esp-idf/components/usb/hcd.c

2621 wiersze
103 KiB
C

// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <string.h>
#include <sys/queue.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_heap_caps.h"
#include "esp_intr_alloc.h"
#include "esp_timer.h"
#include "esp_err.h"
#include "esp_rom_gpio.h"
#include "hal/usbh_hal.h"
#include "hal/usb_types_private.h"
#include "soc/gpio_pins.h"
#include "soc/gpio_sig_map.h"
#include "driver/periph_ctrl.h"
#include "usb.h"
#include "hcd.h"
// ----------------------------------------------------- Macros --------------------------------------------------------
// --------------------- Constants -------------------------
#define INIT_DELAY_MS 30 //A delay of at least 25ms to enter Host mode. Make it 30ms to be safe
#define DEBOUNCE_DELAY_MS 250 //A debounce delay of 250ms
#define RESET_HOLD_MS 30 //Spec requires at least 10ms. Make it 30ms to be safe
#define RESET_RECOVERY_MS 30 //Reset recovery delay of 10ms (make it 30 ms to be safe) to allow for connected device to recover (and for port enabled interrupt to occur)
#define RESUME_HOLD_MS 30 //Spec requires at least 20ms, Make it 30ms to be safe
#define RESUME_RECOVERY_MS 20 //Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP
#define CTRL_EP_MAX_MPS_LS 8 //Largest Maximum Packet Size for Low Speed control endpoints
#define CTRL_EP_MAX_MPS_FS 64 //Largest Maximum Packet Size for Full Speed control endpoints
#define NUM_PORTS 1 //The controller only has one port.
// ----------------------- Configs -------------------------
typedef struct {
int in_mps;
int non_periodic_out_mps;
int periodic_out_mps;
} fifo_mps_limits_t;
/**
* @brief Default FIFO sizes (see 2.1.2.4 for programming guide)
*
* RXFIFO
* - Recommended: ((LPS/4) * 2) + 2
* - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 48 - 48 = 104
* - Worst case can accommodate two packets of 204 bytes, or one packet of 408
* NPTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 3 packets: (64/4) * 3 = 48
* - Worst case can accommodate three packets of 64 bytes or one packet of 192
* PTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 3 packets: (64/4) * 3 = 48
* - Worst case can accommodate three packets of 64 bytes or one packet of 192
*/
const usbh_hal_fifo_config_t fifo_config_default = {
.rx_fifo_lines = 104,
.nptx_fifo_lines = 48,
.ptx_fifo_lines = 48,
};
const fifo_mps_limits_t mps_limits_default = {
.in_mps = 408,
.non_periodic_out_mps = 192,
.periodic_out_mps = 192,
};
/**
* @brief FIFO sizes that bias to giving RX FIFO more capacity
*
* RXFIFO
* - Recommended: ((LPS/4) * 2) + 2
* - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 32 - 16 = 152
* - Worst case can accommodate two packets of 300 bytes or one packet of 600 bytes
* NPTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 1 packets: (64/4) * 1 = 16
* - Worst case can accommodate one packet of 64 bytes
* PTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 3 packets: (64/4) * 2 = 32
* - Worst case can accommodate two packets of 64 bytes or one packet of 128
*/
const usbh_hal_fifo_config_t fifo_config_bias_rx = {
.rx_fifo_lines = 152,
.nptx_fifo_lines = 16,
.ptx_fifo_lines = 32,
};
const fifo_mps_limits_t mps_limits_bias_rx = {
.in_mps = 600,
.non_periodic_out_mps = 64,
.periodic_out_mps = 128,
};
/**
* @brief FIFO sizes that bias to giving Periodic TX FIFO more capacity (i.e., ISOC OUT)
*
* RXFIFO
* - Recommended: ((LPS/4) * 2) + 2
* - Actual: Assume LPS is 64, and 2 packets: ((64/4) * 2) + 2 = 34
* - Worst case can accommodate two packets of 64 bytes or one packet of 128
* NPTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Assume LPS is 64, and 1 packets: (64/4) * 1 = 16
* - Worst case can accommodate one packet of 64 bytes
* PTXFIFO
* - Recommended: (LPS/4) * 2
* - Actual: Whatever leftover size: USBH_HAL_FIFO_TOTAL_USABLE_LINES(200) - 34 - 16 = 150
* - Worst case can accommodate two packets of 300 bytes or one packet of 600 bytes
*/
const usbh_hal_fifo_config_t fifo_config_bias_ptx = {
.rx_fifo_lines = 34,
.nptx_fifo_lines = 16,
.ptx_fifo_lines = 150,
};
const fifo_mps_limits_t mps_limits_bias_ptx = {
.in_mps = 128,
.non_periodic_out_mps = 64,
.periodic_out_mps = 600,
};
#define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32
#define NUM_BUFFERS 2
#define XFER_LIST_LEN_CTRL 3 //One descriptor for each stage
#define XFER_LIST_LEN_BULK 2 //One descriptor for transfer, one to support an extra zero length packet
#define XFER_LIST_LEN_INTR 32
#define XFER_LIST_LEN_ISOC FRAME_LIST_LEN //Same length as the frame list makes it easier to schedule. Must be power of 2
// ------------------------ Flags --------------------------
/**
* @brief Bit masks for the HCD to use in the IRPs reserved_flags field
*
* The IRP object has a reserved_flags member for host stack's internal use. The following flags will be set in
* reserved_flags in order to keep track of state of an IRP within the HCD.
*/
#define IRP_STATE_IDLE 0x0 //The IRP is not enqueued in an HCD pipe
#define IRP_STATE_PENDING 0x1 //The IRP is enqueued and pending execution
#define IRP_STATE_INFLIGHT 0x2 //The IRP is currently in flight
#define IRP_STATE_DONE 0x3 //The IRP has completed execution or is retired, and is waiting to be dequeued
#define IRP_STATE_MASK 0x3 //Bit mask of all the IRP state flags
#define IRP_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~IRP_STATE_MASK) | state)
#define IRP_STATE_GET(reserved_flags) (reserved_flags & IRP_STATE_MASK)
// -------------------- Convenience ------------------------
#define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock)
#define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock)
#define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock)
#define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock)
#define HCD_CHECK(cond, ret_val) ({ \
if (!(cond)) { \
return (ret_val); \
} \
})
#define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \
if (!(cond)) { \
HCD_EXIT_CRITICAL(); \
return ret_val; \
} \
})
// ------------------------------------------------------ Types --------------------------------------------------------
typedef struct pipe_obj pipe_t;
typedef struct port_obj port_t;
/**
* @brief Object representing a single buffer of a pipe's multi buffer implementation
*/
typedef struct {
void *xfer_desc_list;
usb_irp_t *irp;
union {
struct {
uint32_t data_stg_in: 1; //Data stage of the control transfer is IN
uint32_t data_stg_skip: 1; //Control transfer has no data stage
uint32_t cur_stg: 2; //Index of the current stage (e.g., 0 is setup stage, 2 is status stage)
uint32_t reserved28: 28;
} ctrl; //Control transfer related
struct {
uint32_t zero_len_packet: 1; //Bulk transfer should add a zero length packet at the end regardless
uint32_t reserved31: 31;
} bulk; //Bulk transfer related
struct {
uint32_t num_qtds: 8; //Number of transfer descriptors filled
uint32_t reserved24: 24;
} intr; //Interrupt transfer related
struct {
uint32_t num_qtds: 8; //Number of transfer descriptors filled (including NULL descriptors)
uint32_t interval: 8; //Interval (in number of SOF i.e., ms)
uint32_t irp_start_idx: 8; //Index of the first transfer descriptor in the list
uint32_t next_irp_start_idx: 8; //Index for the first descriptor of the next buffer
} isoc;
uint32_t val;
} flags;
union {
struct {
uint32_t stop_idx: 8; //The descriptor index when the channel was halted
uint32_t executing: 1; //The buffer is currently executing
uint32_t error_occurred: 1; //An error occurred
uint32_t cancelled: 1; //The buffer was actively cancelled
uint32_t reserved5: 5;
hcd_pipe_state_t pipe_state: 8; //The pipe's state when the error occurred
hcd_pipe_event_t pipe_event: 8; //The pipe event when the error occurred
};
uint32_t val;
} status_flags; //Status flags for the buffer
} dma_buffer_block_t;
/**
* @brief Object representing a pipe in the HCD layer
*/
struct pipe_obj {
//IRP queueing related
TAILQ_HEAD(tailhead_irp_pending, usb_irp_obj) pending_irp_tailq;
TAILQ_HEAD(tailhead_irp_done, usb_irp_obj) done_irp_tailq;
int num_irp_pending;
int num_irp_done;
//Multi-buffer control
dma_buffer_block_t *buffers[NUM_BUFFERS]; //Double buffering scheme
union {
struct {
uint32_t buffer_num_to_fill: 2; //Number of buffers that can be filled
uint32_t buffer_num_to_exec: 2; //Number of buffers that are filled and need to be executed
uint32_t buffer_num_to_parse: 2;//Number of buffers completed execution and waiting to be parsed
uint32_t reserved2: 2;
uint32_t wr_idx: 1; //Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t rd_idx: 1; //Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t fr_idx: 1; //Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically
uint32_t buffer_is_executing: 1;//One of the buffers is in flight
uint32_t reserved20: 20;
};
uint32_t val;
} multi_buffer_control;
//HAL related
usbh_hal_chan_t *chan_obj;
usbh_hal_ep_char_t ep_char;
//Port related
port_t *port; //The port to which this pipe is routed through
TAILQ_ENTRY(pipe_obj) tailq_entry; //TailQ entry for port's list of pipes
//Pipe status/state/events related
hcd_pipe_state_t state;
hcd_pipe_event_t last_event;
TaskHandle_t task_waiting_pipe_notif; //Task handle used for internal pipe events
union {
struct {
uint32_t waiting_xfer_done: 1;
uint32_t paused: 1;
uint32_t pipe_cmd_processing: 1;
uint32_t is_active: 1;
uint32_t reserved28: 28;
};
uint32_t val;
} cs_flags;
//Pipe callback and context
hcd_pipe_isr_callback_t callback;
void *callback_arg;
void *context;
};
/**
* @brief Object representing a port in the HCD layer
*/
struct port_obj {
usbh_hal_context_t *hal;
void *frame_list;
//Pipes routed through this port
TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq;
TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq;
int num_pipes_idle;
int num_pipes_queued;
//Port status, state, and events
hcd_port_state_t state;
usb_speed_t speed;
hcd_port_event_t last_event;
TaskHandle_t task_waiting_port_notif; //Task handle used for internal port events
union {
struct {
uint32_t event_pending: 1; //The port has an event that needs to be handled
uint32_t event_processing: 1; //The port is current processing (handling) an event
uint32_t cmd_processing: 1; //Used to indicate command handling is ongoing
uint32_t waiting_all_pipes_pause: 1; //Waiting for all pipes routed through this port to be paused
uint32_t disable_requested: 1;
uint32_t conn_devc_ena: 1; //Used to indicate the port is connected to a device that has been reset
uint32_t periodic_scheduling_enabled: 1;
uint32_t reserved9: 9;
uint32_t num_pipes_waiting_pause: 16;
};
uint32_t val;
} flags;
bool initialized;
hcd_port_fifo_bias_t fifo_bias;
//Port callback and context
hcd_port_isr_callback_t callback;
void *callback_arg;
SemaphoreHandle_t port_mux;
void *context;
};
/**
* @brief Object representing the HCD
*/
typedef struct {
//Ports (Hardware only has one)
port_t *port_obj;
intr_handle_t isr_hdl;
} hcd_obj_t;
static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED;
static hcd_obj_t *s_hcd_obj = NULL; //Note: "s_" is for the static pointer
// ------------------------------------------------- Forward Declare ---------------------------------------------------
// ------------------- Buffer Control ----------------------
/**
* @brief Check if an inactive buffer can be filled with a pending IRP
*
* @param pipe Pipe object
* @return true There are one or more pending IRPs, and the inactive buffer is yet to be filled
* @return false Otherwise
*/
static inline bool _buffer_can_fill(pipe_t *pipe)
{
//We can only fill if there are pending IRPs and at least one unfilled buffer
if (pipe->num_irp_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Fill an empty buffer with
*
* This function will:
* - Remove an IRP from the pending tailq
* - Fill that IRP into the inactive buffer
*
* @note _buffer_can_fill() must return true before calling this function
*
* @param pipe Pipe object
*/
static void _buffer_fill(pipe_t *pipe);
/**
* @brief Check if there are more filled buffers than can be executed
*
* @param pipe Pipe object
* @return true There are more filled buffers to be executed
* @return false No more buffers to execute
*/
static inline bool _buffer_can_exec(pipe_t *pipe)
{
//We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution
if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Execute the next filled buffer
*
* - Must have called _buffer_can_exec() before calling this function
* - Will start the execution of the buffer
*
* @param pipe Pipe object
*/
static void _buffer_exec(pipe_t *pipe);
/**
* @brief Check if a buffer as completed execution
*
* This should only be called after receiving a USBH_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually
* done. Buffers that aren't complete (such as Control transfers) will be continued automatically.
*
* @param pipe Pipe object
* @return true Buffer complete
* @return false Buffer not complete
*/
static bool _buffer_check_done(pipe_t *pipe);
/**
* @brief Marks the last executed buffer as complete
*
* This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done()
*
* @param pipe Pipe object
* @param stop_idx Descriptor index when the buffer stopped execution
*/
static inline void _buffer_done(pipe_t *pipe, int stop_idx)
{
//Store the stop_idx for later parsing
dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
buffer_done->status_flags.executing = 0;
buffer_done->status_flags.error_occurred = 0;
buffer_done->status_flags.stop_idx = stop_idx;
pipe->multi_buffer_control.rd_idx++;
pipe->multi_buffer_control.buffer_num_to_exec--;
pipe->multi_buffer_control.buffer_num_to_parse++;
pipe->multi_buffer_control.buffer_is_executing = 0;
}
/**
* @brief Marks the last executed buffer as complete due to an error
*
* This should be called on a pipe that has received a USBH_HAL_CHAN_EVENT_ERROR event
*
* @param pipe Pipe object
* @param stop_idx Descriptor index when the buffer stopped execution
* @param pipe_state State of the pipe after the error
* @param pipe_event Error event
* @param cancelled Whether the pipe stopped due to cancellation
*/
static inline void _buffer_done_error(pipe_t *pipe, int stop_idx, hcd_pipe_state_t pipe_state, hcd_pipe_event_t pipe_event, bool cancelled)
{
//Mark the buffer as erroneous for later parsing
dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx];
buffer_done->status_flags.executing = 0;
buffer_done->status_flags.error_occurred = 1;
buffer_done->status_flags.cancelled = cancelled;
buffer_done->status_flags.stop_idx = stop_idx;
buffer_done->status_flags.pipe_state = pipe_state;
buffer_done->status_flags.pipe_event = pipe_event;
pipe->multi_buffer_control.rd_idx++;
pipe->multi_buffer_control.buffer_num_to_exec--;
pipe->multi_buffer_control.buffer_num_to_parse++;
pipe->multi_buffer_control.buffer_is_executing = 0;
}
/**
* @brief Checks if a pipe has one or more completed buffers to parse
*
* @param pipe Pipe object
* @return true There are one or more buffers to parse
* @return false There are no more buffers to parse
*/
static inline bool _buffer_can_parse(pipe_t *pipe)
{
if (pipe->multi_buffer_control.buffer_num_to_parse > 0) {
return true;
} else {
return false;
}
}
/**
* @brief Parse a completed buffer
*
* This function will:
* - Parse the results of an IRP from a completed buffer
* - Put the IRP into the done tailq
*
* @note This function should only be called on the completion of a buffer
*
* @param pipe Pipe object
* @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the IRP. Set to 0 otherwise
*/
static void _buffer_parse(pipe_t *pipe);
/**
* @brief Marks all buffers pending execution as completed, then parses those buffers
*
* @note This should only be called on pipes do not have any currently executing buffers.
*
* @param pipe Pipe object
* @param cancelled Whether this flush is due to cancellation
*/
static void _buffer_flush_all(pipe_t *pipe, bool cancelled);
// ------------------------ Pipe ---------------------------
/**
* @brief Wait until a pipe's in-flight IRP is done
*
* If the pipe has an in-flight IRP, this function will block until it is done (via a internal pipe event).
* If the pipe has no in-flight IRP, this function do nothing and return immediately.
* If the pipe's state changes unexpectedly, this function will return false.
*
* Also parses all buffers on exit
*
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param pipe Pipe object
* @return true Pipes in-flight IRP is done
* @return false Pipes state unexpectedly changed
*/
static bool _pipe_wait_done(pipe_t *pipe);
/**
* @brief Retires all IRPs (those that were previously in-flight or pending)
*
* Retiring all IRPs will result in any pending IRP being moved to the done tailq. This function will update the IPR
* status of each IRP.
* - If the retiring is self-initiated (i.e., due to a pipe command), the IRP status will be set to USB_TRANSFER_STATUS_CANCELED.
* - If the retiring is NOT self-initiated (i.e., the pipe is no longer valid), the IRP status will be set to USB_TRANSFER_STATUS_NO_DEVICE
*
* Entry:
* - There can be no in-flight IRP (must already be parsed and returned to done queue)
* - All buffers must be parsed
* Exit:
* - If there was an in-flight IRP, it is parsed and returned to the done queue
* - If there are any pending IRPs:
* - They are moved to the done tailq
*
* @param pipe Pipe object
* @param cancelled Are we actively Pipe retire is initialized by the user due to a command, thus IRP are
* actively cancelled.
*/
static void _pipe_retire(pipe_t *pipe, bool self_initiated);
/**
* @brief Decode a HAL channel error to the corresponding pipe event
*
* @param chan_error The HAL channel error
* @return hcd_pipe_event_t The corresponding pipe error event
*/
static inline hcd_pipe_event_t pipe_decode_error_event(usbh_hal_chan_error_t chan_error);
// ------------------------ Port ---------------------------
/**
* @brief Invalidates all the pipes routed through a port
*
* This should be called when port or its connected device is no longer valid (e.g., the port is suddenly reset/disabled
* or the device suddenly disconnects)
*
* @note This function may run one or more callbacks, and will exit and enter the critical section to do so
*
* Entry:
* - The port or its connected device is no longer valid. This guarantees that none of the pipes will be transferring
* Exit:
* - Each pipe will have any pending IRPs moved to their respective done tailq
* - Each pipe will be put into the invalid state
* - Generate a HCD_PIPE_EVENT_INVALID event on each pipe and run their respective callbacks
*
* @param port Port object
*/
static void _port_invalidate_all_pipes(port_t *port);
/**
* @brief Pause all pipes routed through a port
*
* Call this before attempting to reset or suspend a port
*
* Entry:
* - The port is in the HCD_PORT_STATE_ENABLED state (i.e., there is a connected device which has been reset)
* Exit:
* - All pipes routed through the port have either paused, or are waiting to complete their in-flight IRPs before pausing
* - If waiting for one or more pipes to pause, _internal_port_event_wait() must be called after this function returns
*
* @param port Port object
* @return true All pipes have been paused
* @return false Need to wait for one or more pipes to pause. Call _internal_port_event_wait() afterwards
*/
static bool _port_pause_all_pipes(port_t *port);
/**
* @brief Un-pause all pipes routed through a port
*
* Call this before after coming out of a port reset or resume.
*
* Entry:
* - The port is in the HCD_PORT_STATE_ENABLED state
* - All pipes are paused
* Exit:
* - All pipes un-paused. If those pipes have pending IRPs, they will be started.
*
* @param port Port object
*/
static void _port_unpause_all_pipes(port_t *port);
/**
* @brief Send a reset condition on a port's bus
*
* Entry:
* - The port must be in the HCD_PORT_STATE_ENABLED or HCD_PORT_STATE_DISABLED state
* Exit:
* - Reset condition sent on the port's bus
*
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
* @return true Reset condition successfully sent
* @return false Failed to send reset condition due to unexpected port state
*/
static bool _port_bus_reset(port_t *port);
/**
* @brief Send a suspend condition on a port's bus
*
* This function will first pause pipes routed through a port, and then send a suspend condition.
*
* Entry:
* - The port must be in the HCD_PORT_STATE_ENABLED state
* Exit:
* - All pipes paused and the port is put into the suspended state
*
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
* @return true Suspend condition successfully sent. Port is now in the HCD_PORT_STATE_SUSPENDED state
* @return false Failed to send a suspend condition due to unexpected port state
*/
static bool _port_bus_suspend(port_t *port);
/**
* @brief Send a resume condition on a port's bus
*
* This function will send a resume condition, and then un-pause all the pipes routed through a port
*
* Entry:
* - The port must be in the HCD_PORT_STATE_SUSPENDED state
* Exit:
* - The port is put into the enabled state and all pipes un-paused
*
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
* @return true Resume condition successfully sent. Port is now in the HCD_PORT_STATE_ENABLED state
* @return false Failed to send a resume condition due to unexpected port state.
*/
static bool _port_bus_resume(port_t *port);
/**
* @brief Disable a port
*
* Entry:
* - The port must be in the HCD_PORT_STATE_ENABLED or HCD_PORT_STATE_SUSPENDED state
* Exit:
* - All pipes paused (should already be paused if port was suspended), and the port is put into the disabled state.
*
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
* @return true Port successfully disabled
* @return false Port to disable port due to unexpected port state
*/
static bool _port_disable(port_t *port);
/**
* @brief Debounce port after a connection or disconnection event
*
* This function should be called after a port connection or disconnect event. This function will execute a debounce
* delay then check the actual connection/disconnections state.
*
* @param port Port object
* @return true A device is connected
* @return false No device connected
*/
static bool _port_debounce(port_t *port);
// ----------------------- Events --------------------------
/**
* @brief Wait for an internal event from a port
*
* @note For each port, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param port Port object
*/
static void _internal_port_event_wait(port_t *port);
/**
* @brief Notify (from an ISR context) the thread/task waiting for the internal port event
*
* @param port Port object
* @return true A yield is required
* @return false Whether a yield is required or not
*/
static bool _internal_port_event_notify_from_isr(port_t *port);
/**
* @brief Wait for an internal event from a particular pipe
*
* @note For each pipe, there can only be one thread/task waiting for an internal port event
* @note This function is blocking (will exit and re-enter the critical section to do so)
*
* @param pipe Pipe object
*/
static void _internal_pipe_event_wait(pipe_t *pipe);
/**
* @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event
*
* @param pipe Pipe object
* @param from_isr Whether this is called from an ISR or not
* @return true A yield is required
* @return false Whether a yield is required or not. Always false when from_isr is also false
*/
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr);
// ----------------------------------------------- Interrupt Handling --------------------------------------------------
// ------------------- Internal Event ----------------------
static void _internal_port_event_wait(port_t *port)
{
//There must NOT be another thread/task already waiting for an internal event
assert(port->task_waiting_port_notif == NULL);
port->task_waiting_port_notif = xTaskGetCurrentTaskHandle();
HCD_EXIT_CRITICAL();
//Wait to be notified from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
port->task_waiting_port_notif = NULL;
}
static bool _internal_port_event_notify_from_isr(port_t *port)
{
//There must be a thread/task waiting for an internal event
assert(port->task_waiting_port_notif != NULL);
BaseType_t xTaskWoken = pdFALSE;
//Unblock the thread/task waiting for the notification
HCD_EXIT_CRITICAL_ISR();
vTaskNotifyGiveFromISR(port->task_waiting_port_notif, &xTaskWoken);
HCD_ENTER_CRITICAL_ISR();
return (xTaskWoken == pdTRUE);
}
static void _internal_pipe_event_wait(pipe_t *pipe)
{
//There must NOT be another thread/task already waiting for an internal event
assert(pipe->task_waiting_pipe_notif == NULL);
pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle();
HCD_EXIT_CRITICAL();
//Wait to be notified from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
HCD_ENTER_CRITICAL();
pipe->task_waiting_pipe_notif = NULL;
}
static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr)
{
//There must be a thread/task waiting for an internal event
assert(pipe->task_waiting_pipe_notif != NULL);
bool ret;
if (from_isr) {
BaseType_t xTaskWoken = pdFALSE;
HCD_EXIT_CRITICAL_ISR();
//Unblock the thread/task waiting for the pipe notification
vTaskNotifyGiveFromISR(pipe->task_waiting_pipe_notif, &xTaskWoken);
HCD_ENTER_CRITICAL_ISR();
ret = (xTaskWoken == pdTRUE);
} else {
HCD_EXIT_CRITICAL();
xTaskNotifyGive(pipe->task_waiting_pipe_notif);
HCD_ENTER_CRITICAL();
ret = false;
}
return ret;
}
// ----------------- Interrupt Handlers --------------------
/**
* @brief Handle a HAL port interrupt and obtain the corresponding port event
*
* @param[in] port Port object
* @param[in] hal_port_event The HAL port event
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred
*/
static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usbh_hal_port_event_t hal_port_event, bool *yield)
{
hcd_port_event_t port_event = HCD_PORT_EVENT_NONE;
switch (hal_port_event) {
case USBH_HAL_PORT_EVENT_CONN: {
//Don't update state immediately, we still need to debounce.
port_event = HCD_PORT_EVENT_CONNECTION;
break;
}
case USBH_HAL_PORT_EVENT_DISCONN: {
if (port->flags.conn_devc_ena) {
//The port was previously enabled, so this is a sudden disconnection
port->state = HCD_PORT_STATE_RECOVERY;
port_event = HCD_PORT_EVENT_SUDDEN_DISCONN;
} else {
//For normal disconnections, don't update state immediately as we still need to debounce.
port_event = HCD_PORT_EVENT_DISCONNECTION;
}
port->flags.conn_devc_ena = 0;
break;
}
case USBH_HAL_PORT_EVENT_ENABLED: {
usbh_hal_port_enable(port->hal); //Initialize remaining host port registers
port->speed = (usbh_hal_port_get_conn_speed(port->hal) == USB_PRIV_SPEED_FULL) ? USB_SPEED_FULL : USB_SPEED_LOW;
port->state = HCD_PORT_STATE_ENABLED;
port->flags.conn_devc_ena = 1;
//This was triggered by a command, so no event needs to be propagated.
break;
}
case USBH_HAL_PORT_EVENT_DISABLED: {
port->flags.conn_devc_ena = 0;
//Disabled could be due to a disable request or reset request, or due to a port error
if (port->state != HCD_PORT_STATE_RESETTING) { //Ignore the disable event if it's due to a reset request
port->state = HCD_PORT_STATE_DISABLED;
if (port->flags.disable_requested) {
//Disabled by request (i.e. by port command). Generate an internal event
port->flags.disable_requested = 0;
*yield |= _internal_port_event_notify_from_isr(port);
} else {
//Disabled due to a port error
port_event = HCD_PORT_EVENT_ERROR;
}
}
break;
}
case USBH_HAL_PORT_EVENT_OVRCUR:
case USBH_HAL_PORT_EVENT_OVRCUR_CLR: { //Could occur if a quick overcurrent then clear happens
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
//We need to power OFF the port to protect it
usbh_hal_port_toggle_power(port->hal, false);
port->state = HCD_PORT_STATE_NOT_POWERED;
port_event = HCD_PORT_EVENT_OVERCURRENT;
}
port->flags.conn_devc_ena = 0;
break;
}
default: {
abort();
break;
}
}
return port_event;
}
/**
* @brief Handles a HAL channel interrupt
*
* This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to
* to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe
* event occurred, or return NULL otherwise.
*
* @param[in] chan_obj Pointer to HAL channel object with interrupt
* @param[out] yield Set to true if a yield is required as a result of handling the interrupt
* @return hcd_pipe_event_t The pipe event
*/
static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usbh_hal_chan_t *chan_obj, bool *yield)
{
usbh_hal_chan_event_t chan_event = usbh_hal_chan_decode_intr(chan_obj);
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
//Check the the pipe's port still has a connected and enabled device before processing the interrupt
if (!pipe->port->flags.conn_devc_ena) {
return event; //Treat as a no event.
}
bool handle_waiting_xfer_done = false;
switch (chan_event) {
case USBH_HAL_CHAN_EVENT_CPLT: {
if (!_buffer_check_done(pipe)) {
break;
}
pipe->last_event = HCD_PIPE_EVENT_IRP_DONE;
event = pipe->last_event;
//Mark the buffer as done
int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
_buffer_done(pipe, stop_idx);
//First check if there is another buffer we can execute
if (_buffer_can_exec(pipe) && !pipe->cs_flags.waiting_xfer_done) {
//If the next buffer is filled and ready to execute, execute it
_buffer_exec(pipe);
}
//Handle the previously done buffer
_buffer_parse(pipe);
if (pipe->cs_flags.waiting_xfer_done) {
handle_waiting_xfer_done = true;
} else if (_buffer_can_fill(pipe)) {
//Now that we've parsed a buffer, see if another IRP can be filled in its place
_buffer_fill(pipe);
}
break;
}
case USBH_HAL_CHAN_EVENT_ERROR: {
//Get and store the pipe error event
usbh_hal_chan_error_t chan_error = usbh_hal_chan_get_error(chan_obj);
usbh_hal_chan_clear_error(chan_obj);
pipe->last_event = pipe_decode_error_event(chan_error);
event = pipe->last_event;
pipe->state = HCD_PIPE_STATE_HALTED;
//Mark the buffer as done with an error
int stop_idx = usbh_hal_chan_get_qtd_idx(chan_obj);
_buffer_done_error(pipe, stop_idx, pipe->state, pipe->last_event, false);
//Parse the buffer
_buffer_parse(pipe);
if (pipe->cs_flags.waiting_xfer_done) {
handle_waiting_xfer_done = true;
}
break;
}
case USBH_HAL_CHAN_EVENT_NONE: {
break; //Nothing to do
}
case USBH_HAL_CHAN_EVENT_HALT_REQ: //We currently don't halt request so this event should never occur
default:
abort();
break;
}
if (handle_waiting_xfer_done) {
//A port/pipe command is waiting for this pipe to complete its transfer. So don't load the next transfer
pipe->cs_flags.waiting_xfer_done = 0;
if (pipe->port->flags.waiting_all_pipes_pause) {
//Port command is waiting for all pipes to be paused
pipe->cs_flags.paused = 1;
pipe->port->flags.num_pipes_waiting_pause--;
if (pipe->port->flags.num_pipes_waiting_pause == 0) {
//All pipes have finished pausing, Notify the blocked port command
pipe->port->flags.waiting_all_pipes_pause = 0;
*yield |= _internal_port_event_notify_from_isr(pipe->port);
}
} else {
//Pipe command is waiting for transfer to complete
*yield |= _internal_pipe_event_notify(pipe, true);
}
}
return event;
}
/**
* @brief Main interrupt handler
*
* - Handle all HPRT (Host Port) related interrupts first as they may change the
* state of the driver (e.g., a disconnect event)
* - If any channels (pipes) have pending interrupts, handle them one by one
* - The HCD has not blocking functions, so the user's ISR callback is run to
* allow the users to send whatever OS primitives they need.
*
* @param arg Interrupt handler argument
*/
static void intr_hdlr_main(void *arg)
{
port_t *port = (port_t *) arg;
bool yield = false;
HCD_ENTER_CRITICAL_ISR();
usbh_hal_port_event_t hal_port_evt = usbh_hal_decode_intr(port->hal);
if (hal_port_evt == USBH_HAL_PORT_EVENT_CHAN) {
//Channel event. Cycle through each pending channel
usbh_hal_chan_t *chan_obj = usbh_hal_get_chan_pending_intr(port->hal);
while (chan_obj != NULL) {
pipe_t *pipe = (pipe_t *)usbh_hal_chan_get_context(chan_obj);
hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield);
//Run callback if a pipe event has occurred and the pipe also has a callback
if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
//Check for more channels with pending interrupts. Returns NULL if there are no more
chan_obj = usbh_hal_get_chan_pending_intr(port->hal);
}
} else if (hal_port_evt != USBH_HAL_PORT_EVENT_NONE) { //Port event
hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield);
if (port_event != HCD_PORT_EVENT_NONE) {
port->last_event = port_event;
port->flags.event_pending = 1;
if (port->callback != NULL) {
HCD_EXIT_CRITICAL_ISR();
yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true);
HCD_ENTER_CRITICAL_ISR();
}
}
}
HCD_EXIT_CRITICAL_ISR();
if (yield) {
portYIELD_FROM_ISR();
}
}
// --------------------------------------------- Host Controller Driver ------------------------------------------------
static port_t *port_obj_alloc(void)
{
port_t *port = calloc(1, sizeof(port_t));
usbh_hal_context_t *hal = malloc(sizeof(usbh_hal_context_t));
void *frame_list = heap_caps_aligned_calloc(USBH_HAL_FRAME_LIST_MEM_ALIGN, FRAME_LIST_LEN,sizeof(uint32_t), MALLOC_CAP_DMA);
SemaphoreHandle_t port_mux = xSemaphoreCreateMutex();
if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) {
free(port);
free(hal);
free(frame_list);
if (port_mux != NULL) {
vSemaphoreDelete(port_mux);
}
return NULL;
}
port->hal = hal;
port->frame_list = frame_list;
port->port_mux = port_mux;
return port;
}
static void port_obj_free(port_t *port)
{
if (port == NULL) {
return;
}
vSemaphoreDelete(port->port_mux);
free(port->frame_list);
free(port->hal);
free(port);
}
// ----------------------- Public --------------------------
esp_err_t hcd_install(const hcd_config_t *config)
{
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE);
HCD_EXIT_CRITICAL();
esp_err_t err_ret;
//Allocate memory and resources for driver object and all port objects
hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t));
if (p_hcd_obj_dmy == NULL) {
return ESP_ERR_NO_MEM;
}
//Allocate resources for each port (there's only one)
p_hcd_obj_dmy->port_obj = port_obj_alloc();
esp_err_t intr_alloc_ret = esp_intr_alloc(ETS_USB_INTR_SOURCE,
config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, //The interrupt must be disabled until the port is initialized
intr_hdlr_main,
(void *)p_hcd_obj_dmy->port_obj,
&p_hcd_obj_dmy->isr_hdl);
if (p_hcd_obj_dmy->port_obj == NULL) {
err_ret = ESP_ERR_NO_MEM;
}
if (intr_alloc_ret != ESP_OK) {
err_ret = intr_alloc_ret;
goto err;
}
HCD_ENTER_CRITICAL();
if (s_hcd_obj != NULL) {
HCD_EXIT_CRITICAL();
err_ret = ESP_ERR_INVALID_STATE;
goto err;
}
s_hcd_obj = p_hcd_obj_dmy;
//Set HW prerequisites for each port (there's only one)
periph_module_enable(PERIPH_USB_MODULE);
periph_module_reset(PERIPH_USB_MODULE);
/*
Configure GPIOS for Host mode operation using internal PHY
- Forces ID to GND for A side
- Forces B Valid to GND as we are A side host
- Forces VBUS Valid to HIGH
- Forces A Valid to HIGH
*/
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ZERO_INPUT, USB_OTG_IDDIG_IN_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ZERO_INPUT, USB_SRP_BVALID_IN_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, USB_OTG_VBUSVALID_IN_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, USB_OTG_AVALID_IN_IDX, false);
HCD_EXIT_CRITICAL();
return ESP_OK;
err:
if (intr_alloc_ret == ESP_OK) {
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
}
port_obj_free(p_hcd_obj_dmy->port_obj);
free(p_hcd_obj_dmy);
return err_ret;
}
esp_err_t hcd_uninstall(void)
{
HCD_ENTER_CRITICAL();
//Check that all ports have been disabled (there's only one port)
if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) {
HCD_EXIT_CRITICAL();
return ESP_ERR_INVALID_STATE;
}
periph_module_disable(PERIPH_USB_MODULE);
hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj;
s_hcd_obj = NULL;
HCD_EXIT_CRITICAL();
//Free resources
port_obj_free(p_hcd_obj_dmy->port_obj);
esp_intr_free(p_hcd_obj_dmy->isr_hdl);
free(p_hcd_obj_dmy);
return ESP_OK;
}
// ------------------------------------------------------ Port ---------------------------------------------------------
// ----------------------- Private -------------------------
static void _port_invalidate_all_pipes(port_t *port)
{
//This function should only be called when the port is invalid
assert(!port->flags.conn_devc_ena);
pipe_t *pipe;
//Process all pipes that have queued IRPs
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
//Mark the pipe as invalid and set an invalid event
pipe->state = HCD_PIPE_STATE_INVALID;
pipe->last_event = HCD_PIPE_EVENT_INVALID;
//Flush all buffers that are still awaiting exec
_buffer_flush_all(pipe, false);
//Retire any remaining IRPs in the pending tailq
_pipe_retire(pipe, false);
if (pipe->task_waiting_pipe_notif != NULL) {
//Unblock the thread/task waiting for a notification from the pipe as the pipe is no longer valid.
_internal_pipe_event_notify(pipe, false);
}
if (pipe->callback != NULL) {
HCD_EXIT_CRITICAL();
(void) pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_INVALID, pipe->callback_arg, false);
HCD_ENTER_CRITICAL();
}
}
//Process all idle pipes
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
//Mark pipe as invalid and call its callback
pipe->state = HCD_PIPE_STATE_INVALID;
pipe->last_event = HCD_PIPE_EVENT_INVALID;
if (pipe->callback != NULL) {
HCD_EXIT_CRITICAL();
(void) pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_INVALID, pipe->callback_arg, false);
HCD_ENTER_CRITICAL();
}
}
}
static bool _port_pause_all_pipes(port_t *port)
{
assert(port->state == HCD_PORT_STATE_ENABLED);
pipe_t *pipe;
int num_pipes_waiting_done = 0;
//Process all pipes that have queued IRPs
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
//Check if pipe is currently executing
if (pipe->multi_buffer_control.buffer_is_executing) {
//Pipe is executing a buffer. Indicate to the pipe we are waiting the buffer's transfer to complete
pipe->cs_flags.waiting_xfer_done = 1;
num_pipes_waiting_done++;
} else {
//No buffer is being executed so need to wait
pipe->cs_flags.paused = 1;
}
}
//Process all idle pipes. They don't have queue transfer so just mark them as paused
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
pipe->cs_flags.paused = 1;
}
if (num_pipes_waiting_done > 0) {
//Indicate we need to wait for one or more pipes to complete their transfers
port->flags.num_pipes_waiting_pause = num_pipes_waiting_done;
port->flags.waiting_all_pipes_pause = 1;
return false;
}
return true;
}
static void _port_unpause_all_pipes(port_t *port)
{
assert(port->state == HCD_PORT_STATE_ENABLED);
pipe_t *pipe;
//Process all idle pipes. They don't have queue transfer so just mark them as un-paused
TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) {
pipe->cs_flags.paused = 0;
}
//Process all pipes that have queued IRPs
TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) {
pipe->cs_flags.paused = 0;
if (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
}
}
static bool _port_bus_reset(port_t *port)
{
assert(port->state == HCD_PORT_STATE_ENABLED || port->state == HCD_PORT_STATE_DISABLED);
//Put and hold the bus in the reset state. If the port was previously enabled, a disabled event will occur after this
port->state = HCD_PORT_STATE_RESETTING;
usbh_hal_port_toggle_reset(port->hal, true);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESETTING) {
//The port state has unexpectedly changed
goto bailout;
}
//Return the bus to the idle state and hold it for the required reset recovery time. Port enabled event should occur
usbh_hal_port_toggle_reset(port->hal, false);
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_devc_ena) {
//The port state has unexpectedly changed
goto bailout;
}
return true;
bailout:
return false;
}
static bool _port_bus_suspend(port_t *port)
{
assert(port->state == HCD_PORT_STATE_ENABLED);
//Pause all pipes before suspending the bus
if (!_port_pause_all_pipes(port)) {
//Need to wait for some pipes to pause. Wait for notification from ISR
_internal_port_event_wait(port);
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_devc_ena) {
//Port state unexpectedly changed
goto bailout;
}
}
//All pipes are guaranteed paused at this point. Proceed to suspend the port
usbh_hal_port_suspend(port->hal);
port->state = HCD_PORT_STATE_SUSPENDED;
return true;
bailout:
return false;
}
static bool _port_bus_resume(port_t *port)
{
assert(port->state == HCD_PORT_STATE_SUSPENDED);
//Put and hold the bus in the K state.
usbh_hal_port_toggle_resume(port->hal, true);
port->state = HCD_PORT_STATE_RESUMING;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS));
HCD_ENTER_CRITICAL();
//Return and hold the bus to the J state (as port of the LS EOP)
usbh_hal_port_toggle_resume(port->hal, false);
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_devc_ena) {
//Port state unexpectedly changed
goto bailout;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS));
HCD_ENTER_CRITICAL();
if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_devc_ena) {
//Port state unexpectedly changed
goto bailout;
}
port->state = HCD_PORT_STATE_ENABLED;
_port_unpause_all_pipes(port);
return true;
bailout:
return false;
}
static bool _port_disable(port_t *port)
{
assert(port->state == HCD_PORT_STATE_ENABLED || port->state == HCD_PORT_STATE_SUSPENDED);
if (port->state == HCD_PORT_STATE_ENABLED) {
//There may be pipes that are still transferring, so pause them.
if (!_port_pause_all_pipes(port)) {
//Need to wait for some pipes to pause. Wait for notification from ISR
_internal_port_event_wait(port);
if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_devc_ena) {
//Port state unexpectedly changed
goto bailout;
}
}
}
//All pipes are guaranteed paused at this point. Proceed to suspend the port. This should trigger an internal event
port->flags.disable_requested = 1;
usbh_hal_port_disable(port->hal);
_internal_port_event_wait(port);
if (port->state != HCD_PORT_STATE_DISABLED) {
//Port state unexpectedly changed
goto bailout;
}
_port_invalidate_all_pipes(port);
return true;
bailout:
return false;
}
static bool _port_debounce(port_t *port)
{
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
//Disconnect event due to power off, no need to debounce or update port state.
return false;
}
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS));
HCD_ENTER_CRITICAL();
//Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected)
bool is_connected = usbh_hal_port_check_if_connected(port->hal);
if (is_connected) {
port->state = HCD_PORT_STATE_DISABLED;
} else {
port->state = HCD_PORT_STATE_DISCONNECTED;
}
//Disable debounce lock
usbh_hal_disable_debounce_lock(port->hal);
return is_connected;
}
// ----------------------- Public --------------------------
esp_err_t hcd_port_init(int port_number, hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl)
{
HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG);
HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND);
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE);
//Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only
port_t *port_obj = s_hcd_obj->port_obj;
TAILQ_INIT(&port_obj->pipes_idle_tailq);
TAILQ_INIT(&port_obj->pipes_active_tailq);
port_obj->state = HCD_PORT_STATE_NOT_POWERED;
port_obj->last_event = HCD_PORT_EVENT_NONE;
port_obj->callback = port_config->callback;
port_obj->callback_arg = port_config->callback_arg;
port_obj->context = port_config->context;
usbh_hal_init(port_obj->hal);
port_obj->initialized = true;
esp_intr_enable(s_hcd_obj->isr_hdl);
*port_hdl = (hcd_port_handle_t)port_obj;
HCD_EXIT_CRITICAL();
vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); //Need a short delay before host mode takes effect
return ESP_OK;
}
esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY)
&& port->flags.val == 0 && port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
port->initialized = false;
esp_intr_disable(s_hcd_obj->isr_hdl);
usbh_hal_deinit(port->hal);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command)
{
esp_err_t ret = ESP_ERR_INVALID_STATE;
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && !port->flags.event_pending) { //Port events need to be handled first before issuing a command
port->flags.cmd_processing = 1;
switch (command) {
case HCD_PORT_CMD_POWER_ON: {
//Port can only be powered on if currently unpowered
if (port->state == HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_DISCONNECTED;
usbh_hal_port_init(port->hal);
usbh_hal_port_toggle_power(port->hal, true);
ret = ESP_OK;
}
break;
}
case HCD_PORT_CMD_POWER_OFF: {
//Port can only be unpowered if already powered
if (port->state != HCD_PORT_STATE_NOT_POWERED) {
port->state = HCD_PORT_STATE_NOT_POWERED;
usbh_hal_port_deinit(port->hal);
usbh_hal_port_toggle_power(port->hal, false);
//If a device is currently connected, this should trigger a disconnect event
ret = ESP_OK;
}
break;
}
case HCD_PORT_CMD_RESET: {
//Port can only a reset when it is in the enabled or disabled states (in case of new connection)
if (port->state == HCD_PORT_STATE_ENABLED || port->state == HCD_PORT_STATE_DISABLED) {
if (_port_bus_reset(port)) {
//Set FIFO sizes to default
usbh_hal_set_fifo_size(port->hal, &fifo_config_default);
port->fifo_bias = HCD_PORT_FIFO_BIAS_BALANCED;
//Reset frame list and enable periodic scheduling
memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t));
usbh_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN);
usbh_hal_port_periodic_enable(port->hal);
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_RESPONSE;
}
}
break;
}
case HCD_PORT_CMD_SUSPEND: {
//Port can only be suspended if already in the enabled state
if (port->state == HCD_PORT_STATE_ENABLED) {
ret = (_port_bus_suspend(port)) ? ESP_OK : ESP_ERR_INVALID_RESPONSE;
}
break;
}
case HCD_PORT_CMD_RESUME: {
//Port can only be resumed if already suspended
if (port->state == HCD_PORT_STATE_SUSPENDED) {
ret = (_port_bus_resume(port)) ? ESP_OK : ESP_ERR_INVALID_RESPONSE;
}
break;
}
case HCD_PORT_CMD_DISABLE: {
//Can only disable the port when already enabled or suspended
if (port->state == HCD_PORT_STATE_ENABLED || port->state == HCD_PORT_STATE_SUSPENDED) {
ret = (_port_disable(port)) ? ESP_OK : ESP_ERR_INVALID_RESPONSE;
}
break;
}
}
port->flags.cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_state_t ret;
HCD_ENTER_CRITICAL();
ret = port->state;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed)
{
port_t *port = (port_t *)port_hdl;
HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG);
HCD_ENTER_CRITICAL();
//Device speed is only valid if there is device connected to the port that has been reset
HCD_CHECK_FROM_CRIT(port->flags.conn_devc_ena, ESP_ERR_INVALID_STATE);
usb_priv_speed_t hal_speed = usbh_hal_port_get_conn_speed(port->hal);
if (hal_speed == USB_PRIV_SPEED_FULL) {
*speed = USB_SPEED_FULL;
} else {
*speed = USB_SPEED_LOW;
}
HCD_EXIT_CRITICAL();
return ESP_OK;
}
hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
hcd_port_event_t ret = HCD_PORT_EVENT_NONE;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
if (port->initialized && port->flags.event_pending) {
port->flags.event_pending = 0;
port->flags.event_processing = 1;
ret = port->last_event;
switch (ret) {
case HCD_PORT_EVENT_CONNECTION: {
if (_port_debounce(port)) {
ret = HCD_PORT_EVENT_CONNECTION;
}
break;
}
case HCD_PORT_EVENT_DISCONNECTION:
if (_port_debounce(port)) {
//A device is still connected, so it was just a debounce
port->state = HCD_PORT_STATE_DISABLED;
ret = HCD_PORT_EVENT_NONE;
} else {
//No device connected after debounce delay. This is an actual disconnection
port->state = HCD_PORT_STATE_DISCONNECTED;
ret = HCD_PORT_EVENT_DISCONNECTION;
}
break;
case HCD_PORT_EVENT_ERROR:
case HCD_PORT_EVENT_OVERCURRENT:
case HCD_PORT_EVENT_SUDDEN_DISCONN: {
_port_invalidate_all_pipes(port);
break;
}
default: {
break;
}
}
port->flags.event_processing = 0;
} else {
ret = HCD_PORT_EVENT_NONE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY
&& port->num_pipes_idle == 0 && port->num_pipes_queued == 0
&& port->flags.val == 0 && port->task_waiting_port_notif == NULL,
ESP_ERR_INVALID_STATE);
//We are about to do a soft reset on the peripheral. Disable the peripheral throughout
esp_intr_disable(s_hcd_obj->isr_hdl);
usbh_hal_core_soft_reset(port->hal);
port->state = HCD_PORT_STATE_NOT_POWERED;
port->last_event = HCD_PORT_EVENT_NONE;
port->flags.val = 0;
esp_intr_enable(s_hcd_obj->isr_hdl);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_port_get_context(hcd_port_handle_t port_hdl)
{
port_t *port = (port_t *)port_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = port->context;
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias)
{
esp_err_t ret;
port_t *port = (port_t *)port_hdl;
xSemaphoreTake(port->port_mux, portMAX_DELAY);
HCD_ENTER_CRITICAL();
//Check that port is in the correct state to update FIFO sizes
if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) {
const usbh_hal_fifo_config_t *fifo_config;
switch (bias) {
case HCD_PORT_FIFO_BIAS_BALANCED:
fifo_config = &fifo_config_default;
break;
case HCD_PORT_FIFO_BIAS_RX:
fifo_config = &fifo_config_bias_rx;
break;
case HCD_PORT_FIFO_BIAS_PTX:
fifo_config = &fifo_config_bias_ptx;
break;
default:
fifo_config = NULL;
abort();
}
usbh_hal_set_fifo_size(port->hal, fifo_config);
port->fifo_bias = bias;
ret = ESP_OK;
} else {
ret = ESP_ERR_INVALID_STATE;
}
HCD_EXIT_CRITICAL();
xSemaphoreGive(port->port_mux);
return ret;
}
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
// ----------------------- Private -------------------------
static bool _pipe_wait_done(pipe_t *pipe)
{
//Check if the pipe has a currently executing buffer
if (pipe->multi_buffer_control.buffer_is_executing) {
//Wait for pipe to complete its transfer
pipe->cs_flags.waiting_xfer_done = 1;
_internal_pipe_event_wait(pipe);
if (pipe->state == HCD_PIPE_STATE_INVALID) {
//The pipe become invalid whilst waiting for its internal event
pipe->cs_flags.waiting_xfer_done = 0; //Need to manually reset this bit in this case
return false;
}
bool chan_halted = usbh_hal_chan_request_halt(pipe->chan_obj);
assert(chan_halted);
(void) chan_halted;
}
return true;
}
static void _pipe_retire(pipe_t *pipe, bool self_initiated)
{
//Cannot have a currently executing buffer
assert(!pipe->multi_buffer_control.buffer_is_executing);
if (pipe->num_irp_pending > 0) {
//Process all remaining pending IRPs
usb_irp_t *irp;
TAILQ_FOREACH(irp, &pipe->pending_irp_tailq, tailq_entry) {
//Update the IRP's current state
IRP_STATE_SET(irp->reserved_flags, IRP_STATE_DONE);
//If we are initiating the retire, mark the IRP as canceled
irp->status = (self_initiated) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE;
}
//Concatenated pending tailq to the done tailq
TAILQ_CONCAT(&pipe->done_irp_tailq, &pipe->pending_irp_tailq, tailq_entry);
pipe->num_irp_done += pipe->num_irp_pending;
pipe->num_irp_pending = 0;
}
}
static inline hcd_pipe_event_t pipe_decode_error_event(usbh_hal_chan_error_t chan_error)
{
hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE;
switch (chan_error) {
case USBH_HAL_CHAN_ERROR_XCS_XACT:
event = HCD_PIPE_EVENT_ERROR_XFER;
break;
case USBH_HAL_CHAN_ERROR_BNA:
event = HCD_PIPE_EVENT_ERROR_IRP_NOT_AVAIL;
break;
case USBH_HAL_CHAN_ERROR_PKT_BBL:
event = HCD_PIPE_EVENT_ERROR_OVERFLOW;
break;
case USBH_HAL_CHAN_ERROR_STALL:
event = HCD_PIPE_EVENT_ERROR_STALL;
break;
}
return event;
}
static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type)
{
int desc_list_len;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
desc_list_len = XFER_LIST_LEN_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
desc_list_len = XFER_LIST_LEN_ISOC;
break;
case USB_TRANSFER_TYPE_BULK:
desc_list_len = XFER_LIST_LEN_BULK;
break;
default: //USB_TRANSFER_TYPE_INTR:
desc_list_len = XFER_LIST_LEN_INTR;
break;
}
dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t));
void *xfer_desc_list = heap_caps_aligned_calloc(USBH_HAL_DMA_MEM_ALIGN, desc_list_len, sizeof(usbh_ll_dma_qtd_t), MALLOC_CAP_DMA);
if (buffer == NULL || xfer_desc_list == NULL) {
free(buffer);
heap_caps_free(xfer_desc_list);
return NULL;
}
buffer->xfer_desc_list = xfer_desc_list;
return buffer;
}
static void buffer_block_free(dma_buffer_block_t *buffer)
{
if (buffer == NULL) {
return;
}
heap_caps_free(buffer->xfer_desc_list);
free(buffer);
}
static bool pipe_alloc_check_args(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, hcd_port_fifo_bias_t fifo_bias, usb_transfer_type_t type, bool is_default_pipe)
{
//Check if pipe can be supported
if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) {
//Low speed port does not supported full speed pipe
return false;
}
if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) {
//Low speed does not support Bulk or Isochronous pipes
return false;
}
//Check interval of pipe
if (type == USB_TRANSFER_TYPE_INTR &&
(pipe_config->ep_desc->bInterval > 0 && pipe_config->ep_desc->bInterval > 32)) {
//Interval not supported for interrupt pipe
return false;
}
if (type == USB_TRANSFER_TYPE_ISOCHRONOUS &&
(pipe_config->ep_desc->bInterval > 0 && pipe_config->ep_desc->bInterval > 6)) {
//Interval not supported for isochronous pipe (where 0 < 2^(bInterval - 1) <= 32)
return false;
}
if (is_default_pipe) {
return true;
}
//Check if MPS is within FIFO limits
const fifo_mps_limits_t *mps_limits;
switch (fifo_bias) {
case HCD_PORT_FIFO_BIAS_BALANCED:
mps_limits = &mps_limits_default;
break;
case HCD_PORT_FIFO_BIAS_RX:
mps_limits = &mps_limits_bias_rx;
break;
default: //HCD_PORT_FIFO_BIAS_PTX
mps_limits = &mps_limits_bias_ptx;
break;
}
int limit;
if (USB_DESC_EP_GET_EP_DIR(pipe_config->ep_desc)) { //IN
limit = mps_limits->in_mps;
} else { //OUT
if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) {
limit = mps_limits->non_periodic_out_mps;
} else {
limit = mps_limits->periodic_out_mps;
}
}
return (pipe_config->ep_desc->wMaxPacketSize <= limit);
}
static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usbh_hal_ep_char_t *ep_char)
{
//Initialize EP characteristics
usb_priv_xfer_type_t hal_xfer_type;
switch (type) {
case USB_TRANSFER_TYPE_CTRL:
hal_xfer_type = USB_PRIV_XFER_TYPE_CTRL;
break;
case USB_TRANSFER_TYPE_ISOCHRONOUS:
hal_xfer_type = USB_PRIV_XFER_TYPE_ISOCHRONOUS;
break;
case USB_TRANSFER_TYPE_BULK:
hal_xfer_type = USB_PRIV_XFER_TYPE_BULK;
break;
default: //USB_TRANSFER_TYPE_INTR
hal_xfer_type = USB_PRIV_XFER_TYPE_INTR;
break;
}
ep_char->type = hal_xfer_type;
if (is_default_pipe) {
ep_char->bEndpointAddress = 0;
//Set the default pipe's MPS to the worst case MPS for the device's speed
ep_char->mps = (pipe_config->dev_speed == USB_SPEED_FULL) ? CTRL_EP_MAX_MPS_FS : CTRL_EP_MAX_MPS_LS;
} else {
ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress;
ep_char->mps = pipe_config->ep_desc->wMaxPacketSize;
}
ep_char->dev_addr = pipe_config->dev_addr;
ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW);
//Calculate the pipe's interval in terms of USB frames
if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) {
int interval_frames;
if (type == USB_TRANSFER_TYPE_INTR) {
interval_frames = pipe_config->ep_desc->bInterval;
} else {
interval_frames = (1 << (pipe_config->ep_desc->bInterval - 1));
}
//Round down interval to nearest power of 2
if (interval_frames >= 32) {
interval_frames = 32;
} else if (interval_frames >= 16) {
interval_frames = 16;
} else if (interval_frames >= 8) {
interval_frames = 8;
} else if (interval_frames >= 4) {
interval_frames = 4;
} else if (interval_frames >= 2) {
interval_frames = 2;
} else if (interval_frames >= 1) {
interval_frames = 1;
}
ep_char->periodic.interval = interval_frames;
//We are the Nth pipe to be allocated. Use N as a phase offset
ep_char->periodic.phase_offset_frames = pipe_idx & (XFER_LIST_LEN_ISOC - 1);
}else {
ep_char->periodic.interval = 0;
ep_char->periodic.phase_offset_frames = 0;
}
}
// ----------------------- Public --------------------------
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl)
{
HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG);
port_t *port = (port_t *)port_hdl;
HCD_ENTER_CRITICAL();
//Can only allocate a pipe if the target port is initialized and connected to an enabled device
HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_devc_ena, ESP_ERR_INVALID_STATE);
usb_speed_t port_speed = port->speed;
hcd_port_fifo_bias_t port_fifo_bias = port->fifo_bias;
int pipe_idx = port->num_pipes_idle + port->num_pipes_queued;
HCD_EXIT_CRITICAL();
usb_transfer_type_t type;
bool is_default;
if (pipe_config->ep_desc == NULL) {
type = USB_TRANSFER_TYPE_CTRL;
is_default = true;
} else {
type = USB_DESC_EP_GET_XFERTYPE(pipe_config->ep_desc);
is_default = false;
}
//Check if pipe configuration can be supported
if (!pipe_alloc_check_args(pipe_config, port_speed, port_fifo_bias, type, is_default)) {
return ESP_ERR_NOT_SUPPORTED;
}
esp_err_t ret;
//Allocate the pipe resources
pipe_t *pipe = calloc(1, sizeof(pipe_t));
usbh_hal_chan_t *chan_obj = calloc(1, sizeof(usbh_hal_chan_t));
dma_buffer_block_t *buffers[NUM_BUFFERS] = {0};
if (pipe == NULL|| chan_obj == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
for (int i = 0; i < NUM_BUFFERS; i++) {
buffers[i] = buffer_block_alloc(type);
if (buffers[i] == NULL) {
ret = ESP_ERR_NO_MEM;
goto err;
}
}
//Initialize pipe object
TAILQ_INIT(&pipe->pending_irp_tailq);
TAILQ_INIT(&pipe->done_irp_tailq);
for (int i = 0; i < NUM_BUFFERS; i++) {
pipe->buffers[i] = buffers[i];
}
pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS;
pipe->port = port;
pipe->chan_obj = chan_obj;
usbh_hal_ep_char_t ep_char;
pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char);
memcpy(&pipe->ep_char, &ep_char, sizeof(usbh_hal_ep_char_t));
pipe->state = HCD_PIPE_STATE_ACTIVE;
pipe->callback = pipe_config->callback;
pipe->callback_arg = pipe_config->callback_arg;
pipe->context = pipe_config->context;
//Allocate channel
HCD_ENTER_CRITICAL();
if (!port->initialized || !port->flags.conn_devc_ena) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_INVALID_STATE;
goto err;
}
bool chan_allocated = usbh_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe);
if (!chan_allocated) {
HCD_EXIT_CRITICAL();
ret = ESP_ERR_NOT_SUPPORTED;
goto err;
}
usbh_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char);
//Add the pipe to the list of idle pipes in the port object
TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry);
port->num_pipes_idle++;
HCD_EXIT_CRITICAL();
*pipe_hdl = (hcd_pipe_handle_t)pipe;
return ESP_OK;
err:
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(buffers[i]);
}
free(chan_obj);
free(pipe);
return ret;
}
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check that all IRPs have been removed and pipe has no pending events
HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing
&& pipe->multi_buffer_control.buffer_num_to_parse == 0
&& pipe->multi_buffer_control.buffer_num_to_exec == 0
&& pipe->num_irp_pending == 0
&& pipe->num_irp_done == 0,
ESP_ERR_INVALID_STATE);
//Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued IRPs)
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
usbh_hal_chan_free(pipe->port->hal, pipe->chan_obj);
HCD_EXIT_CRITICAL();
//Free pipe resources
for (int i = 0; i < NUM_BUFFERS; i++) {
buffer_block_free(pipe->buffers[i]);
}
free(pipe->chan_obj);
free(pipe);
return ESP_OK;
}
esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(pipe->state != HCD_PIPE_STATE_INVALID
&& !pipe->cs_flags.pipe_cmd_processing
&& pipe->num_irp_pending == 0
&& pipe->num_irp_done == 0,
ESP_ERR_INVALID_STATE);
pipe->ep_char.mps = mps;
//Update the underlying channel's registers
usbh_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check if pipe is in the correct state to be updated
HCD_CHECK_FROM_CRIT(pipe->state != HCD_PIPE_STATE_INVALID
&& !pipe->cs_flags.pipe_cmd_processing
&& pipe->num_irp_pending == 0
&& pipe->num_irp_done == 0,
ESP_ERR_INVALID_STATE);
pipe->ep_char.dev_addr = dev_addr;
//Update the underlying channel's registers
usbh_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char);
HCD_EXIT_CRITICAL();
return ESP_OK;
}
void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
void *ret;
HCD_ENTER_CRITICAL();
ret = pipe->context;
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl)
{
hcd_pipe_state_t ret;
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//If there is no enabled device, all existing pipes are invalid.
if (pipe->port->state != HCD_PORT_STATE_ENABLED
&& pipe->port->state != HCD_PORT_STATE_SUSPENDED
&& pipe->port->state != HCD_PORT_STATE_RESUMING) {
ret = HCD_PIPE_STATE_INVALID;
} else {
ret = pipe->state;
}
HCD_EXIT_CRITICAL();
return ret;
}
esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
bool ret = ESP_OK;
HCD_ENTER_CRITICAL();
//Cannot execute pipe commands the pipe is already executing a command, or if the pipe or its port are no longer valid
if (pipe->cs_flags.pipe_cmd_processing || !pipe->port->flags.conn_devc_ena || pipe->state == HCD_PIPE_STATE_INVALID) {
ret = ESP_ERR_INVALID_STATE;
} else {
pipe->cs_flags.pipe_cmd_processing = 1;
switch (command) {
case HCD_PIPE_CMD_ABORT: {
//Retire all scheduled IRPs. Pipe's state remains unchanged
if (!_pipe_wait_done(pipe)) { //Stop any on going transfers
ret = ESP_ERR_INVALID_RESPONSE;
}
_buffer_flush_all(pipe, true); //Some buffers might still be filled. Flush them
_pipe_retire(pipe, true); //Retire any pending transfers
break;
}
case HCD_PIPE_CMD_RESET: {
//Retire all scheduled IRPs. Pipe's state moves to active
if (!_pipe_wait_done(pipe)) { //Stop any on going transfers
ret = ESP_ERR_INVALID_RESPONSE;
break;
}
_buffer_flush_all(pipe, true); //Some buffers might still be filled. Flush them
_pipe_retire(pipe, true); //Retire any pending transfers
pipe->state = HCD_PIPE_STATE_ACTIVE;
break;
}
case HCD_PIPE_CMD_CLEAR: { //Can only do this if port is still active
//Pipe's state moves from halted to active
if (pipe->state == HCD_PIPE_STATE_HALTED) {
pipe->state = HCD_PIPE_STATE_ACTIVE;
//Start the next pending transfer if it exists
if (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
}
break;
}
case HCD_PIPE_CMD_HALT: {
//Pipe's state moves to halted
if (!_pipe_wait_done(pipe)) { //Stop any on going transfers
ret = ESP_ERR_INVALID_RESPONSE;
break;
}
pipe->state = HCD_PIPE_STATE_HALTED;
break;
}
}
pipe->cs_flags.pipe_cmd_processing = 0;
}
HCD_EXIT_CRITICAL();
return ret;
}
hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
hcd_pipe_event_t ret;
HCD_ENTER_CRITICAL();
ret = pipe->last_event;
pipe->last_event = HCD_PIPE_EVENT_NONE;
HCD_EXIT_CRITICAL();
return ret;
}
// ------------------------------------------------- Buffer Control ----------------------------------------------------
static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_irp_t *irp)
{
//Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the IRP's data)
usb_ctrl_req_t *ctrl_req = (usb_ctrl_req_t *)irp->data_buffer;
bool data_stg_in = (ctrl_req->bRequestType & USB_B_REQUEST_TYPE_DIR_IN);
bool data_stg_skip = (irp->num_bytes == 0);
//Fill setup stage
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, irp->data_buffer, sizeof(usb_ctrl_req_t),
USBH_HAL_XFER_DESC_FLAG_SETUP | USBH_HAL_XFER_DESC_FLAG_HOC);
//Fill data stage
if (data_stg_skip) {
//Not data stage. Fill with an empty descriptor
usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, 1);
} else {
//Fill data stage
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, irp->data_buffer + sizeof(usb_ctrl_req_t), irp->num_bytes,
((data_stg_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0) | USBH_HAL_XFER_DESC_FLAG_HOC);
}
//Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN.
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0,
((data_stg_in && !data_stg_skip) ? 0 : USBH_HAL_XFER_DESC_FLAG_IN) | USBH_HAL_XFER_DESC_FLAG_HOC);
//Update buffer flags
buffer->flags.ctrl.data_stg_in = data_stg_in;
buffer->flags.ctrl.data_stg_skip = data_stg_skip;
buffer->flags.ctrl.cur_stg = 0;
}
static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_irp_t *irp, bool is_in)
{
if (is_in) {
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, irp->data_buffer, irp->num_bytes,
USBH_HAL_XFER_DESC_FLAG_IN | USBH_HAL_XFER_DESC_FLAG_HOC);
} else if (irp->flags & USB_IRP_FLAG_ZERO_PACK) {
//We need to add an extra zero length packet, so two descriptors are used
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, irp->data_buffer, irp->num_bytes, 0);
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USBH_HAL_XFER_DESC_FLAG_HOC);
} else {
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, irp->data_buffer, irp->num_bytes, USBH_HAL_XFER_DESC_FLAG_HOC);
}
//Update buffer flags
buffer->flags.bulk.zero_len_packet = (is_in && (irp->flags & USB_IRP_FLAG_ZERO_PACK)) ? 1 : 0;
}
static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_irp_t *irp, bool is_in, int mps)
{
int num_qtds;
if (is_in) {
assert(irp->num_bytes % mps == 0); //IN transfers MUST be integer multiple of MPS
num_qtds = irp->num_bytes / mps;
} else {
num_qtds = irp->num_bytes / mps; //Floor division for number of MPS packets
if (irp->num_bytes % irp->num_bytes > 0) {
num_qtds++; //For the last shot packet
}
}
assert(num_qtds <= XFER_LIST_LEN_INTR);
//Fill all but last descriptor
int bytes_filled = 0;
for (int i = 0; i < num_qtds - 1; i++) {
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &irp->data_buffer[bytes_filled], mps, (is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0);
bytes_filled += mps;
}
//Fill in the last descriptor with HOC flag
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &irp->data_buffer[bytes_filled], irp->num_bytes - bytes_filled,
((is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0) | USBH_HAL_XFER_DESC_FLAG_HOC);
//Update buffer members and flags
buffer->flags.intr.num_qtds = num_qtds;
}
static inline void _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_irp_t *irp, bool is_in, int mps, int interval, int start_idx)
{
assert(interval > 0);
int total_num_desc = irp->num_iso_packets * interval;
assert(total_num_desc <= XFER_LIST_LEN_ISOC);
int desc_idx = start_idx;
int bytes_filled = 0;
//For each packet, fill in a descriptor and a interval-1 blank descriptor after it
for (int pkt_idx = 0; pkt_idx < irp->num_iso_packets; pkt_idx++) {
int xfer_len = irp->iso_packet_desc[pkt_idx].length;
uint32_t flags = (is_in) ? USBH_HAL_XFER_DESC_FLAG_IN : 0;
if (pkt_idx == irp->num_iso_packets - 1) {
//Last packet, set the the HOC flag
flags |= USBH_HAL_XFER_DESC_FLAG_HOC;
}
usbh_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &irp->data_buffer[bytes_filled], xfer_len, flags);
bytes_filled += xfer_len;
if (++desc_idx >= XFER_LIST_LEN_ISOC) {
desc_idx = 0;
}
//Clear descriptors for unscheduled frames
for (int i = 0; i < interval - 1; i++) {
usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
if (++desc_idx >= XFER_LIST_LEN_ISOC) {
desc_idx = 0;
}
}
}
//Update buffer members and flags
buffer->flags.isoc.num_qtds = total_num_desc;
buffer->flags.isoc.interval = interval;
buffer->flags.isoc.irp_start_idx = start_idx;
buffer->flags.isoc.next_irp_start_idx = desc_idx;
}
static void _buffer_fill(pipe_t *pipe)
{
//Get an IRP from the pending tailq
usb_irp_t *irp = TAILQ_FIRST(&pipe->pending_irp_tailq);
assert(pipe->num_irp_pending > 0 && irp != NULL);
TAILQ_REMOVE(&pipe->pending_irp_tailq, irp, tailq_entry);
pipe->num_irp_pending--;
//Select the inactive buffer
assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS);
dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx];
assert(buffer_to_fill->irp == NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
switch (pipe->ep_char.type) {
case USB_PRIV_XFER_TYPE_CTRL: {
_buffer_fill_ctrl(buffer_to_fill, irp);
break;
}
case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
uint32_t start_idx;
if (pipe->multi_buffer_control.buffer_num_to_exec == 0) {
//There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule
uint32_t cur_frame_num = usbh_hal_port_get_cur_frame_num(pipe->port->hal);
uint32_t cur_mod_idx_no_offset = (cur_frame_num - pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1); //Get the modulated index (i.e., the Nth desc in the descriptor list)
//This is the non-offset modulated QTD index of the last scheduled interval
uint32_t last_interval_mod_idx_no_offset = (cur_mod_idx_no_offset / pipe->ep_char.periodic.interval) * pipe->ep_char.periodic.interval; //Floor divide and the multiply again
uint32_t next_interval_idx_no_offset = (last_interval_mod_idx_no_offset + pipe->ep_char.periodic.interval);
//We want at least a half interval or 2 frames of buffer space
if (next_interval_idx_no_offset - cur_mod_idx_no_offset > (pipe->ep_char.periodic.interval / 2)
&& next_interval_idx_no_offset - cur_mod_idx_no_offset >= 2) {
start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
} else {
//Not enough time until the next schedule, add another interval to it.
start_idx = (next_interval_idx_no_offset + pipe->ep_char.periodic.interval + pipe->ep_char.periodic.phase_offset_frames) & (XFER_LIST_LEN_ISOC - 1);
}
} else {
//Start index is based on previously filled buffer
uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1);
dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx];
start_idx = prev_filled_buffer->flags.isoc.next_irp_start_idx;
}
_buffer_fill_isoc(buffer_to_fill, irp, is_in, mps, (int)pipe->ep_char.periodic.interval, start_idx);
break;
}
case USB_PRIV_XFER_TYPE_BULK: {
_buffer_fill_bulk(buffer_to_fill, irp, is_in);
break;
}
case USB_PRIV_XFER_TYPE_INTR: {
_buffer_fill_intr(buffer_to_fill, irp, is_in, mps);
break;
}
default: {
abort();
break;
}
}
buffer_to_fill->irp = irp;
IRP_STATE_SET(irp->reserved_flags, IRP_STATE_INFLIGHT);
//Update multi buffer flags
pipe->multi_buffer_control.wr_idx++;
pipe->multi_buffer_control.buffer_num_to_fill--;
pipe->multi_buffer_control.buffer_num_to_exec++;
}
static void _buffer_exec(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0);
dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx];
assert(buffer_to_exec->irp != NULL);
uint32_t start_idx;
int desc_list_len;
switch (pipe->ep_char.type) {
case USB_PRIV_XFER_TYPE_CTRL: {
start_idx = 0;
desc_list_len = XFER_LIST_LEN_CTRL;
//Set the channel's direction to OUT and PID to 0 respectively for the the setup stage
usbh_hal_chan_set_dir(pipe->chan_obj, false); //Setup stage is always OUT
usbh_hal_chan_set_pid(pipe->chan_obj, 0); //Setup stage always has a PID of DATA0
break;
}
case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
start_idx = buffer_to_exec->flags.isoc.irp_start_idx;
desc_list_len = XFER_LIST_LEN_ISOC;
break;
}
case USB_PRIV_XFER_TYPE_BULK: {
start_idx = 0;
desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1;
break;
}
case USB_PRIV_XFER_TYPE_INTR: {
start_idx = 0;
desc_list_len = buffer_to_exec->flags.intr.num_qtds;
break;
}
default: {
start_idx = 0;
desc_list_len = 0;
abort();
break;
}
}
//Update buffer and multi buffer flags
buffer_to_exec->status_flags.executing = 1;
pipe->multi_buffer_control.buffer_is_executing = 1;
usbh_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx);
}
static bool _buffer_check_done(pipe_t *pipe)
{
if (pipe->ep_char.type != USB_PRIV_XFER_TYPE_CTRL) {
return true;
}
//Only control transfers need to be continued
dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx];
bool next_dir_is_in;
int next_pid;
if (buffer_inflight->flags.ctrl.cur_stg == 0) { //Just finished control stage
if (buffer_inflight->flags.ctrl.data_stg_skip) {
//Skipping data stage. Go straight to status stage
next_dir_is_in = true; //With no data stage, status stage must be IN
next_pid = 1; //Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2; //Skip over the null descriptor representing the skipped data stage
} else {
//Go to data stage
next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in;
next_pid = 1; //Data stage always starts with a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 1;
}
} else if (buffer_inflight->flags.ctrl.cur_stg == 1) { //Just finished data stage. Go to status stage
next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; //Status stage is always the opposite direction of data stage
next_pid = 1; //Status stage always has a PID of DATA1
buffer_inflight->flags.ctrl.cur_stg = 2;
} else { //Just finished status stage. Transfer is complete
return true;
}
//Continue the control transfer
usbh_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in);
usbh_hal_chan_set_pid(pipe->chan_obj, next_pid);
usbh_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg);
return false;
}
static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer)
{
usb_irp_t *irp = buffer->irp;
//Update IRP's actual number of bytes
if (buffer->flags.ctrl.data_stg_skip) {
//There was no data stage. Just set the actual length to zero
irp->actual_num_bytes = 0;
} else {
//Parse the data stage for the remaining length
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status);
assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= irp->num_bytes);
irp->actual_num_bytes = irp->num_bytes - rem_len;
}
//Update IRP status
irp->status = USB_TRANSFER_STATUS_COMPLETED;
//Clear the descriptor list
memset(buffer->xfer_desc_list, XFER_LIST_LEN_CTRL, sizeof(usbh_ll_dma_qtd_t));
}
static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer)
{
usb_irp_t *irp = buffer->irp;
//Update IRP's actual number of bytes
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status);
assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
assert(rem_len <= irp->num_bytes);
irp->actual_num_bytes = irp->num_bytes - rem_len;
//Update IRP's status
irp->status = USB_TRANSFER_STATUS_COMPLETED;
//Clear the descriptor list
memset(buffer->xfer_desc_list, XFER_LIST_LEN_BULK, sizeof(usbh_ll_dma_qtd_t));
}
static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps)
{
usb_irp_t *irp = buffer->irp;
int intr_stop_idx = buffer->status_flags.stop_idx;
if (is_in) {
if (intr_stop_idx > 0) { //This is an early stop (short packet)
assert(intr_stop_idx <= buffer->flags.intr.num_qtds);
int rem_len;
int desc_status;
for (int i = 0; i < intr_stop_idx - 1; i++) { //Check all packets before the short
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
}
//Check the short packet
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status);
assert(rem_len > 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
//Update actual bytes
irp->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len);
} else {
//Check that all but the last packet transmitted MPS
for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) {
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
}
//Check the last packet
int last_packet_rem_len;
int last_packet_desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status);
assert(last_packet_desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
//All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes
irp->actual_num_bytes = irp->num_bytes - last_packet_rem_len;
}
} else {
//OUT INTR transfers can only complete successfully if all MPS packets have been transmitted. Double check
for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) {
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status);
assert(rem_len == 0 && desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS);
}
irp->actual_num_bytes = irp->num_bytes;
}
//Update IRP's status
irp->status = USB_TRANSFER_STATUS_COMPLETED;
//Clear the descriptor list
memset(buffer->xfer_desc_list, XFER_LIST_LEN_INTR, sizeof(usbh_ll_dma_qtd_t));
}
static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in)
{
usb_irp_t *irp = buffer->irp;
int desc_idx = buffer->flags.isoc.irp_start_idx; //Descriptor index tracks which descriptor in the QTD list
for (int pkt_idx = 0; pkt_idx < irp->num_iso_packets; pkt_idx++) {
//Clear the filled descriptor
int rem_len;
int desc_status;
usbh_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status);
usbh_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx);
assert(rem_len == 0 || is_in);
assert(desc_status == USBH_HAL_XFER_DESC_STS_SUCCESS || USBH_HAL_XFER_DESC_STS_NOT_EXECUTED);
assert(rem_len <= irp->iso_packet_desc[pkt_idx].length); //Check for DMA errata
//Update ISO packet actual length and status
irp->iso_packet_desc[pkt_idx].actual_length = irp->iso_packet_desc[pkt_idx].length - rem_len;
irp->iso_packet_desc[pkt_idx].status = (desc_status == USBH_HAL_XFER_DESC_STS_NOT_EXECUTED) ? USB_TRANSFER_STATUS_SKIPPED : USB_TRANSFER_STATUS_COMPLETED;
//A descriptor is also allocated for unscheduled frames. We need to skip over them
desc_idx += buffer->flags.isoc.interval;
if (desc_idx >= XFER_LIST_LEN_INTR) {
desc_idx -= XFER_LIST_LEN_INTR;
}
}
}
static inline void _buffer_parse_error(dma_buffer_block_t *buffer)
{
//The IRP had an error, so we consider that NO bytes were transferred
usb_irp_t *irp = buffer->irp;
irp->actual_num_bytes = 0;
for (int i = 0; i < irp->num_iso_packets; i++) {
irp->iso_packet_desc[i].actual_length = 0;
}
//Update status of IRP
if (buffer->status_flags.cancelled) {
irp->status = USB_TRANSFER_STATUS_CANCELED;
} else if (buffer->status_flags.pipe_state == HCD_PIPE_STATE_INVALID) {
irp->status = USB_TRANSFER_STATUS_NO_DEVICE;
} else {
switch (buffer->status_flags.pipe_event) {
case HCD_PIPE_EVENT_ERROR_XFER: //Excessive transaction error
irp->status = USB_TRANSFER_STATUS_ERROR;
break;
case HCD_PIPE_EVENT_ERROR_OVERFLOW:
irp->status = USB_TRANSFER_STATUS_OVERFLOW;
break;
case HCD_PIPE_EVENT_ERROR_STALL:
irp->status = USB_TRANSFER_STATUS_STALL;
break;
case HCD_PIPE_EVENT_IRP_DONE: //Special case where we are cancelling an IRP due to pipe_retire
irp->status = USB_TRANSFER_STATUS_CANCELED;
break;
default:
//HCD_PIPE_EVENT_ERROR_IRP_NOT_AVAIL should never occur
abort();
break;
}
}
//Clear error flags
buffer->status_flags.val = 0;
}
static void _buffer_parse(pipe_t *pipe)
{
assert(pipe->multi_buffer_control.buffer_num_to_parse > 0);
dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx];
assert(buffer_to_parse->irp != NULL);
bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK;
int mps = pipe->ep_char.mps;
//Parsing the buffer will update the buffer's corresponding IRP
if (buffer_to_parse->status_flags.error_occurred) {
_buffer_parse_error(buffer_to_parse);
} else {
switch (pipe->ep_char.type) {
case USB_PRIV_XFER_TYPE_CTRL: {
_buffer_parse_ctrl(buffer_to_parse);
break;
}
case USB_PRIV_XFER_TYPE_ISOCHRONOUS: {
_buffer_parse_isoc(buffer_to_parse, is_in);
break;
}
case USB_PRIV_XFER_TYPE_BULK: {
_buffer_parse_bulk(buffer_to_parse);
break;
}
case USB_PRIV_XFER_TYPE_INTR: {
_buffer_parse_intr(buffer_to_parse, is_in, mps);
break;
}
default: {
abort();
break;
}
}
}
usb_irp_t *irp = buffer_to_parse->irp;
IRP_STATE_SET(irp->reserved_flags, IRP_STATE_DONE);
buffer_to_parse->irp = NULL;
buffer_to_parse->flags.val = 0; //Clear flags
//Move the IRP to the done tailq
TAILQ_INSERT_TAIL(&pipe->done_irp_tailq, irp, tailq_entry);
pipe->num_irp_done++;
//Update multi buffer flags
pipe->multi_buffer_control.fr_idx++;
pipe->multi_buffer_control.buffer_num_to_parse--;
pipe->multi_buffer_control.buffer_num_to_fill++;
}
static void _buffer_flush_all(pipe_t *pipe, bool cancelled)
{
int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec;
for (int i = 0; i < cur_num_to_mark_done; i++) {
//Mark any filled buffers as done
_buffer_done_error(pipe, 0, pipe->state, pipe->last_event, cancelled);
}
int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse;
for (int i = 0; i < cur_num_to_parse; i++) {
_buffer_parse(pipe);
}
//At this point, there should be no more filled buffers. Only IRPs in the pending or done tailq
}
// ---------------------------------------------- HCD Transfer Descriptors ---------------------------------------------
// ----------------------- Public --------------------------
esp_err_t hcd_irp_enqueue(hcd_pipe_handle_t pipe_hdl, usb_irp_t *irp)
{
//Check that IRP has not already been enqueued
HCD_CHECK(irp->reserved_ptr == NULL
&& IRP_STATE_GET(irp->reserved_flags) == IRP_STATE_IDLE,
ESP_ERR_INVALID_STATE);
pipe_t *pipe = (pipe_t *)pipe_hdl;
HCD_ENTER_CRITICAL();
//Check that pipe and port are in the correct state to receive IRPs
HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED //The pipe's port must be in the correct state
&& pipe->state == HCD_PIPE_STATE_ACTIVE //The pipe must be in the correct state
&& !pipe->cs_flags.pipe_cmd_processing, //Pipe cannot currently be processing a pipe command
ESP_ERR_INVALID_STATE);
//Use the IRP's reserved_ptr to store the pipe's
irp->reserved_ptr = (void *)pipe;
//Add the IRP to the pipe's pending tailq
IRP_STATE_SET(irp->reserved_flags, IRP_STATE_PENDING);
TAILQ_INSERT_TAIL(&pipe->pending_irp_tailq, irp, tailq_entry);
pipe->num_irp_pending++;
//use the IRP's reserved_flags to store the IRP's current state
if (_buffer_can_fill(pipe)) {
_buffer_fill(pipe);
}
if (_buffer_can_exec(pipe)) {
_buffer_exec(pipe);
}
if (!pipe->cs_flags.is_active) {
//This is the first IRP to be enqueued into the pipe. Move the pipe to the list of active pipes
TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle--;
pipe->port->num_pipes_queued++;
pipe->cs_flags.is_active = 1;
}
HCD_EXIT_CRITICAL();
return ESP_OK;
}
usb_irp_t *hcd_irp_dequeue(hcd_pipe_handle_t pipe_hdl)
{
pipe_t *pipe = (pipe_t *)pipe_hdl;
usb_irp_t *irp;
HCD_ENTER_CRITICAL();
if (pipe->num_irp_done > 0) {
irp = TAILQ_FIRST(&pipe->done_irp_tailq);
TAILQ_REMOVE(&pipe->done_irp_tailq, irp, tailq_entry);
pipe->num_irp_done--;
//Check the IRP's reserved fields then reset them
assert(irp->reserved_ptr == (void *)pipe && IRP_STATE_GET(irp->reserved_flags) == IRP_STATE_DONE); //The IRP's reserved field should have been set to this pipe
irp->reserved_ptr = NULL;
IRP_STATE_SET(irp->reserved_flags, IRP_STATE_IDLE);
if (pipe->cs_flags.is_active
&& pipe->num_irp_pending == 0 && pipe->num_irp_done == 0
&& pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) {
//This pipe has no more enqueued IRPs. Move the pipe to the list of idle pipes
TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry);
TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry);
pipe->port->num_pipes_idle++;
pipe->port->num_pipes_queued--;
pipe->cs_flags.is_active = 0;
}
} else {
//No more IRPs to dequeue from this pipe
irp = NULL;
}
HCD_EXIT_CRITICAL();
return irp;
}
esp_err_t hcd_irp_abort(usb_irp_t *irp)
{
HCD_ENTER_CRITICAL();
//Check that the IRP was enqueued to begin with
HCD_CHECK_FROM_CRIT(irp->reserved_ptr != NULL
&& IRP_STATE_GET(irp->reserved_flags) != IRP_STATE_IDLE,
ESP_ERR_INVALID_STATE);
if (IRP_STATE_GET(irp->reserved_flags) == IRP_STATE_PENDING) {
//IRP has not been executed so it can be aborted
pipe_t *pipe = (pipe_t *)irp->reserved_ptr;
//Remove it form the pending queue
TAILQ_REMOVE(&pipe->pending_irp_tailq, irp, tailq_entry);
pipe->num_irp_pending--;
//Add it to the done queue
TAILQ_INSERT_TAIL(&pipe->done_irp_tailq, irp, tailq_entry);
pipe->num_irp_done++;
//Update the IRP's current state, status, and actual length
IRP_STATE_SET(irp->reserved_flags, IRP_STATE_DONE);
irp->actual_num_bytes = 0;
irp->status = USB_TRANSFER_STATUS_CANCELED;
//If this is an ISOC IRP, update the ISO packet descriptors as well
for (int i = 0; i < irp->num_iso_packets; i++) {
irp->iso_packet_desc[i].actual_length = 0;
irp->iso_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED;
}
}// Otherwise, the IRP is in-flight or already done thus cannot be aborted
HCD_EXIT_CRITICAL();
return ESP_OK;
}