kopia lustrzana https://github.com/espressif/esp-idf
220 wiersze
7.0 KiB
C
220 wiersze
7.0 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "esp_attr.h"
|
|
#include "esp_err.h"
|
|
#include "esp_compiler.h"
|
|
#include "esp_macros.h"
|
|
|
|
#include "esp_system.h"
|
|
#include "esp_log.h"
|
|
|
|
#include "sdkconfig.h"
|
|
|
|
#include "soc/soc_caps.h"
|
|
#include "esp_cpu.h"
|
|
|
|
#include "esp_private/startup_internal.h"
|
|
|
|
// Ensure that system configuration matches the underlying number of cores.
|
|
// This should enable us to avoid checking for both every time.
|
|
#if !(SOC_CPU_CORES_NUM > 1) && !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
#error "System has been configured to run on multiple cores, but target SoC only has a single core."
|
|
#endif
|
|
|
|
uint64_t g_startup_time = 0;
|
|
|
|
// App entry point for core 0
|
|
extern void esp_startup_start_app(void);
|
|
|
|
// Entry point for core 0 from hardware init (port layer)
|
|
void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default"))) __attribute__((noreturn));
|
|
|
|
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
// Entry point for core [1..X] from hardware init (port layer)
|
|
void start_cpu_other_cores(void) __attribute__((weak, alias("start_cpu_other_cores_default"))) __attribute__((noreturn));
|
|
|
|
// App entry point for core [1..X]
|
|
void esp_startup_start_app_other_cores(void) __attribute__((weak, alias("esp_startup_start_app_other_cores_default"))) __attribute__((noreturn));
|
|
|
|
static volatile bool s_system_inited[SOC_CPU_CORES_NUM] = { false };
|
|
|
|
const sys_startup_fn_t g_startup_fn[SOC_CPU_CORES_NUM] = { [0] = start_cpu0,
|
|
#if SOC_CPU_CORES_NUM > 1
|
|
[1 ... SOC_CPU_CORES_NUM - 1] = start_cpu_other_cores
|
|
#endif
|
|
};
|
|
|
|
static volatile bool s_system_full_inited = false;
|
|
#else
|
|
const sys_startup_fn_t g_startup_fn[1] = { start_cpu0 };
|
|
#endif
|
|
|
|
static const char* TAG = "cpu_start";
|
|
|
|
/**
|
|
* Xtensa gcc is configured to emit a .ctors section, RISC-V gcc is configured with --enable-initfini-array
|
|
* so it emits an .init_array section instead.
|
|
* But the init_priority sections will be sorted for iteration in ascending order during startup.
|
|
* The rest of the init_array sections is sorted for iteration in descending order during startup, however.
|
|
* Hence a different section is generated for the init_priority functions which is looped
|
|
* over in ascending direction instead of descending direction.
|
|
* The RISC-V-specific behavior is dependent on the linker script ld/esp32c3/sections.ld.in.
|
|
*/
|
|
__attribute__((no_sanitize_undefined)) /* TODO: IDF-8133 */
|
|
static void do_global_ctors(void)
|
|
{
|
|
#if __riscv
|
|
extern void (*__init_priority_array_start)(void);
|
|
extern void (*__init_priority_array_end)(void);
|
|
#endif
|
|
|
|
extern void (*__init_array_start)(void);
|
|
extern void (*__init_array_end)(void);
|
|
|
|
#ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
|
|
struct object {
|
|
long placeholder[ 10 ];
|
|
};
|
|
void __register_frame_info(const void *begin, struct object * ob);
|
|
extern char __eh_frame[];
|
|
|
|
static struct object ob;
|
|
__register_frame_info(__eh_frame, &ob);
|
|
#endif // CONFIG_COMPILER_CXX_EXCEPTIONS
|
|
|
|
void (**p)(void);
|
|
|
|
#if __riscv
|
|
for (p = &__init_priority_array_start; p < &__init_priority_array_end; ++p) {
|
|
ESP_LOGD(TAG, "calling init function: %p", *p);
|
|
(*p)();
|
|
}
|
|
#endif
|
|
|
|
ESP_COMPILER_DIAGNOSTIC_PUSH_IGNORE("-Wanalyzer-out-of-bounds")
|
|
for (p = &__init_array_end - 1; p >= &__init_array_start; --p) {
|
|
ESP_LOGD(TAG, "calling init function: %p", *p);
|
|
(*p)();
|
|
}
|
|
ESP_COMPILER_DIAGNOSTIC_POP("-Wanalyzer-out-of-bounds")
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief Call component init functions defined using ESP_SYSTEM_INIT_Fn macros.
|
|
* The esp_system_init_fn_t structures describing these functions are collected into
|
|
* an array [_esp_system_init_fn_array_start, _esp_system_init_fn_array_end) by the
|
|
* linker. The functions are sorted by their priority value.
|
|
* The sequence of the init function calls (sorted by priority) is documented in
|
|
* system_init_fn.txt file.
|
|
* @param stage_num Stage number of the init function call (0, 1).
|
|
*/
|
|
__attribute__((no_sanitize_undefined)) /* TODO: IDF-8133 */
|
|
static void do_system_init_fn(uint32_t stage_num)
|
|
{
|
|
extern esp_system_init_fn_t _esp_system_init_fn_array_start;
|
|
extern esp_system_init_fn_t _esp_system_init_fn_array_end;
|
|
|
|
esp_system_init_fn_t *p;
|
|
|
|
int core_id = esp_cpu_get_core_id();
|
|
for (p = &_esp_system_init_fn_array_start; p < &_esp_system_init_fn_array_end; ++p) {
|
|
if (p->stage == stage_num && (p->cores & BIT(core_id)) != 0) {
|
|
// During core init, stdout is not initialized yet, so use early logging.
|
|
ESP_EARLY_LOGD(TAG, "calling init function: %p on core: %d", p->fn, core_id);
|
|
esp_err_t err = (*(p->fn))();
|
|
if (err != ESP_OK) {
|
|
ESP_EARLY_LOGE(TAG, "init function %p has failed (0x%x), aborting", p->fn, err);
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
s_system_inited[core_id] = true;
|
|
#endif
|
|
}
|
|
|
|
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
static void esp_startup_start_app_other_cores_default(void)
|
|
{
|
|
while (1) {
|
|
esp_rom_delay_us(UINT32_MAX);
|
|
}
|
|
}
|
|
|
|
/* This function has to be in IRAM, as while it is running on CPU1, CPU0 may do some flash operations
|
|
* (e.g. initialize the core dump), which means that cache will be disabled.
|
|
*/
|
|
static void IRAM_ATTR start_cpu_other_cores_default(void)
|
|
{
|
|
do_system_init_fn(ESP_SYSTEM_INIT_STAGE_SECONDARY);
|
|
|
|
while (!s_system_full_inited) {
|
|
esp_rom_delay_us(100);
|
|
}
|
|
|
|
esp_startup_start_app_other_cores();
|
|
}
|
|
#endif
|
|
|
|
static void do_core_init(void)
|
|
{
|
|
do_system_init_fn(ESP_SYSTEM_INIT_STAGE_CORE);
|
|
}
|
|
|
|
static void do_secondary_init(void)
|
|
{
|
|
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
// The port layer transferred control to this function with other cores 'paused',
|
|
// resume execution so that cores might execute component initialization functions.
|
|
startup_resume_other_cores();
|
|
#endif
|
|
|
|
// Execute initialization functions esp_system_init_fn_t assigned to the main core. While
|
|
// this is happening, all other cores are executing the initialization functions
|
|
// assigned to them since they have been resumed already.
|
|
do_system_init_fn(ESP_SYSTEM_INIT_STAGE_SECONDARY);
|
|
|
|
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
// Wait for all cores to finish secondary init.
|
|
volatile bool system_inited = false;
|
|
|
|
while (!system_inited) {
|
|
system_inited = true;
|
|
for (int i = 0; i < SOC_CPU_CORES_NUM; i++) {
|
|
system_inited &= s_system_inited[i];
|
|
}
|
|
esp_rom_delay_us(100);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void start_cpu0_default(void)
|
|
{
|
|
// Initialize core components and services.
|
|
do_core_init();
|
|
|
|
// Execute constructors.
|
|
do_global_ctors();
|
|
|
|
// Execute init functions of other components; blocks
|
|
// until all cores finish (when !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE).
|
|
do_secondary_init();
|
|
|
|
#if SOC_CPU_CORES_NUM > 1 && !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|
|
s_system_full_inited = true;
|
|
#endif
|
|
|
|
esp_startup_start_app();
|
|
|
|
ESP_INFINITE_LOOP();
|
|
}
|