/*
|
|
Region descriptors. These describe all regions of memory available, and tag them according to the
|
|
capabilities the hardware has. This array is not marked constant; the initialization code may want to
|
|
change the tags of some regions because eg BT is detected, applications are loaded etc.
|
|
|
|
The priorities here roughly work like this:
|
|
- For a normal malloc (MALLOC_CAP_8BIT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
|
|
finally eat into the application memory.
|
|
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
|
|
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
|
|
- Most other malloc caps only fit in one region anyway.
|
|
|
|
These region descriptors are very ESP32 specific, because they describe the memory pools available there.
|
|
|
|
Because of requirements in the coalescing code as well as the heap allocator itself, this list should always
|
|
be sorted from low to high start address.
|
|
|
|
This array is *NOT* const because it gets modified depending on what pools are/aren't available.
|
|
*/
|
|
static HeapRegionTagged_t regions[]={
|
|
{ (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
|
|
{ (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
|
|
{ (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- can be used for BT
|
|
{ (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- can be used for BT
|
|
{ (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
|
|
{ (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
|
|
{ (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
|
|
{ (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
|
|
{ (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
|
|
{ (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
|
|
{ (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
|
|
{ (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
|
|
{ (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
|
|
{ (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
|
|
{ (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
|
|
{ (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
|
|
{ (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
|
|
{ (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
|
|
{ (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
|
|
{ (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
|
|
{ (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
|
|
{ (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
|
|
{ (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
|
|
{ (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
|
|
{ (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
|
|
{ (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
|
|
{ (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
|
|
{ (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
|
|
{ (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
|
|
{ (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
|
|
{ (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
|
|
{ (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
|
|
{ (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
|
|
{ (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
|
|
{ (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
|
|
{ (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
|
|
{ (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
|
|
{ (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
|
|
{ (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
|
|
{ (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
|
|
{ (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
|
|
{ (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
|
|
{ (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
|
|
{ (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
|
|
{ NULL, 0, 0, 0} //end
|
|
};
|
|
|
|
|
|
//Modify regions array to disable the given range of memory.
|
|
static void disable_mem_region(void *from, void *to) {
|
|
int i;
|
|
//Align from and to on word boundaries
|
|
from=(void*)((uint32_t)from&~3);
|
|
to=(void*)(((uint32_t)to+3)&~3);
|
|
for (i=0; regions[i].xSizeInBytes!=0; i++) {
|
|
void *regStart=regions[i].pucStartAddress;
|
|
void *regEnd=regions[i].pucStartAddress+regions[i].xSizeInBytes;
|
|
if (regStart>=from && regEnd<=to) {
|
|
//Entire region falls in the range. Disable entirely.
|
|
regions[i].xTag=-1;
|
|
} else if (regStart>=from && regEnd>to && regStart<to) {
|
|
//Start of the region falls in the range. Modify address/len.
|
|
int overlap=(uint8_t *)to-(uint8_t *)regStart;
|
|
regions[i].pucStartAddress+=overlap;
|
|
regions[i].xSizeInBytes-=overlap;
|
|
if (regions[i].xExecAddr) regions[i].xExecAddr+=overlap;
|
|
} else if (regStart<from && regEnd>from && regEnd<=to) {
|
|
//End of the region falls in the range. Modify length.
|
|
regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
|
|
} else if (regStart<from && regEnd>to) {
|
|
//Range punches a hole in the region! We do not support this.
|
|
ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
|
|
regions[i].xTag=-1; //Just disable memory region. That'll teach them!
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Warning: These variables are assumed to have the start and end of the data and iram
|
|
area used statically by the program, respectively. These variables are defined in the ld
|
|
file.
|
|
*/
|
|
extern int _data_start, _heap_start, _init_start, _iram_text_end;
|
|
|
|
/*
|
|
Initialize the heap allocator. We pass it a bunch of region descriptors, but we need to modify those first to accommodate for
|
|
the data as loaded by the bootloader.
|
|
ToDo: The regions are different when stuff like trace memory, BT, ... is used. Modify the regions struct on the fly for this.
|
|
Same with loading of apps. Same with using SPI RAM.
|
|
*/
|
|
void heap_alloc_caps_init() {
|
|
int i;
|
|
//Compile-time assert to see if we don't have more tags than is set in heap_regions.h
|
|
_Static_assert((sizeof(tag_desc)/sizeof(tag_desc[0]))-1 <= HEAPREGIONS_MAX_TAGCOUNT, "More than HEAPREGIONS_MAX_TAGCOUNT tags defined!");
|
|
//Disable the bits of memory where this code is loaded.
|
|
disable_mem_region(&_data_start, &_heap_start); //DRAM used by bss/data static variables
|
|
disable_mem_region(&_init_start, &_iram_text_end); //IRAM used by code
|
|
disable_mem_region((void*)0x3ffae000, (void*)0x3ffb0000); //knock out ROM data region
|
|
disable_mem_region((void*)0x40070000, (void*)0x40078000); //CPU0 cache region
|
|
disable_mem_region((void*)0x40078000, (void*)0x40080000); //CPU1 cache region
|
|
|
|
// TODO: this region should be checked, since we don't need to knock out all region finally
|
|
disable_mem_region((void*)0x3ffe0000, (void*)0x3ffe8000); //knock out ROM data region
|
|
|
|
#if CONFIG_BT_ENABLED
|
|
disable_mem_region((void*)0x3ffb0000, (void*)0x3ffc0000); //knock out BT data region
|
|
#endif
|
|
|
|
#if CONFIG_MEMMAP_TRACEMEM
|
|
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
|
|
disable_mem_region((void*)0x3fff8000, (void*)0x40000000); //knock out trace mem region
|
|
#else
|
|
disable_mem_region((void*)0x3fff8000, (void*)0x3fffc000); //knock out trace mem region
|
|
#endif
|
|
#endif
|
|
|
|
#if 0
|
|
enable_spi_sram();
|
|
#else
|
|
disable_mem_region((void*)0x3f800000, (void*)0x3f820000); //SPI SRAM not installed
|
|
#endif
|
|
|
|
//The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
|
|
//it's useful to coalesce adjacent regions that have the same tag.
|
|
|
|
for (i=1; regions[i].xSizeInBytes!=0; i++) {
|
|
if (regions[i].pucStartAddress == (regions[i-1].pucStartAddress + regions[i-1].xSizeInBytes) &&
|
|
regions[i].xTag == regions[i-1].xTag ) {
|
|
regions[i-1].xTag=-1;
|
|
regions[i].pucStartAddress=regions[i-1].pucStartAddress;
|
|
regions[i].xSizeInBytes+=regions[i-1].xSizeInBytes;
|
|
}
|
|
}
|
|
|
|
ESP_EARLY_LOGI(TAG, "Initializing. RAM available for dynamic allocation:");
|
|
for (i=0; regions[i].xSizeInBytes!=0; i++) {
|
|
if (regions[i].xTag != -1) {
|
|
ESP_EARLY_LOGI(TAG, "At %08X len %08X (%d KiB): %s",
|
|
(int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xSizeInBytes/1024, tag_desc[regions[i].xTag].name);
|
|
}
|
|
}
|
|
//Initialize the malloc implementation.
|
|
vPortDefineHeapRegionsTagged( regions );
|
|
}
|
|
|
|
//First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
|
|
#define DIRAM_IRAM_START 0x400A0000
|
|
#define DIRAM_IRAM_END 0x400BFFFC
|
|
#define DIRAM_DRAM_START 0x3FFE0000
|
|
#define DIRAM_DRAM_END 0x3FFFFFFC
|
|
|
|
/*
|
|
This takes a memory chunk in a region that can be addressed as both DRAM as well as IRAM. It will convert it to
|
|
IRAM in such a way that it can be later freed. It assumes both the address as wel as the length to be word-aligned.
|
|
It returns a region that's 1 word smaller than the region given because it stores the original Dram address there.
|
|
|
|
In theory, we can also make this work by prepending a struct that looks similar to the block link struct used by the
|
|
heap allocator itself, which will allow inspection tools relying on any block returned from any sort of malloc to
|
|
have such a block in front of it, work. We may do this later, if/when there is demand for it. For now, a simple
|
|
pointer is used.
|
|
*/
|
|
static void *dram_alloc_to_iram_addr(void *addr, size_t len)
|
|
{
|
|
uint32_t dstart=(int)addr; //First word
|
|
uint32_t dend=((int)addr)+len-4; //Last word
|
|
configASSERT(dstart>=DIRAM_DRAM_START);
|
|
configASSERT(dend<=DIRAM_DRAM_END);
|
|
configASSERT((dstart&3)==0);
|
|
configASSERT((dend&3)==0);
|
|
uint32_t istart=DIRAM_IRAM_START+(DIRAM_DRAM_END-dend);
|
|
uint32_t *iptr=(uint32_t*)istart;
|
|
*iptr=dstart;
|
|
return (void*)(iptr+1);
|
|
}
|
|
|
|
/*
|
|
Standard malloc() implementation. Will return standard no-frills byte-accessible data memory.
|
|
*/
|
|
void *pvPortMalloc( size_t xWantedSize )
|
|
{
|
|
return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
|
|
}
|
|
|
|
/*
|
|
Standard free() implementation. Will pass memory on to the allocator unless it's an IRAM address where the
|
|
actual meory is allocated in DRAM, it will convert to the DRAM address then.
|
|
*/
|
|
void vPortFree( void *pv )
|
|
{
|
|
if (((int)pv>=DIRAM_IRAM_START) && ((int)pv<=DIRAM_IRAM_END)) {
|
|
//Memory allocated here is actually allocated in the DRAM alias region and
|
|
//cannot be de-allocated as usual. dram_alloc_to_iram_addr stores a pointer to
|
|
//the equivalent DRAM address, though; free that.
|
|
uint32_t* dramAddrPtr=(uint32_t*)pv;
|
|
return vPortFreeTagged((void*)dramAddrPtr[-1]);
|
|
}
|
|
|
|
return vPortFreeTagged(pv);
|
|
}
|
|
|
|
/*
|
|
Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
|
|
*/
|
|
void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps )
|
|
{
|
|
int prio;
|
|
int tag, j;
|
|
void *ret=NULL;
|
|
uint32_t remCaps;
|
|
if (caps & MALLOC_CAP_EXEC) {
|
|
//MALLOC_CAP_EXEC forces an alloc from IRAM. There is a region which has both this
|
|
//as well as the following caps, but the following caps are not possible for IRAM.
|
|
//Thus, the combination is impossible and we return NULL directly, even although our tag_desc
|
|
//table would indicate there is a tag for this.
|
|
if ((caps & MALLOC_CAP_8BIT) || (caps & MALLOC_CAP_DMA)) {
|
|
return NULL;
|
|
}
|
|
//If any, EXEC memory should be 32-bit aligned, so round up to the next multiple of 4.
|
|
xWantedSize=(xWantedSize+3)&(~3);
|
|
}
|
|
for (prio=0; prio<NO_PRIOS; prio++) {
|
|
//Iterate over tag descriptors for this priority
|
|
for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
|
|
if ((tag_desc[tag].prio[prio]&caps)!=0) {
|
|
//Tag has at least one of the caps requested. If caps has other bits set that this prio
|
|
//doesn't cover, see if they're available in other prios.
|
|
remCaps=caps&(~tag_desc[tag].prio[prio]); //Remaining caps to be fulfilled
|
|
j=prio+1;
|
|
while (remCaps!=0 && j<NO_PRIOS) {
|
|
remCaps=remCaps&(~tag_desc[tag].prio[j]);
|
|
j++;
|
|
}
|
|
if (remCaps==0) {
|
|
//This tag can satisfy all the requested capabilities. See if we can grab some memory using it.
|
|
if ((caps & MALLOC_CAP_EXEC) && tag_desc[tag].aliasedIram) {
|
|
//This is special, insofar that what we're going to get back is probably a DRAM address. If so,
|
|
//we need to 'invert' it (lowest address in DRAM == highest address in IRAM and vice-versa) and
|
|
//add a pointer to the DRAM equivalent before the address we're going to return.
|
|
ret=pvPortMallocTagged(xWantedSize+4, tag);
|
|
if (ret!=NULL) return dram_alloc_to_iram_addr(ret, xWantedSize+4);
|
|
} else {
|
|
//Just try to alloc, nothing special.
|
|
ret=pvPortMallocTagged(xWantedSize, tag);
|
|
if (ret!=NULL) return ret;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//Nothing usable found.
|
|
return NULL;
|
|
}
|
|
|
|
|
|
size_t xPortGetFreeHeapSizeCaps( uint32_t caps )
|
|
{
|
|
int prio;
|
|
int tag;
|
|
size_t ret=0;
|
|
for (prio=0; prio<NO_PRIOS; prio++) {
|
|
//Iterate over tag descriptors for this priority
|
|
for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
|
|
if ((tag_desc[tag].prio[prio]&caps)!=0) {
|
|
ret+=xPortGetFreeHeapSizeTagged(tag);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
size_t xPortGetMinimumEverFreeHeapSizeCaps( uint32_t caps )
|
|
{
|
|
int prio;
|
|
int tag;
|
|
size_t ret=0;
|
|
for (prio=0; prio<NO_PRIOS; prio++) {
|
|
//Iterate over tag descriptors for this priority
|
|
for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
|
|
if ((tag_desc[tag].prio[prio]&caps)!=0) {
|
|
ret+=xPortGetMinimumEverFreeHeapSizeTagged(tag);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
size_t xPortGetFreeHeapSize( void )
|
|
{
|
|
return xPortGetFreeHeapSizeCaps( MALLOC_CAP_8BIT );
|
|
}
|
|
|
|
size_t xPortGetMinimumEverFreeHeapSize( void )
|
|
{
|
|
return xPortGetMinimumEverFreeHeapSizeCaps( MALLOC_CAP_8BIT );
|
|
}
|
|
|
|
|