esp-idf/components/usb/hcd.c

2639 wiersze
102 KiB
C

/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <string.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_heap_caps.h"
#include "esp_intr_alloc.h"
#include "esp_err.h"
#include "esp_rom_gpio.h"
#include "hal/usbh_hal.h"
#include "hal/usb_types_private.h"
#include "soc/gpio_pins.h"
#include "soc/gpio_sig_map.h"
#include "esp_private/periph_ctrl.h"
#include "hcd.h"
#include "usb_private.h"
#include "usb/usb_types_ch9.h"
// ----------------------------------------------------- Macros --------------------------------------------------------
// --------------------- Constants -------------------------
#define INIT_DELAY_MS 30 //A delay of at least 25ms to enter Host mode. Make it 30ms to be safe
#define DEBOUNCE_DELAY_MS 250 //A debounce delay of 250ms
#define RESET_HOLD_MS 30 //Spec requires at least 10ms. Make it 30ms to be safe
#define RESET_RECOVERY_MS 30 //Reset recovery delay of 10ms (make it 30 ms to be safe) to allow for connected device to recover (and for port enabled interrupt to occur)
#define RESUME_HOLD_MS 30 //Spec requires at least 20ms, Make it 30ms to be safe
#define RESUME_RECOVERY_MS 20 //Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP
#define CTRL_EP_MAX_MPS_LS 8 //Largest Maximum Packet Size for Low Speed control endpoints
#define CTRL_EP_MAX_MPS_FS 64 //Largest Maximum Packet Size for Full Speed control endpoints
#define NUM_PORTS 1 //The controller only has one port.
// ----------------------- Configs -------------------------
typedef struct {
int in_mps;
int non_periodic_out_mps;
int periodic_out_mps;
} fifo_mps_limits_t;
/**
* @brief Default FIFO sizes (see 2.1.2.4 for programming guide)
*
* RXFIFO
* - Recommended: ((LPS/4) * 2) + 2
* - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 48 - 48 = 104
* - Worst case can accommodate two packets of 204 bytes, or one packet of 408
* NPTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 3 packets: (64/4) * 3 = 48
* - Worst case can accommodate three packets of 64 bytes or one packet of 192
* PTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 3 packets: (64/4) * 3 = 48
* - Worst case can accommodate three packets of 64 bytes or one packet of 192
*/
const usbh_hal_fifo_config_t fifo_config_default = {
.rx_fifo_lines = 104,
.nptx_fifo_lines = 48,
.ptx_fifo_lines = 48,
};
const fifo_mps_limits_t mps_limits_default = {
.in_mps = 408,
.non_periodic_out_mps = 192,
.periodic_out_mps = 192,
};
/**
* @brief FIFO sizes that bias to giving RX FIFO more capacity
*
* RXFIFO
* - Recommended: ((LPS/4) * 2) + 2
* - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 32 - 16 = 152
* - Worst case can accommodate two packets of 300 bytes or one packet of 600 bytes
* NPTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 1 packets: (64/4) * 1 = 16
* - Worst case can accommodate one packet of 64 bytes
* PTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 3 packets: (64/4) * 2 = 32
* - Worst case can accommodate two packets of 64 bytes or one packet of 128
*/
const usbh_hal_fifo_config_t fifo_config_bias_rx = {
.rx_fifo_lines = 152,
.nptx_fifo_lines = 16,
.ptx_fifo_lines = 32,
};
const fifo_mps_limits_t mps_limits_bias_rx = {
.in_mps = 600,
.non_periodic_out_mps = 64,
.periodic_out_mps = 128,
};
/**
* @brief FIFO sizes that bias to giving Periodic TX FIFO more capacity (i.e., ISOC OUT)
*
* RXFIFO
* - Recommended: ((LPS/4) * 2) + 2
* - Actual: Assume LPS is 64, and 2 packets: ((64/4) * 2) + 2 = 34
* - Worst case can accommodate two packets of 64 bytes or one packet of 128
* NPTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 1 packets: (64/4) * 1 = 16
* - Worst case can accommodate one packet of 64 bytes
* PTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 34 - 16 = 150
* - Worst case can accommodate two packets of 300 bytes or one packet of 600 bytes
*/
const usbh_hal_fifo_config_t fifo_config_bias_ptx = {
.rx_fifo_lines = 34,
.nptx_fifo_lines = 16,
.ptx_fifo_lines = 150,
};
const fifo_mps_limits_t mps_limits_bias_ptx = {
.in_mps = 128,
.non_periodic_out_mps = 64,
.periodic_out_mps = 600,
};
#define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32
#define NUM_BUFFERS 2
#define XFER_LIST_LEN_CTRL 3 //One descriptor for each stage
#define XFER_LIST_LEN_BULK 2 //One descriptor for transfer, one to support an extra zero length packet
#define XFER_LIST_LEN_INTR 32
#define XFER_LIST_LEN_ISOC FRAME_LIST_LEN //Same length as the frame list makes it easier to schedule. Must be power of 2
// ------------------------ Flags --------------------------
/**
* @brief Bit masks for the HCD to use in the URBs reserved_flags field
*
* The URB object has a reserved_flags member for host stack's internal use. The following flags will be set in
* reserved_flags in order to keep track of state of an URB within the HCD.
*/
#define URB_HCD_STATE_IDLE 0 //The URB is not enqueued in an HCD pipe
#define URB_HCD_STATE_PENDING 1 //The URB is enqueued and pending execution
#define URB_HCD_STATE_INFLIGHT 2 //The URB is currently in flight
#define URB_HCD_STATE_DONE 3 //The URB has completed execution or is retired, and is waiting to be dequeued
#define URB_HCD_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~URB_HCD_STATE_MASK) | state)
#define URB_HCD_STATE_GET(reserved_flags) (reserved_flags & URB_HCD_STATE_MASK)
// -------------------- Convenience ------------------------
#define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock)
#define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock)
#define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock)
#define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock)
#define HCD_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HCD_EXIT_CRITICAL(); \
return ret_val; \
} \
})
// ------------------------------------------------------ Types --------------------------------------------------------
typedef struct pipe_obj pipe_t;
typedef struct port_obj port_t;
/**
* @brief Object representing a single buffer of a pipe's multi buffer implementation
*/
typedef struct {
void *xfer_desc_list;
urb_t *urb;
union {
struct {
uint32_t data_stg_in: 1; //Data stage of the control transfer is IN
uint32_t data_stg_skip: 1; //Control transfer has no data stage
uint32_t cur_stg: 2; //Index of the current stage (e.g., 0 is setup stage, 2 is status stage)
uint32_t reserved28: 28;
} ctrl; //Control transfer related
struct {
uint32_t zero_len_packet: 1; //Added a zero length packet, so transfer consists of 2 QTDs
uint32_t reserved31: 31;
} bulk; //Bulk transfer related
struct {
uint32_t num_qtds: 8; //Number of transfer descriptors filled (excluding zero length packet)
uint32_t zero_len_packet: 1; //Added a zero length packet, so true number descriptors is num_qtds + 1
uint32_t reserved23: 23;
} intr; //Interrupt transfer related
struct {
uint32_t num_qtds: 8; //Number of transfer descriptors filled (including NULL descriptors)
uint32_t interval: 8; //Interval (in number of SOF i.e., ms)
uint32_t start_idx: 8; //Index of the first transfer descriptor in the list
uint32_t next_start_idx: 8; //Index for the first descriptor of the next buffer
} isoc;
uint32_t val;
} flags;
union {
struct {
uint32_t executing: 1; //The buffer is currently executing
uint32_t was_canceled: 1; //Buffer was done due to a cancellation (i.e., a halt request)
uint32_t reserved6: 6;
uint32_t stop_idx: 8; //The descriptor index when the channel was halted
hcd_pipe_event_t pipe_event: 8; //The pipe event when the buffer was done
uint32_t reserved8: 8;
};
uint32_t val;
} status_flags; //Status flags for the buffer
} dma_buffer_block_t;
/**
* @brief Object representing a pipe in the HCD layer
*/
struct pipe_obj {
//URB queueing related
TAILQ_HEAD(tailhead_urb_pending, urb_s) pending_urb_tailq;
TAILQ_HEAD(tailhead_urb_done, urb_s) done_urb_tailq;
int num_urb_pending;
int num_urb_done;
//Multi-buffer control
dma_buffer_block_t *buffers[NUM_BUFFERS]; //Double buffering scheme
union {
struct {
uint32_t buffer_num_to_fill: 2; //Number of buffers that can be filled
uint32_t buffer_num_to_exec: 2; //Number of buffers that are filled and need to be executed
uint32_t buffer_num_to_parse: 2;//Number of buffers completed execution and waiting to be parsed
uint32_t reserved2: 2;
uint32_t wr_idx: 1; //Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t rd_idx: 1; //Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t fr_idx: 1; //Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t buffer_is_executing: 1;//One of the buffers is in flight
uint32_t reserved20: 20;
};
uint32_t val;
} multi_buffer_control;
//HAL related
usbh_hal_chan_t *chan_obj;
usbh_hal_ep_char_t ep_char;
//Port related
port_t *port; //The port to which this pipe is routed through
TAILQ_ENTRY(pipe_obj) tailq_entry; //TailQ entry for port's list of pipes
//Pipe status/state/events related
hcd_pipe_state_t state;
hcd_pipe_event_t last_event;
volatile TaskHandle_t task_waiting_pipe_notif; //Task handle used for internal pipe events. Set by waiter, cleared by notifier
union {
struct {
uint32_t waiting_halt: 1;
uint32_t pipe_cmd_processing: 1;
uint32_t has_urb: 1; //Indicates there is at least one URB either pending, inflight, or done
uint32_t persist: 1; //indicates that this pipe should persist through a run-time port reset
uint32_t reset_lock: 1; //Indicates that this pipe is undergoing a run-time reset
uint32_t reserved27: 27;
};
uint32_t val;
} cs_flags;
//Pipe callback and context
hcd_pipe_callback_t callback;
void *callback_arg;
void *context;
};
/**
* @brief Object representing a port in the HCD layer
*/
struct port_obj {
usbh_hal_context_t *hal;
void *frame_list;
//Pipes routed through this port
TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq;
TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq;
int num_pipes_idle;
int num_pipes_queued;
//Port status, state, and events
hcd_port_state_t state;
usb_speed_t speed;
hcd_port_event_t last_event;
volatile TaskHandle_t task_waiting_port_notif; //Task handle used for internal port events. Set by waiter, cleared by notifier
union {
struct {
uint32_t event_pending: 1; //The port has an event that needs to be handled
uint32_t event_processing: 1; //The port is current processing (handling) an event
uint32_t cmd_processing: 1; //Used to indicate command handling is ongoing
uint32_t disable_requested: 1;
uint32_t conn_dev_ena: 1; //Used to indicate the port is connected to a device that has been reset
uint32_t periodic_scheduling_enabled: 1;
uint32_t reserved26: 26;
};
uint32_t val;
} flags;
bool initialized;
//FIFO biasing related
const usbh_hal_fifo_config_t *fifo_config;
const fifo_mps_limits_t *fifo_mps_limits;
//Port callback and context
hcd_port_callback_t callback;
void *callback_arg;
SemaphoreHandle_t port_mux;
void *context;
};
/**
* @brief Object representing the HCD
*/
typedef struct {
//Ports (Hardware only has one)
port_t *port_obj;
intr_handle_t isr_hdl;
} hcd_obj_t;
static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED;
static hcd_obj_t *s_hcd_obj = NULL; //Note: "s_" is for the static pointer
// ------------------------------------------------- Forward Declare ---------------------------------------------------
// ------------------- Buffer Control ----------------------
/**
* @brief Check if an inactive buffer can be filled with a pending URB
*
* @param pipe Pipe object
* @return true There are one or more pending URBs, and the inactive buffer is yet to be filled
* @return false Otherwise
*/
static inline bool _buffer_can_fill(pipe_t *pipe)
{
//We can only fill if there are pending URBs and at least one unfilled buffer
if (pipe->num_urb_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Fill an empty buffer with
*
* This function will:
* - Remove an URB from the pending tailq
* - Fill that URB into the inactive buffer
*
* @note _buffer_can_fill() must return true before calling this function
*
* @param pipe Pipe object
*/
static void _buffer_fill(pipe_t *pipe);
/**
* @brief Check if there are more filled buffers than can be executed
*
* @param pipe Pipe object
* @return true There are more filled buffers to be executed
* @return false No more buffers to execute
*/
static inline bool _buffer_can_exec(pipe_t *pipe)
{
//We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution
if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Execute the next filled buffer
*
* - Must have called _buffer_can_exec() before calling this function
* - Will start the execution of the buffer
*
* @param pipe Pipe object
*/
static void _buffer_exec(pipe_t *pipe);
/**
* @brief Check if a buffer as completed execution
*
* This should only be called after receiving a USBH_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually
* done.
*
* @param pipe Pipe object
* @return true Buffer complete
* @return false Buffer not complete
*/
static inline bool _buffer_check_done(pipe_t *pipe)
{
if (pipe->ep_char.type != USB_PRIV_XFER_TYPE_CTRL) {
return true;
}
//Only control transfers need to be continued
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
return (buffer_inflight->flags.ctrl.cur_stg == 2);
}
/**
* @brief Continue execution of a buffer
*
* This should only be called after checking if a buffer has completed execution using _buffer_check_done()
*
* @param pipe Pipe object
*/
static void _buffer_exec_cont(pipe_t *pipe);
/**
* @brief Marks the last executed buffer as complete
*
* This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done()
*
* @param pipe Pipe object
* @param stop_idx Descriptor index when the buffer stopped execution
* @param pipe_event Pipe event that caused the buffer to be complete. Use HCD_PIPE_EVENT_NONE for halt request of disconnections
* @param canceled Whether the buffer was done due to a canceled (i.e., halt request). Must set pipe_event to HCD_PIPE_EVENT_NONE
*/
static inline void _buffer_done(pipe_t *pipe, int stop_idx, hcd_pipe_event_t pipe_event, bool canceled)
{
//Store the stop_idx and pipe_event for later parsing
dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
buffer_done->status_flags.executing = 0;
buffer_done->status_flags.was_canceled = canceled;
buffer_done->status_flags.stop_idx = stop_idx;
buffer_done->status_flags.pipe_event = pipe_event;
pipe->multi_buffer_control.rd_idx++;
pipe->multi_buffer_control.buffer_num_to_exec--;
pipe->multi_buffer_control.buffer_num_to_parse++;
pipe->multi_buffer_control.buffer_is_executing = 0;
}
/**
* @brief Checks if a pipe has one or more completed buffers to parse
*
* @param pipe Pipe object
* @return true There are one or more buffers to parse
* @return false There are no more buffers to parse
*/
static inline bool _buffer_can_parse(pipe_t *pipe)
{
if (pipe->multi_buffer_control.buffer_num_to_parse > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Parse a completed buffer
*
* This function will:
* - Parse the results of an URB from a completed buffer
* - Put the URB into the done tailq
*
* @note This function should only be called on the completion of a buffer
*
* @param pipe Pipe object
* @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the URB. Set to 0 otherwise
*/
static void _buffer_parse(pipe_t *pipe);
/**
* @brief Marks all buffers pending execution as completed, then parses those buffers
*
* @note This should only be called on pipes do not have any currently executing buffers.
*
* @param pipe Pipe object
* @param canceled Whether this flush is due to cancellation
* @return true One or more buffers were flushed
* @return false There were no buffers that needed to be flushed
*/
static bool _buffer_flush_all(pipe_t *pipe, bool canceled);
// ------------------------ Pipe ---------------------------
/**
* @brief Decode a HAL channel error to the corresponding pipe event
*
* @param chan_error The HAL channel error
* @return hcd_pipe_event_t The corresponding pipe error event
*/
static inline hcd_pipe_event_t pipe_decode_error_event(usbh_hal_chan_error_t chan_error);
/**
* @brief Halt a pipe
*
* - Attempts to halt a pipe. Pipe must be active in order to be halted
* - If the underlying channel has an ongoing transfer, a halt will be requested, then the function will block until the
* channel indicates it is halted
* - If the channel is no on-going transfer, the pipe will simply be marked has halted (thus preventing any further URBs
* from being enqueued)
*
* @note This function can block
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_halt(pipe_t *pipe);
/**
* @brief Flush a pipe
*
* - Flushing a pipe causes all of its pending URBs to be become done, thus allowing them to be dequeued
* - The pipe must be halted in order to be flushed
* - The pipe callback will be run if one or more URBs become done
*
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_flush(pipe_t *pipe);
/**
* @brief Clear a pipe from its halt
*
* - Pipe must be halted in order to be cleared
* - Clearing a pipe makes it active again
* - If there are any enqueued URBs, they will executed
*
* @param pipe Pipe object
* @return esp_err_t
*/
static esp_err_t _pipe_cmd_clear(pipe_t *pipe);
// ------------------------ Port ---------------------------
/**
* @brief Prepare persistent pipes for reset
*
* This function checks if all pipes are reset persistent and proceeds to free their underlying HAL channels for the
* persistent pipes. This should be called before a run time reset
*
* @param port Port object
* @return true All pipes are persistent and their channels are freed
* @return false Not all pipes are persistent
*/
static bool _port_persist_all_pipes(port_t *port);
/**
* @brief Recovers all persistent pipes after a reset
*
* This function will recover all persistent pipes after a reset and reallocate their underlying HAl channels. This
* function should be called after a reset.
*
* @param port Port object
*/
static void _port_recover_all_pipes(port_t *port);
/**
* @brief Checks if all pipes are in the halted state
*
* @param port Port object
* @return true All pipes are halted
* @return false Not all pipes are halted
*/
static bool _port_check_all_pipes_halted(port_t *port);
/**
* @brief Debounce port after a connection or disconnection event
*
* This function should be called after a port connection or disconnect event. This function will execute a debounce
* delay then check the actual connection/disconnections state.
*
* @note This function can block
* @param port Port object
* @return true A device is connected
* @return false No device connected
*/
static bool _port_debounce(port_t *port);
/**
* @brief Power ON the port
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_power_on(port_t *port);
/**
* @brief Power OFF the port
*
* - If a device is currently connected, this function will cause a disconnect event
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_power_off(port_t *port);
/**
* @brief Reset the port
*
* - This function issues a reset signal using the timings specified by the USB2.0 spec
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_reset(port_t *port);
/**
* @brief Suspend the port
*
* - Port must be enabled in order to to be suspended
* - All pipes must be halted for the port to be suspended
* - Suspending the port stops Keep Alive/SOF from being sent to the connected device
*
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_bus_suspend(port_t *port);
/**
* @brief Resume the port
*
* - Port must be suspended in order to be resumed
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_bus_resume(port_t *port);
/**
* @brief Disable the port
*
* - All pipes must be halted for the port to be disabled
* - The port must be enabled or suspended in order to be disabled
*
* @note This function can block
* @param port Port object
* @return esp_err_t
*/
static esp_err_t _port_cmd_disable(port_t *port);
// ----------------------- Events --------------------------
/**
* @brief Wait for an internal event from a port
*
* @note For each port, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
*/
static void _internal_port_event_wait(port_t *port);
/**
* @brief Notify (from an ISR context) the thread/task waiting for the internal port event
*
* @param port Port object
* @return true A yield is required
* @return false Whether a yield is required or not
*/
static bool _internal_port_event_notify_from_isr(port_t *port);
/**
* @brief Wait for an internal event from a particular pipe
*
* @note For each pipe, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param pipe Pipe object
*/
static void _internal_pipe_event_wait(pipe_t *pipe);
/**
* @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event
*
* @param pipe Pipe object
* @param from_isr Whether this is called from an ISR or not
* @return true A yield is required
* @return false Whether a yield is required or not. Always false when from_isr is also false
*/
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr);
// ----------------------------------------------- Interrupt Handling --------------------------------------------------
// ------------------- Internal Event ----------------------
static void _internal_port_event_wait(port_t *port)
{
//There must NOT be another thread/task already waiting for an internal event
assert(port->task_waiting_port_notif == NULL);
port->task_waiting_port_notif = xTaskGetCurrentTaskHandle();
/* We need to loop as task notifications can come from anywhere. If we this
was a port event notification, task_waiting_port_notif will have been cleared
by the notifier. */
while (port->task_waiting_port_notif != NULL) {
HCD_EXIT_CRITICAL();
//Wait to be notified from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
}
}
static bool _internal_port_event_notify_from_isr(port_t *port)
{
//There must be a thread/task waiting for an internal event
assert(port->task_waiting_port_notif != NULL);
TaskHandle_t task_to_unblock = port->task_waiting_port_notif;
//Clear task_waiting_port_notif to indicate to the waiter that the unblock was indeed an port event notification
port->task_waiting_port_notif = NULL;
//Unblock the thread/task waiting for the notification
BaseType_t xTaskWoken = pdFALSE;
//Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
return (xTaskWoken == pdTRUE);
}
static void _internal_pipe_event_wait(pipe_t *pipe)
{
//There must NOT be another thread/task already waiting for an internal event
assert(pipe->task_waiting_pipe_notif == NULL);
pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle();
/* We need to loop as task notifications can come from anywhere. If we this
was a pipe event notification, task_waiting_pipe_notif will have been cleared
by the notifier. */
while (pipe->task_waiting_pipe_notif != NULL) {
//Wait to be unblocked by notified
HCD_EXIT_CRITICAL();
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
}
}
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr)
{
//There must be a thread/task waiting for an internal event
assert(pipe->task_waiting_pipe_notif != NULL);
TaskHandle_t task_to_unblock = pipe->task_waiting_pipe_notif;
//Clear task_waiting_pipe_notif to indicate to the waiter that the unblock was indeed an pipe event notification
pipe->task_waiting_pipe_notif = NULL;
bool ret;
if (from_isr) {
BaseType_t xTaskWoken = pdFALSE;
//Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways
//Unblock the thread/task waiting for the pipe notification
vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken);
ret = (xTaskWoken == pdTRUE);
} else {
HCD_EXIT_CRITICAL();
xTaskNotifyGive(task_to_unblock);
HCD_ENTER_CRITICAL();
ret = false;
}
return ret;
}
// ----------------- Interrupt Handlers --------------------
/**
* @brief Handle a HAL port interrupt and obtain the corresponding port event
*
* @param[in] port Port object
* @param[in] hal_port_event The HAL port event
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred
*/
static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usbh_hal_port_event_t hal_port_event, bool *yield)
{
hcd_port_event_t port_event = HCD_PORT_EVENT_NONE;
switch (hal_port_event) {
case USBH_HAL_PORT_EVENT_CONN: {
//Don't update state immediately, we still need to debounce.
port_event = HCD_PORT_EVENT_CONNECTION;
break;
}
case USBH_HAL_PORT_EVENT_DISCONN: {
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_DISCONNECTION;
port->flags.conn_dev_ena = 0;
break;
}
case USBH_HAL_PORT_EVENT_ENABLED: {
usbh_hal_port_enable(port->hal); //Initialize remaining host port registers
port->speed = (usbh_hal_port_get_conn_speed(port->hal) == USB_PRIV_SPEED_FULL) ? USB_SPEED_FULL : USB_SPEED_LOW;
port->state = HCD_PORT_STATE_ENABLED;
port->flags.conn_dev_ena = 1;
//This was triggered by a command, so no event needs to be propagated.
break;
}
case USBH_HAL_PORT_EVENT_DISABLED: {
port->flags.conn_dev_ena = 0;
//Disabled could be due to a disable request or reset request, or due to a port error
if (port->state != HCD_PORT_STATE_RESETTING) { //Ignore the disable event if it's due to a reset request
if (port->flags.disable_requested) {
//Disabled by request (i.e. by port command). Generate an internal event
port->state = HCD_PORT_STATE_DISABLED;
port->flags.disable_requested = 0;
*yield |= _internal_port_event_notify_from_isr(port);
} else {
//Disabled due to a port error
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_ERROR;
}
}
break;
}
case USBH_HAL_PORT_EVENT_OVRCUR:
case USBH_HAL_PORT_EVENT_OVRCUR_CLR: { //Could occur if a quick overcurrent then clear happens
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
//We need to power OFF the port to protect it
usbh_hal_port_toggle_power(port->hal, false);
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_OVERCURRENT;
}
port->flags.conn_dev_ena = 0;
break;
}
default: {
abort();
break;
}
}
return port_event;
}
/**
* @brief Handles a HAL channel interrupt
*
* This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to
* to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe
* event occurred, or return NULL otherwise.
*
* @param[in] chan_obj Pointer to HAL channel object with interrupt
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_pipe_event_t The pipe event
*/
static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usbh_hal_chan_t *chan_obj, bool *yield)
{
usbh_hal_chan_event_t chan_event = usbh_hal_chan_decode_intr(chan_obj);
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_event) {
case USBH_HAL_CHAN_EVENT_CPLT: {
if (!_buffer_check_done(pipe)) {
_buffer_exec_cont(pipe);
break;
}
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
event = pipe->last_event;
//Mark the buffer as done
int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, pipe->last_event, false);
//First check if there is another buffer we can execute. But we only want to execute if there's still a valid device
if (_buffer_can_exec(pipe) && pipe->port->flags.conn_dev_ena) {
//If the next buffer is filled and ready to execute, execute it
_buffer_exec(pipe);
}
//Handle the previously done buffer
_buffer_parse(pipe);
//Check to see if we can fill another buffer. But we only want to fill if there is still a valid device
if (_buffer_can_fill(pipe) && pipe->port->flags.conn_dev_ena) {
//Now that we've parsed a buffer, see if another URB can be filled in its place
_buffer_fill(pipe);
}
break;
}
case USBH_HAL_CHAN_EVENT_ERROR: {
//Get and store the pipe error event
usbh_hal_chan_error_t chan_error = usbh_hal_chan_get_error(chan_obj);
pipe->last_event = pipe_decode_error_event(chan_error);
event = pipe->last_event;
pipe->state = HCD_PIPE_STATE_HALTED;
//Mark the buffer as done with an error
int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, pipe->last_event, false);
//Parse the buffer
_buffer_parse(pipe);
break;
}
case USBH_HAL_CHAN_EVENT_HALT_REQ: {
assert(pipe->cs_flags.waiting_halt);
//We've halted a transfer, so we need to trigger the pipe callback
pipe->last_event = HCD_PIPE_EVENT_URB_DONE;
event = pipe->last_event;
//Halt request event is triggered when packet is successful completed. But just treat all halted transfers as errors
pipe->state = HCD_PIPE_STATE_HALTED;
int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx, HCD_PIPE_EVENT_NONE, true);
//Parse the buffer
_buffer_parse(pipe);
//Notify the task waiting for the pipe halt
*yield |= _internal_pipe_event_notify(pipe, true);
break;
}
case USBH_HAL_CHAN_EVENT_NONE: {
break; //Nothing to do
}
default:
abort();
break;
}
return event;
}
/**
* @brief Main interrupt handler
*
* - Handle all HPRT (Host Port) related interrupts first as they may change the
* state of the driver (e.g., a disconnect event)
* - If any channels (pipes) have pending interrupts, handle them one by one
* - The HCD has not blocking functions, so the user's ISR callback is run to
* allow the users to send whatever OS primitives they need.
*
* @param arg Interrupt handler argument
*/
static void intr_hdlr_main(void *arg)
{
port_t *port = (port_t *) arg;
bool yield = false;
HCD_ENTER_CRITICAL_ISR();
usbh_hal_port_event_t hal_port_evt = usbh_hal_decode_intr(port->hal);
if (hal_port_evt == USBH_HAL_PORT_EVENT_CHAN) {
//Channel event. Cycle through each pending channel
usbh_hal_chan_t *chan_obj = usbh_hal_get_chan_pending_intr(port->hal);
while (chan_obj != NULL) {
pipe_t *pipe = (pipe_t *)usbh_hal_chan_get_context(chan_obj);
hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield);
//Run callback if a pipe event has occurred and the pipe also has a callback
if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
//Check for more channels with pending interrupts. Returns NULL if there are no more
chan_obj = usbh_hal_get_chan_pending_intr(port->hal);
}
} else if (hal_port_evt != USBH_HAL_PORT_EVENT_NONE) { //Port event
hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield);
if (port_event != HCD_PORT_EVENT_NONE) {
port->last_event = port_event;
port->flags.event_pending = 1;
if (port->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
}
}
HCD_EXIT_CRITICAL_ISR();
if (yield) {
portYIELD_FROM_ISR();
}
}
// --------------------------------------------- Host Controller Driver ------------------------------------------------
static port_t *port_obj_alloc(void)
{
port_t *port = calloc(1, sizeof(port_t));
usbh_hal_context_t *hal = malloc(sizeof(usbh_hal_context_t));
void *frame_list = heap_caps_aligned_calloc(USBH_HAL_FRAME_LIST_MEM_ALIGN, FRAME_LIST_LEN,sizeof(uint32_t), MALLOC_CAP_DMA);
SemaphoreHandle_t port_mux = xSemaphoreCreateMutex();
if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) {
free(port);
free(hal);
free(frame_list);
if (port_mux != NULL) {
vSemaphoreDelete(port_mux);
}
return NULL;
}
port->hal = hal;
port->frame_list = frame_list;
port->port_mux = port_mux;
return port;
}
static void port_obj_free(port_t *port)
{
if (port == NULL) {
return;
}
vSemaphoreDelete(port->port_mux);
free(port->frame_list);
free(port->hal);
free(port);
}
// ----------------------- Public --------------------------
esp_err_t hcd_install(const hcd_config_t *config)
{
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE);
HCD_EXIT_CRITICAL();
esp_err_t err_ret;
//Allocate memory and resources for driver object and all port objects
hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t));
if (p_hcd_obj_dmy == NULL) {
return ESP_ERR_NO_MEM;
}
//Allocate resources for each port (there's only one)
p_hcd_obj_dmy->port_obj = port_obj_alloc();
esp_err_t intr_alloc_ret = esp_intr_alloc(ETS_USB_INTR_SOURCE,
config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, //The interrupt must be disabled until the port is initialized
intr_hdlr_main,
(void *)p_hcd_obj_dmy->port_obj,
&p_hcd_obj_dmy->isr_hdl);
if (p_hcd_obj_dmy->port_obj == NULL) {
err_ret = ESP_ERR_NO_MEM;
}
if (intr_alloc_ret != ESP_OK) {
err_ret = intr_alloc_ret;
goto err;
}
HCD_ENTER_CRITICAL();
if (s_hcd_obj != NULL) {
HCD_EXIT_CRITICAL();
err_ret = ESP_ERR_INVALID_STATE;
goto err;
}
s_hcd_obj = p_hcd_obj_dmy;
HCD_EXIT_CRITICAL();
return ESP_OK;
err:
if (intr_alloc_ret == ESP_OK) {
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
}
port_obj_free(p_hcd_obj_dmy->port_obj);
free(p_hcd_obj_dmy);
return err_ret;
}
esp_err_t hcd_uninstall(void)
{
HCD_ENTER_CRITICAL();
//Check that all ports have been disabled (there's only one port)
if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) {
HCD_EXIT_CRITICAL();
return ESP_ERR_INVALID_STATE;
}
hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj;
s_hcd_obj = NULL;
HCD_EXIT_CRITICAL();
//Free resources
port_obj_free(p_hcd_obj_dmy->port_obj);
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
free(p_hcd_obj_dmy);
return ESP_OK;
}
// ------------------------------------------------------ Port ---------------------------------------------------------
// ----------------------- Helpers -------------------------
static bool _port_persist_all_pipes(port_t *port)
{
if (port->num_pipes_queued > 0) {
//All pipes must be idle before we run-time reset
return false;
}
bool all_persist = true;
pipe_t *pipe;
//Check that each pipe is persistent
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
if (!pipe->cs_flags.persist) {
all_persist = false;
break;
}
}
if (!all_persist) {
//At least one pipe is not persistent. All pipes must be freed or made persistent before we can reset
return false;
}
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
pipe->cs_flags.reset_lock = 1;
usbh_hal_chan_free(port->hal, pipe->chan_obj);
}
return true;
}
static void _port_recover_all_pipes(port_t *port)
{
pipe_t *pipe;
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
pipe->cs_flags.persist = 0;
pipe->cs_flags.reset_lock = 0;
usbh_hal_chan_alloc(port->hal, pipe->chan_obj, (void *)pipe);
usbh_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
}
}
static bool _port_check_all_pipes_halted(port_t *port)
{
bool all_halted = true;
pipe_t *pipe;
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
if (pipe->state != HCD_PIPE_STATE_HALTED) {
all_halted = false;
break;
}
}
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
if (pipe->state != HCD_PIPE_STATE_HALTED) {
all_halted = false;
break;
}
}
return all_halted;
}
static bool _port_debounce(port_t *port)
{
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
//Disconnect event due to power off, no need to debounce or update port state.
return false;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS));
HCD_ENTER_CRITICAL();
//Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected)
bool is_connected = usbh_hal_port_check_if_connected(port->hal);
if (is_connected) {
port->state = HCD_PORT_STATE_DISABLED;
} else {
port->state = HCD_PORT_STATE_DISCONNECTED;
}
//Disable debounce lock
usbh_hal_disable_debounce_lock(port->hal);
return is_connected;
}
// ---------------------- Commands -------------------------
static esp_err_t _port_cmd_power_on(port_t *port)
{
esp_err_t ret;
//Port can only be powered on if it's currently unpowered
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_DISCONNECTED;
usbh_hal_port_init(port->hal);
usbh_hal_port_toggle_power(port->hal, true);
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
static esp_err_t _port_cmd_power_off(port_t *port)
{
esp_err_t ret;
//Port can only be unpowered if already powered
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_NOT_POWERED;
usbh_hal_port_deinit(port->hal);
usbh_hal_port_toggle_power(port->hal, false);
//If a device is currently connected, this should trigger a disconnect event
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
return ret;
}
static esp_err_t _port_cmd_reset(port_t *port)
{
esp_err_t ret;
//Port can only a reset when it is in the enabled or disabled states (in case of new connection)
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_DISABLED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
bool is_runtime_reset = (port->state == HCD_PORT_STATE_ENABLED) ? true : false;
if (is_runtime_reset && !_port_persist_all_pipes(port)) {
//If this is a run time reset, check all pipes that are still allocated can persist the reset
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//All pipes (if any_) are guaranteed to be persistent at this point. Proceed to resetting the bus
port->state = HCD_PORT_STATE_RESETTING;
//Put and hold the bus in the reset state. If the port was previously enabled, a disabled event will occur after this
usbh_hal_port_toggle_reset(port->hal, true);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESETTING) {
//The port state has unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto bailout;
}
//Return the bus to the idle state and hold it for the required reset recovery time. Port enabled event should occur
usbh_hal_port_toggle_reset(port->hal, false);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_dev_ena) {
//The port state has unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto bailout;
}
//Set FIFO sizes based on the selected biasing
usbh_hal_set_fifo_size(port->hal, port->fifo_config);
//We start periodic scheduling only after a RESET command since SOFs only start after a reset
usbh_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN);
usbh_hal_port_periodic_enable(port->hal);
ret = ESP_OK;
bailout:
if (is_runtime_reset) {
_port_recover_all_pipes(port);
}
exit:
return ret;
}
static esp_err_t _port_cmd_bus_suspend(port_t *port)
{
esp_err_t ret;
//Port must have been previously enabled, and all pipes must already be halted
if (port->state == HCD_PORT_STATE_ENABLED && !_port_check_all_pipes_halted(port)) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//All pipes are guaranteed halted at this point. Proceed to suspend the port
usbh_hal_port_suspend(port->hal);
port->state = HCD_PORT_STATE_SUSPENDED;
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _port_cmd_bus_resume(port_t *port)
{
esp_err_t ret;
//Port can only be resumed if it was previously suspended
if (port->state != HCD_PORT_STATE_SUSPENDED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Put and hold the bus in the K state.
usbh_hal_port_toggle_resume(port->hal, true);
port->state = HCD_PORT_STATE_RESUMING;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS));
HCD_ENTER_CRITICAL();
//Return and hold the bus to the J state (as port of the LS EOP)
usbh_hal_port_toggle_resume(port->hal, false);
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
//Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) {
//Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
port->state = HCD_PORT_STATE_ENABLED;
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _port_cmd_disable(port_t *port)
{
esp_err_t ret;
if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_SUSPENDED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//All pipes must be halted before disabling the port
if (!_port_check_all_pipes_halted(port)){
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//All pipes are guaranteed to be halted or freed at this point. Proceed to disable the port
port->flags.disable_requested = 1;
usbh_hal_port_disable(port->hal);
_internal_port_event_wait(port);
if (port->state != HCD_PORT_STATE_DISABLED) {
//Port state unexpectedly changed
ret = ESP_ERR_INVALID_RESPONSE;
goto exit;
}
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t hcd_port_init(int port_number, const hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl)
{
HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG);
HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND);
//Get a pointer to the correct FIFO bias constant values
const usbh_hal_fifo_config_t *fifo_config;
const fifo_mps_limits_t *mps_limits;
switch (port_config->fifo_bias) {
case HCD_PORT_FIFO_BIAS_BALANCED:
fifo_config = &fifo_config_default;
mps_limits = &mps_limits_default;
break;
case HCD_PORT_FIFO_BIAS_RX:
fifo_config = &fifo_config_bias_rx;
mps_limits = &mps_limits_bias_rx;
break;
case HCD_PORT_FIFO_BIAS_PTX:
fifo_config = &fifo_config_bias_ptx;
mps_limits = &mps_limits_bias_ptx;
break;
default:
fifo_config = NULL;
mps_limits = NULL;
abort();
break;
}
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE);
//Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only
port_t *port_obj = s_hcd_obj->port_obj;
TAILQ_INIT(&port_obj->pipes_idle_tailq);
TAILQ_INIT(&port_obj->pipes_active_tailq);
port_obj->state = HCD_PORT_STATE_NOT_POWERED;
port_obj->last_event = HCD_PORT_EVENT_NONE;
port_obj->fifo_config = fifo_config;
port_obj->fifo_mps_limits = mps_limits;
port_obj->callback = port_config->callback;
port_obj->callback_arg = port_config->callback_arg;
port_obj->context = port_config->context;
usbh_hal_init(port_obj->hal);
port_obj->initialized = true;
//Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
memset(port_obj->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
esp_intr_enable(s_hcd_obj->isr_hdl);
*port_hdl = (hcd_port_handle_t)port_obj;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); //Need a short delay before host mode takes effect
return ESP_OK;
}
esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY)
&& port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
port->initialized = false;
esp_intr_disable(s_hcd_obj->isr_hdl);
usbh_hal_deinit(port->hal);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command)
{
esp_err_t ret = ESP_ERR_INVALID_STATE;
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && !port->flags.event_pending) { //Port events need to be handled first before issuing a command
port->flags.cmd_processing = 1;
switch (command) {
case HCD_PORT_CMD_POWER_ON: {
ret = _port_cmd_power_on(port);
break;
}
case HCD_PORT_CMD_POWER_OFF: {
ret = _port_cmd_power_off(port);
break;
}
case HCD_PORT_CMD_RESET: {
ret = _port_cmd_reset(port);
break;
}
case HCD_PORT_CMD_SUSPEND: {
ret = _port_cmd_bus_suspend(port);
break;
}
case HCD_PORT_CMD_RESUME: {
ret = _port_cmd_bus_resume(port);
break;
}
case HCD_PORT_CMD_DISABLE: {
ret = _port_cmd_disable(port);
break;
}
}
port->flags.cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_state_t ret;
HCD_ENTER_CRITICAL();
ret = port->state;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed)
{
port_t *port = (port_t *)port_hdl;
HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG);
HCD_ENTER_CRITICAL();
//Device speed is only valid if there is device connected to the port that has been reset
HCD_CHECK_FROM_CRIT(port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
usb_priv_speed_t hal_speed = usbh_hal_port_get_conn_speed(port->hal);
if (hal_speed == USB_PRIV_SPEED_FULL) {
*speed = USB_SPEED_FULL;
} else {
*speed = USB_SPEED_LOW;
}
HCD_EXIT_CRITICAL();
return ESP_OK;
}
hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_event_t ret = HCD_PORT_EVENT_NONE;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && port->flags.event_pending) {
port->flags.event_pending = 0;
port->flags.event_processing = 1;
ret = port->last_event;
switch (ret) {
case HCD_PORT_EVENT_CONNECTION: {
if (_port_debounce(port)) {
ret = HCD_PORT_EVENT_CONNECTION;
}
break;
}
case HCD_PORT_EVENT_DISCONNECTION:
case HCD_PORT_EVENT_ERROR:
case HCD_PORT_EVENT_OVERCURRENT: {
break;
}
default: {
break;
}
}
port->flags.event_processing = 0;
} else {
ret = HCD_PORT_EVENT_NONE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& port->flags.val == 0 && port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
//We are about to do a soft reset on the peripheral. Disable the peripheral throughout
esp_intr_disable(s_hcd_obj->isr_hdl);
usbh_hal_core_soft_reset(port->hal);
port->state = HCD_PORT_STATE_NOT_POWERED;
port->last_event = HCD_PORT_EVENT_NONE;
port->flags.val = 0;
//Soft reset wipes all registers so we need to reinitialize the HAL
usbh_hal_init(port->hal);
//Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset
memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
esp_intr_enable(s_hcd_obj->isr_hdl);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_port_get_context(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = port->context;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias)
{
esp_err_t ret;
//Get a pointer to the correct FIFO bias constant values
const usbh_hal_fifo_config_t *fifo_config;
const fifo_mps_limits_t *mps_limits;
switch (bias) {
case HCD_PORT_FIFO_BIAS_BALANCED:
fifo_config = &fifo_config_default;
mps_limits = &mps_limits_default;
break;
case HCD_PORT_FIFO_BIAS_RX:
fifo_config = &fifo_config_bias_rx;
mps_limits = &mps_limits_bias_rx;
break;
case HCD_PORT_FIFO_BIAS_PTX:
fifo_config = &fifo_config_bias_ptx;
mps_limits = &mps_limits_bias_ptx;
break;
default:
fifo_config = NULL;
mps_limits = NULL;
abort();
break;
}
//Configure the new FIFO sizes and store the pointers
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
//Check that port is in the correct state to update FIFO sizes
if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) {
usbh_hal_set_fifo_size(port->hal, fifo_config);
port->fifo_config = fifo_config;
port->fifo_mps_limits = mps_limits;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
// ----------------------- Private -------------------------
static inline hcd_pipe_event_t pipe_decode_error_event(usbh_hal_chan_error_t chan_error)
{
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_error) {
case USBH_HAL_CHAN_ERROR_XCS_XACT:
event = HCD_PIPE_EVENT_ERROR_XFER;
break;
case USBH_HAL_CHAN_ERROR_BNA:
event = HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL;
break;
case USBH_HAL_CHAN_ERROR_PKT_BBL:
event = HCD_PIPE_EVENT_ERROR_OVERFLOW;
break;
case USBH_HAL_CHAN_ERROR_STALL:
event = HCD_PIPE_EVENT_ERROR_STALL;
break;
}
return event;
}
static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type)
{
int desc_list_len;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
desc_list_len = XFER_LIST_LEN_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
desc_list_len = XFER_LIST_LEN_ISOC;
break;
case USB_TRANSFER_TYPE_BULK:
desc_list_len = XFER_LIST_LEN_BULK;
break;
default: //USB_TRANSFER_TYPE_INTR:
desc_list_len = XFER_LIST_LEN_INTR;
break;
}
dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t));
void *xfer_desc_list = heap_caps_aligned_calloc(USBH_HAL_DMA_MEM_ALIGN, desc_list_len, sizeof(usbh_ll_dma_qtd_t), MALLOC_CAP_DMA);
if (buffer == NULL || xfer_desc_list == NULL) {
free(buffer);
heap_caps_free(xfer_desc_list);
return NULL;
}
buffer->xfer_desc_list = xfer_desc_list;
return buffer;
}
static void buffer_block_free(dma_buffer_block_t *buffer)
{
if (buffer == NULL) {
return;
}
heap_caps_free(buffer->xfer_desc_list);
free(buffer);
}
static bool pipe_alloc_check_args(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, const fifo_mps_limits_t *mps_limits, usb_transfer_type_t type, bool is_default_pipe)
{
//Check if pipe can be supported
if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) {
//Low speed port does not supported full speed pipe
return false;
}
if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) {
//Low speed does not support Bulk or Isochronous pipes
return false;
}
//Check interval of pipe
if (type == USB_TRANSFER_TYPE_INTR &&
(pipe_config->ep_desc->bInterval > 0 && pipe_config->ep_desc->bInterval > 32)) {
//Interval not supported for interrupt pipe
return false;
}
if (type == USB_TRANSFER_TYPE_ISOCHRONOUS &&
(pipe_config->ep_desc->bInterval > 0 && pipe_config->ep_desc->bInterval > 6)) {
//Interval not supported for isochronous pipe (where 0 < 2^(bInterval - 1) <= 32)
return false;
}
if (is_default_pipe) {
return true;
}
int limit;
if (USB_EP_DESC_GET_EP_DIR(pipe_config->ep_desc)) { //IN
limit = mps_limits->in_mps;
} else { //OUT
if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) {
limit = mps_limits->non_periodic_out_mps;
} else {
limit = mps_limits->periodic_out_mps;
}
}
return (pipe_config->ep_desc->wMaxPacketSize <= limit);
}
static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usbh_hal_ep_char_t *ep_char)
{
//Initialize EP characteristics
usb_priv_xfer_type_t hal_xfer_type;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
hal_xfer_type = USB_PRIV_XFER_TYPE_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
hal_xfer_type = USB_PRIV_XFER_TYPE_ISOCHRONOUS;
break;
case USB_TRANSFER_TYPE_BULK:
hal_xfer_type = USB_PRIV_XFER_TYPE_BULK;
break;
default: //USB_TRANSFER_TYPE_INTR
hal_xfer_type = USB_PRIV_XFER_TYPE_INTR;
break;
}
ep_char->type = hal_xfer_type;
if (is_default_pipe) {
ep_char->bEndpointAddress = 0;
//Set the default pipe's MPS to the worst case MPS for the device's speed
ep_char->mps = (pipe_config->dev_speed == USB_SPEED_FULL) ? CTRL_EP_MAX_MPS_FS : CTRL_EP_MAX_MPS_LS;
} else {
ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress;
ep_char->mps = pipe_config->ep_desc->wMaxPacketSize;
}
ep_char->dev_addr = pipe_config->dev_addr;
ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW);
//Calculate the pipe's interval in terms of USB frames
if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
int interval_frames;
if (type == USB_TRANSFER_TYPE_INTR) {
interval_frames = pipe_config->ep_desc->bInterval;
} else {
interval_frames = (1 << (pipe_config->ep_desc->bInterval - 1));
}
//Round down interval to nearest power of 2
if (interval_frames >= 32) {
interval_frames = 32;
} else if (interval_frames >= 16) {
interval_frames = 16;
} else if (interval_frames >= 8) {
interval_frames = 8;
} else if (interval_frames >= 4) {
interval_frames = 4;
} else if (interval_frames >= 2) {
interval_frames = 2;
} else if (interval_frames >= 1) {
interval_frames = 1;
}
ep_char->periodic.interval = interval_frames;
//We are the Nth pipe to be allocated. Use N as a phase offset
ep_char->periodic.phase_offset_frames = pipe_idx & (XFER_LIST_LEN_ISOC - 1);
}else {
ep_char->periodic.interval = 0;
ep_char->periodic.phase_offset_frames = 0;
}
}
// ---------------------- Commands -------------------------
static esp_err_t _pipe_cmd_halt(pipe_t *pipe)
{
esp_err_t ret;
//If pipe is already halted, just return.
if (pipe->state == HCD_PIPE_STATE_HALTED) {
ret = ESP_OK;
goto exit;
}
//If the pipe's port is invalid, we just mark the pipe as halted without needing to halt the underlying channel
if (pipe->port->flags.conn_dev_ena //Skip halting the underlying channel if the port is invalid
&& !usbh_hal_chan_request_halt(pipe->chan_obj)) { //Check if the channel is already halted
//Channel is not halted, we need to request and wait for a haltWe need to wait for channel to be halted.
pipe->cs_flags.waiting_halt = 1;
_internal_pipe_event_wait(pipe);
//State should have been updated in the ISR
assert(pipe->state == HCD_PIPE_STATE_HALTED);
} else {
//We are already halted, just need to update the state
usbh_hal_chan_mark_halted(pipe->chan_obj);
pipe->state = HCD_PIPE_STATE_HALTED;
}
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _pipe_cmd_flush(pipe_t *pipe)
{
esp_err_t ret;
//The pipe must be halted in order to be flushed
if (pipe->state != HCD_PIPE_STATE_HALTED) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//If the port is still valid, we are canceling transfers. Otherwise, we are flushing due to a port error
bool canceled = pipe->port->flags.conn_dev_ena;
bool call_pipe_cb;
//Flush any filled buffers
call_pipe_cb = _buffer_flush_all(pipe, canceled);
//Move all URBs from the pending tailq to the done tailq
if (pipe->num_urb_pending > 0) {
//Process all remaining pending URBs
urb_t *urb;
TAILQ_FOREACH(urb, &pipe->pending_urb_tailq, tailq_entry) {
//Update the URB's current state
urb->hcd_var = URB_HCD_STATE_DONE;
//URBs were never executed, Update the actual_num_bytes and status
urb->transfer.actual_num_bytes = 0;
urb->transfer.status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
if (pipe->ep_char.type == USB_PRIV_XFER_TYPE_ISOCHRONOUS) {
//Update the URB's isoc packet descriptors as well
for (int pkt_idx = 0; pkt_idx < urb->transfer.num_isoc_packets; pkt_idx++) {
urb->transfer.isoc_packet_desc[pkt_idx].actual_num_bytes = 0;
urb->transfer.isoc_packet_desc[pkt_idx].status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
}
}
}
//Concatenated pending tailq to the done tailq
TAILQ_CONCAT(&pipe->done_urb_tailq, &pipe->pending_urb_tailq, tailq_entry);
pipe->num_urb_done += pipe->num_urb_pending;
pipe->num_urb_pending = 0;
call_pipe_cb = true;
}
if (call_pipe_cb) {
//One or more URBs can be dequeued as a result of the flush. We need to call the callback
HCD_EXIT_CRITICAL();
pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_URB_DONE, pipe->callback_arg, false);
HCD_ENTER_CRITICAL();
}
ret = ESP_OK;
exit:
return ret;
}
static esp_err_t _pipe_cmd_clear(pipe_t *pipe)
{
esp_err_t ret;
//Pipe must be in the halted state in order to be made active, and there must be an enabled device on the port
if (pipe->state != HCD_PIPE_STATE_HALTED || !pipe->port->flags.conn_dev_ena) {
ret = ESP_ERR_INVALID_STATE;
goto exit;
}
//Update the pipe's state
pipe->state = HCD_PIPE_STATE_ACTIVE;
if (pipe->num_urb_pending > 0) {
//Fill as many buffers as possible
while (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
}
//Execute any filled buffers
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
ret = ESP_OK;
exit:
return ret;
}
// ----------------------- Public --------------------------
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl)
{
HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG);
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
//Can only allocate a pipe if the target port is initialized and connected to an enabled device
HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE);
usb_speed_t port_speed = port->speed;
const fifo_mps_limits_t *mps_limits = port->fifo_mps_limits;
int pipe_idx = port->num_pipes_idle + port->num_pipes_queued;
HCD_EXIT_CRITICAL();
usb_transfer_type_t type;
bool is_default;
if (pipe_config->ep_desc == NULL) {
type = USB_TRANSFER_TYPE_CTRL;
is_default = true;
} else {
type = USB_EP_DESC_GET_XFERTYPE(pipe_config->ep_desc);
is_default = false;
}
//Check if pipe configuration can be supported
if (!pipe_alloc_check_args(pipe_config, port_speed, mps_limits, type, is_default)) {
return ESP_ERR_NOT_SUPPORTED;
}
esp_err_t ret;
//Allocate the pipe resources
pipe_t *pipe = calloc(1, sizeof(pipe_t));
usbh_hal_chan_t *chan_obj = calloc(1, sizeof(usbh_hal_chan_t));
dma_buffer_block_t *buffers[NUM_BUFFERS] = {0};
if (pipe == NULL|| chan_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
for (int i = 0; i < NUM_BUFFERS; i++) {
buffers[i] = buffer_block_alloc(type);
if (buffers[i] == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
}
//Initialize pipe object
TAILQ_INIT(&pipe->pending_urb_tailq);
TAILQ_INIT(&pipe->done_urb_tailq);
for (int i = 0; i < NUM_BUFFERS; i++) {
pipe->buffers[i] = buffers[i];
}
pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS;
pipe->port = port;
pipe->chan_obj = chan_obj;
usbh_hal_ep_char_t ep_char;
pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char);
memcpy(&pipe->ep_char, &ep_char, sizeof(usbh_hal_ep_char_t));
pipe->state = HCD_PIPE_STATE_ACTIVE;
pipe->callback = pipe_config->callback;
pipe->callback_arg = pipe_config->callback_arg;
pipe->context = pipe_config->context;
//Allocate channel
HCD_ENTER_CRITICAL();
if (!port->initialized || !port->flags.conn_dev_ena) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto err;
}
bool chan_allocated = usbh_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe);
if (!chan_allocated) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_NOT_SUPPORTED;
goto err;
}
usbh_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
//Add the pipe to the list of idle pipes in the port object
TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry);
port->num_pipes_idle++;
HCD_EXIT_CRITICAL();
*pipe_hdl = (hcd_pipe_handle_t)pipe;
return ESP_OK;
err:
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(buffers[i]);
}
free(chan_obj);
free(pipe);
return ret;
}
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check that all URBs have been removed and pipe has no pending events
HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing
&& !pipe->cs_flags.has_urb
&& !pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
//Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued URBs)
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
usbh_hal_chan_free(pipe->port->hal, pipe->chan_obj);
HCD_EXIT_CRITICAL();
//Free pipe resources
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(pipe->buffers[i]);
}
free(pipe->chan_obj);
free(pipe);
return ESP_OK;
}
esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->ep_char.mps = mps;
//Update the underlying channel's registers
usbh_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->ep_char.dev_addr = dev_addr;
//Update the underlying channel's registers
usbh_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_update_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_callback_t callback, void *user_arg)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->callback = callback;
pipe->callback_arg = user_arg;
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_set_persist_reset(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing &&
!pipe->cs_flags.has_urb &&
!pipe->cs_flags.reset_lock,
ESP_ERR_INVALID_STATE);
pipe->cs_flags.persist = 1;
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = pipe->context;
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)
{
hcd_pipe_state_t ret;
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
ret = pipe->state;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
esp_err_t ret = ESP_OK;
HCD_ENTER_CRITICAL();
//Cannot execute pipe commands the pipe is already executing a command, or if the pipe or its port are no longer valid
if (pipe->cs_flags.reset_lock) {
ret = ESP_ERR_INVALID_STATE;
} else {
pipe->cs_flags.pipe_cmd_processing = 1;
switch (command) {
case HCD_PIPE_CMD_HALT: {
ret = _pipe_cmd_halt(pipe);
break;
}
case HCD_PIPE_CMD_FLUSH: {
ret = _pipe_cmd_flush(pipe);
break;
}
case HCD_PIPE_CMD_CLEAR: {
ret = _pipe_cmd_clear(pipe);
break;
}
}
pipe->cs_flags.pipe_cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
hcd_pipe_event_t ret;
HCD_ENTER_CRITICAL();
ret = pipe->last_event;
pipe->last_event = HCD_PIPE_EVENT_NONE;
HCD_EXIT_CRITICAL();
return ret;
}
// ------------------------------------------------- Buffer Control ----------------------------------------------------
static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_transfer_t *transfer)
{
//Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the URB's data)
usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer;
bool data_stg_in = (setup_pkt->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN);
bool data_stg_skip = (setup_pkt->wLength == 0);
//Fill setup stage
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, sizeof(usb_setup_packet_t),
USBH_HAL_XFER_DESC_FLAG_SETUP | USBH_HAL_XFER_DESC_FLAG_HOC);
//Fill data stage
if (data_stg_skip) {
//Not data stage. Fill with an empty descriptor
usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, 1);
} else {
//Fill data stage. Note that we still fill with transfer->num_bytes instead of setup_pkt->wLength as it's possible to require more bytes than wLength
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, transfer->data_buffer + sizeof(usb_setup_packet_t), transfer->num_bytes - sizeof(usb_setup_packet_t),
((data_stg_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0) | USBH_HAL_XFER_DESC_FLAG_HOC);
}
//Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN.
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0,
((data_stg_in && !data_stg_skip) ? 0 : USBH_HAL_XFER_DESC_FLAG_IN) | USBH_HAL_XFER_DESC_FLAG_HOC);
//Update buffer flags
buffer->flags.ctrl.data_stg_in = data_stg_in;
buffer->flags.ctrl.data_stg_skip = data_stg_skip;
buffer->flags.ctrl.cur_stg = 0;
}
static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
{
//Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
//Minor optimization: Do the mod operation last
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (transfer->num_bytes % mps == 0);
if (is_in) {
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes,
USBH_HAL_XFER_DESC_FLAG_IN | USBH_HAL_XFER_DESC_FLAG_HOC);
} else { //OUT
if (zero_len_packet) {
//Adding a zero length packet, so two descriptors are used.
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, 0);
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USBH_HAL_XFER_DESC_FLAG_HOC);
} else {
//Zero length packet not required. One descriptor is enough
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USBH_HAL_XFER_DESC_FLAG_HOC);
}
}
//Update buffer flags
buffer->flags.bulk.zero_len_packet = zero_len_packet;
}
static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps)
{
int num_qtds;
int mod_mps = transfer->num_bytes % mps;
//Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS
bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (mod_mps == 0);
if (is_in) {
assert(mod_mps == 0); //IN transfers MUST be integer multiple of MPS
num_qtds = transfer->num_bytes / mps; //Can just floor divide as it's already multiple of MPS
} else {
num_qtds = transfer->num_bytes / mps; //Floor division to get the number of MPS sized packets
if (mod_mps > 0) {
num_qtds++; //Add a short packet for the remainder
}
}
assert((zero_len_packet) ? num_qtds + 1 : num_qtds <= XFER_LIST_LEN_INTR); //Check that the number of QTDs doesn't exceed the QTD list's length
uint32_t xfer_desc_flags = (is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0;
int bytes_filled = 0;
//Fill all but last QTD
for (int i = 0; i < num_qtds - 1; i++) {
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &transfer->data_buffer[bytes_filled], mps, xfer_desc_flags);
bytes_filled += mps;
}
//Fill last QTD and zero length packet
if (zero_len_packet) {
//Fill in last data packet without HOC flag
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
xfer_desc_flags);
//HOC flag goes to zero length packet instead
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds, NULL, 0, USBH_HAL_XFER_DESC_FLAG_HOC);
} else {
//Zero length packet not required. Fill in last QTD with HOC flag
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled,
xfer_desc_flags | USBH_HAL_XFER_DESC_FLAG_HOC);
}
//Update buffer members and flags
buffer->flags.intr.num_qtds = num_qtds;
buffer->flags.intr.zero_len_packet = zero_len_packet;
}
static inline void _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps, int interval, int start_idx)
{
assert(interval > 0);
int total_num_desc = transfer->num_isoc_packets * interval;
assert(total_num_desc <= XFER_LIST_LEN_ISOC);
int desc_idx = start_idx;
int bytes_filled = 0;
//For each packet, fill in a descriptor and a interval-1 blank descriptor after it
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
int xfer_len = transfer->isoc_packet_desc[pkt_idx].num_bytes;
uint32_t flags = (is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0;
if (pkt_idx == transfer->num_isoc_packets - 1) {
//Last packet, set the the HOC flag
flags |= USBH_HAL_XFER_DESC_FLAG_HOC;
}
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &transfer->data_buffer[bytes_filled], xfer_len, flags);
bytes_filled += xfer_len;
if (++desc_idx >= XFER_LIST_LEN_ISOC) {
desc_idx = 0;
}
//Clear descriptors for unscheduled frames
for (int i = 0; i < interval - 1; i++) {
usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
if (++desc_idx >= XFER_LIST_LEN_ISOC) {
desc_idx = 0;
}
}
}
//Update buffer members and flags
buffer->flags.isoc.num_qtds = total_num_desc;
buffer->flags.isoc.interval = interval;
buffer->flags.isoc.start_idx = start_idx;
buffer->flags.isoc.next_start_idx = desc_idx;
}
static void _buffer_fill(pipe_t *pipe)
{
//Get an URB from the pending tailq
urb_t *urb = TAILQ_FIRST(&pipe->pending_urb_tailq);
assert(pipe->num_urb_pending > 0 && urb != NULL);
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending--;
//Select the inactive buffer
assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS);
dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx];
buffer_to_fill->status_flags.val = 0; //Clear the buffer's status flags
assert(buffer_to_fill->urb == NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
usb_transfer_t *transfer = &urb->transfer;
switch (pipe->ep_char.type) {
case USB_PRIV_XFER_TYPE_CTRL: {
_buffer_fill_ctrl(buffer_to_fill, transfer);
break;
}
case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
uint32_t start_idx;
if (pipe->multi_buffer_control.buffer_num_to_exec == 0) {
//There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule
uint32_t cur_frame_num = usbh_hal_port_get_cur_frame_num(pipe->port->hal);
uint32_t cur_mod_idx_no_offset = (cur_frame_num - pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1); //Get the modulated index (i.e., the Nth desc in the descriptor list)
//This is the non-offset modulated QTD index of the last scheduled interval
uint32_t last_interval_mod_idx_no_offset = (cur_mod_idx_no_offset / pipe->ep_char.periodic.interval) * pipe->ep_char.periodic.interval; //Floor divide and the multiply again
uint32_t next_interval_idx_no_offset = (last_interval_mod_idx_no_offset + pipe->ep_char.periodic.interval);
//We want at least a half interval or 2 frames of buffer space
if (next_interval_idx_no_offset - cur_mod_idx_no_offset > (pipe->ep_char.periodic.interval / 2)
&& next_interval_idx_no_offset - cur_mod_idx_no_offset >= 2) {
start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
} else {
//Not enough time until the next schedule, add another interval to it.
start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.interval + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
}
} else {
//Start index is based on previously filled buffer
uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1);
dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx];
start_idx = prev_filled_buffer->flags.isoc.next_start_idx;
}
_buffer_fill_isoc(buffer_to_fill, transfer, is_in, mps, (int)pipe->ep_char.periodic.interval, start_idx);
break;
}
case USB_PRIV_XFER_TYPE_BULK: {
_buffer_fill_bulk(buffer_to_fill, transfer, is_in, mps);
break;
}
case USB_PRIV_XFER_TYPE_INTR: {
_buffer_fill_intr(buffer_to_fill, transfer, is_in, mps);
break;
}
default: {
abort();
break;
}
}
buffer_to_fill->urb = urb;
urb->hcd_var = URB_HCD_STATE_INFLIGHT;
//Update multi buffer flags
pipe->multi_buffer_control.wr_idx++;
pipe->multi_buffer_control.buffer_num_to_fill--;
pipe->multi_buffer_control.buffer_num_to_exec++;
}
static void _buffer_exec(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0);
dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx];
assert(buffer_to_exec->urb != NULL);
uint32_t start_idx;
int desc_list_len;
switch (pipe->ep_char.type) {
case USB_PRIV_XFER_TYPE_CTRL: {
start_idx = 0;
desc_list_len = XFER_LIST_LEN_CTRL;
//Set the channel's direction to OUT and PID to 0 respectively for the the setup stage
usbh_hal_chan_set_dir(pipe->chan_obj, false); //Setup stage is always OUT
usbh_hal_chan_set_pid(pipe->chan_obj, 0); //Setup stage always has a PID of DATA0
break;
}
case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
start_idx = buffer_to_exec->flags.isoc.start_idx;
desc_list_len = XFER_LIST_LEN_ISOC;
break;
}
case USB_PRIV_XFER_TYPE_BULK: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1;
break;
}
case USB_PRIV_XFER_TYPE_INTR: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.intr.zero_len_packet) ? buffer_to_exec->flags.intr.num_qtds + 1 : buffer_to_exec->flags.intr.num_qtds;
break;
}
default: {
start_idx = 0;
desc_list_len = 0;
abort();
break;
}
}
//Update buffer and multi buffer flags
buffer_to_exec->status_flags.executing = 1;
pipe->multi_buffer_control.buffer_is_executing = 1;
usbh_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx);
}
static void _buffer_exec_cont(pipe_t *pipe)
{
//This should only ever be called on control transfers
assert(pipe->ep_char.type == USB_PRIV_XFER_TYPE_CTRL);
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
bool next_dir_is_in;
int next_pid;
assert(buffer_inflight->flags.ctrl.cur_stg != 2);
if (buffer_inflight->flags.ctrl.cur_stg == 0) { //Just finished control stage
if (buffer_inflight->flags.ctrl.data_stg_skip) {
//Skipping data stage. Go straight to status stage
next_dir_is_in = true; //With no data stage, status stage must be IN
next_pid = 1; //Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2; //Skip over the null descriptor representing the skipped data stage
} else {
//Go to data stage
next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in;
next_pid = 1; //Data stage always starts with a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 1;
}
} else { //cur_stg == 1. //Just finished data stage. Go to status stage
next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; //Status stage is always the opposite direction of data stage
next_pid = 1; //Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2;
}
//Continue the control transfer
usbh_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in);
usbh_hal_chan_set_pid(pipe->chan_obj, next_pid);
usbh_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg);
}
static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
//Update URB's actual number of bytes
if (buffer->flags.ctrl.data_stg_skip) {
//There was no data stage. Just set the actual length to the size of the setup packet
transfer->actual_num_bytes = sizeof(usb_setup_packet_t);
} else {
//Parse the data stage for the remaining length
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status);
assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= (transfer->num_bytes - sizeof(usb_setup_packet_t)));
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
}
//Update URB status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
//Clear the descriptor list
memset(buffer->xfer_desc_list, XFER_LIST_LEN_CTRL, sizeof(usbh_ll_dma_qtd_t));
}
static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
//Update URB's actual number of bytes
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status);
assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= transfer->num_bytes);
transfer->actual_num_bytes = transfer->num_bytes - rem_len;
//Update URB's status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
//Clear the descriptor list
memset(buffer->xfer_desc_list, XFER_LIST_LEN_BULK, sizeof(usbh_ll_dma_qtd_t));
}
static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
int intr_stop_idx = buffer->status_flags.stop_idx;
if (is_in) {
if (intr_stop_idx > 0) { //This is an early stop (short packet)
assert(intr_stop_idx <= buffer->flags.intr.num_qtds);
int rem_len;
int desc_status;
for (int i = 0; i < intr_stop_idx - 1; i++) { //Check all packets before the short
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
}
//Check the short packet
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status);
assert(rem_len > 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
//Update actual bytes
transfer->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len);
} else {
//Check that all but the last packet transmitted MPS
for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) {
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
}
//Check the last packet
int last_packet_rem_len;
int last_packet_desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status);
assert(last_packet_desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
//All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes
transfer->actual_num_bytes = transfer->num_bytes - last_packet_rem_len;
}
} else {
//OUT INTR transfers can only complete successfully if all packets have been transmitted. Double check
for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) {
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
}
transfer->actual_num_bytes = transfer->num_bytes;
}
//Update URB's status
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
//Clear the descriptor list
memset(buffer->xfer_desc_list, XFER_LIST_LEN_INTR, sizeof(usbh_ll_dma_qtd_t));
}
static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in)
{
usb_transfer_t *transfer = &buffer->urb->transfer;
int desc_idx = buffer->flags.isoc.start_idx; //Descriptor index tracks which descriptor in the QTD list
int total_actual_num_bytes = 0;
for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) {
//Clear the filled descriptor
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status);
usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
assert(rem_len == 0 || is_in);
assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS || USBH_HAL_XFER_DESC_STS_NOT_EXECUTED);
assert(rem_len <= transfer->isoc_packet_desc[pkt_idx].num_bytes); //Check for DMA errata
//Update ISO packet actual length and status
transfer->isoc_packet_desc[pkt_idx].actual_num_bytes = transfer->isoc_packet_desc[pkt_idx].num_bytes - rem_len;
total_actual_num_bytes += transfer->isoc_packet_desc[pkt_idx].actual_num_bytes;
transfer->isoc_packet_desc[pkt_idx].status = (desc_status == USBH_HAL_XFER_DESC_STS_NOT_EXECUTED) ? USB_TRANSFER_STATUS_SKIPPED : USB_TRANSFER_STATUS_COMPLETED;
//A descriptor is also allocated for unscheduled frames. We need to skip over them
desc_idx += buffer->flags.isoc.interval;
if (desc_idx >= XFER_LIST_LEN_INTR) {
desc_idx -= XFER_LIST_LEN_INTR;
}
}
//Write back the actual_num_bytes and statue of entire transfer
assert(total_actual_num_bytes <= transfer->num_bytes);
transfer->actual_num_bytes = total_actual_num_bytes;
transfer->status = USB_TRANSFER_STATUS_COMPLETED;
}
static inline void _buffer_parse_error(dma_buffer_block_t *buffer)
{
//The URB had an error in one of its packet, or a port error), so we the entire URB an error.
usb_transfer_t *transfer = &buffer->urb->transfer;
transfer->actual_num_bytes = 0;
//Update the overall status of URB. Status will depend on the pipe_event
switch (buffer->status_flags.pipe_event) {
case HCD_PIPE_EVENT_NONE:
transfer->status = (buffer->status_flags.was_canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
break;
case HCD_PIPE_EVENT_ERROR_XFER:
transfer->status = USB_TRANSFER_STATUS_ERROR;
break;
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
transfer->status = USB_TRANSFER_STATUS_OVERFLOW;
break;
case HCD_PIPE_EVENT_ERROR_STALL:
transfer->status = USB_TRANSFER_STATUS_STALL;
break;
default:
//HCD_PIPE_EVENT_URB_DONE and HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL should not occur here
abort();
break;
}
}
static void _buffer_parse(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.buffer_num_to_parse > 0);
dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx];
assert(buffer_to_parse->urb != NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
//Parsing the buffer will update the buffer's corresponding URB
if (buffer_to_parse->status_flags.pipe_event == HCD_PIPE_EVENT_URB_DONE) {
//URB was successful
switch (pipe->ep_char.type) {
case USB_PRIV_XFER_TYPE_CTRL: {
_buffer_parse_ctrl(buffer_to_parse);
break;
}
case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
_buffer_parse_isoc(buffer_to_parse, is_in);
break;
}
case USB_PRIV_XFER_TYPE_BULK: {
_buffer_parse_bulk(buffer_to_parse);
break;
}
case USB_PRIV_XFER_TYPE_INTR: {
_buffer_parse_intr(buffer_to_parse, is_in, mps);
break;
}
default: {
abort();
break;
}
}
} else {
//URB failed
_buffer_parse_error(buffer_to_parse);
}
urb_t *urb = buffer_to_parse->urb;
urb->hcd_var = URB_HCD_STATE_DONE;
buffer_to_parse->urb = NULL;
buffer_to_parse->flags.val = 0; //Clear flags
//Move the URB to the done tailq
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done++;
//Update multi buffer flags
pipe->multi_buffer_control.fr_idx++;
pipe->multi_buffer_control.buffer_num_to_parse--;
pipe->multi_buffer_control.buffer_num_to_fill++;
}
static bool _buffer_flush_all(pipe_t *pipe, bool canceled)
{
int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec;
for (int i = 0; i < cur_num_to_mark_done; i++) {
//Mark any filled buffers as done
_buffer_done(pipe, 0, HCD_PIPE_EVENT_NONE, canceled);
}
int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse;
for (int i = 0; i < cur_num_to_parse; i++) {
_buffer_parse(pipe);
}
//At this point, there should be no more filled buffers. Only URBs in the pending or done tailq
return (cur_num_to_parse > 0);
}
// ---------------------------------------------- HCD Transfer Descriptors ---------------------------------------------
// ----------------------- Public --------------------------
esp_err_t hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl, urb_t *urb)
{
//Check that URB has not already been enqueued
HCD_CHECK(urb->hcd_ptr == NULL && urb->hcd_var == URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check that pipe and port are in the correct state to receive URBs
HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED //The pipe's port must be in the correct state
&& pipe->state == HCD_PIPE_STATE_ACTIVE //The pipe must be in the correct state
&& !pipe->cs_flags.pipe_cmd_processing //Pipe cannot currently be processing a pipe command
&& !pipe->cs_flags.reset_lock, //Pipe cannot be persisting through a port reset
ESP_ERR_INVALID_STATE);
//Use the URB's reserved_ptr to store the pipe's
urb->hcd_ptr = (void *)pipe;
//Add the URB to the pipe's pending tailq
urb->hcd_var = URB_HCD_STATE_PENDING;
TAILQ_INSERT_TAIL(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending++;
//use the URB's reserved_flags to store the URB's current state
if (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
if (!pipe->cs_flags.has_urb) {
//This is the first URB to be enqueued into the pipe. Move the pipe to the list of active pipes
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
pipe->port->num_pipes_queued++;
pipe->cs_flags.has_urb = 1;
}
HCD_EXIT_CRITICAL();
return ESP_OK;
}
urb_t *hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
urb_t *urb;
HCD_ENTER_CRITICAL();
if (pipe->num_urb_done > 0) {
urb = TAILQ_FIRST(&pipe->done_urb_tailq);
TAILQ_REMOVE(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done--;
//Check the URB's reserved fields then reset them
assert(urb->hcd_ptr == (void *)pipe && urb->hcd_var == URB_HCD_STATE_DONE); //The URB's reserved field should have been set to this pipe
urb->hcd_ptr = NULL;
urb->hcd_var = URB_HCD_STATE_IDLE;
if (pipe->cs_flags.has_urb
&& pipe->num_urb_pending == 0 && pipe->num_urb_done == 0
&& pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) {
//This pipe has no more enqueued URBs. Move the pipe to the list of idle pipes
TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle++;
pipe->port->num_pipes_queued--;
pipe->cs_flags.has_urb = 0;
}
} else {
//No more URBs to dequeue from this pipe
urb = NULL;
}
HCD_EXIT_CRITICAL();
return urb;
}
esp_err_t hcd_urb_abort(urb_t *urb)
{
HCD_ENTER_CRITICAL();
//Check that the URB was enqueued to begin with
HCD_CHECK_FROM_CRIT(urb->hcd_ptr != NULL && urb->hcd_var != URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE);
if (urb->hcd_var == URB_HCD_STATE_PENDING) {
//URB has not been executed so it can be aborted
pipe_t *pipe = (pipe_t *)urb->hcd_ptr;
//Remove it form the pending queue
TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry);
pipe->num_urb_pending--;
//Add it to the done queue
TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry);
pipe->num_urb_done++;
//Update the URB's current state, status, and actual length
urb->hcd_var = URB_HCD_STATE_DONE;
if (urb->transfer.num_isoc_packets == 0) {
urb->transfer.actual_num_bytes = 0;
urb->transfer.status = USB_TRANSFER_STATUS_CANCELED;
} else {
//If this is an ISOC URB, update the ISO packet descriptors instead
for (int i = 0; i < urb->transfer.num_isoc_packets; i++) {
urb->transfer.isoc_packet_desc[i].actual_num_bytes = 0;
urb->transfer.isoc_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED;
}
}
} // Otherwise, the URB is in-flight or already done thus cannot be aborted
HCD_EXIT_CRITICAL();
return ESP_OK;
}